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Simple Summary: Perineural invasion (PNI) as the fourth way for solid tumor metastasis and
invasion has attracted a lot of attention, and axon growth and possible nerve “invasion” to tumors
has also become an important component of PNI. We aim to summarize the current theories on
the molecular mediators and pathogenesis of PNI, add the latest scientific research progress, and
especially explore the use of single-cell spatial transcriptomics in this invasion way, to obtain a better
understanding of PNI.

Abstract: Perineural invasion (PNI) as the fourth way for solid tumors metastasis and invasion has
attracted a lot of attention, recent research reported a new point that PNI starts to include axon
growth and possible nerve “invasion” to tumors as the component. More and more tumor–nerve
crosstalk has been explored to explain the internal mechanism for tumor microenvironment (TME)
of some types of tumors tends to observe nerve infiltration. As is well known, the interaction of
tumor cells, peripheral blood vessels, extracellular matrix, other non-malignant cells, and signal
molecules in TME plays a key role in the occurrence, development, and metastasis of cancer, as to
the occurrence and development of PNI. We aim to summarize the current theories on the molecular
mediators and pathogenesis of PNI, add the latest scientific research progress, and explore the use of
single-cell spatial transcriptomics in this invasion way. A better understanding of PNI may help to
understand tumor metastasis and recurrence and will be beneficial for improving staging strategies,
new treatment methods, and even paradigm shifts in our treatment of patients.

Keywords: perineural invasion (PNI); tumor microenvironment (TME); single-cell spatial
transcriptomics (sc-ST)

1. Background

There are three well-known traditional ways for solid tumor metastasis and invasion:
direct invasion of surrounding tissue, lymphatic spread, and haematogenic spread [1].
With the deepening of tumor research, the fourth invasion and metastasis mode has
gradually attracted the attention of researchers: perineural invasion (PNI). In the process
of tumorigenesis, nerves will be induced to sprout into the tumor during tumorigenesis,
which in turn leads to cancer–nerve crosstalk, and assists tumor dissemination [1–5]. PNI
was first reported by European scientists who described head and neck cancers that show
a tendency to invade along nerves when moving to the intracranial fossa [6,7], which
is usually associated with poor prognosis and may lead to severe pain, typically pain
such as pancreatic adenocarcinoma (PAAD) [1,4,5,8]. Since then, PNI has become the
key pathological feature of many malignant tumors, such as PAAD [8], prostate cancer

Cancers 2023, 15, 1360. https://doi.org/10.3390/cancers15051360 https://www.mdpi.com/journal/cancers

https://doi.org/10.3390/cancers15051360
https://doi.org/10.3390/cancers15051360
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0002-0267-563X
https://doi.org/10.3390/cancers15051360
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers15051360?type=check_update&version=1


Cancers 2023, 15, 1360 2 of 22

(PRAD) [9,10], colorectal cancer [11], squamous cell carcinoma (SCC) of head and neck
mucosa [4,5,12–15], adenoid cystic carcinoma (ACC) [2,16], etc.

As a unique pathological entity, PNI can be observed without lymphatic or vascular
invasion. Nerve sheath was composed of three connective tissue layers, which are the
epineurium, the perineurium, and the endoneurium [1]. The endoneurium is the innermost
layer formed mainly by axons and Schwann cells, and also contains mast cells, resident
macrophages, fibroblasts, and blood vessels [17]. A laminated cylindrical layer derived
from fibroblasts formed the perineurium to surround the endocardium, and they connected
with each other through tight connections and gap connections to form a layer separated
by collagen fibers (type IV) [18]. The epineurium is the outermost layer and includes a
collagen tissue sheath, a plexus of blood vessels, lymphatic vessels, resident macrophages,
fibroblasts, mast cells, and sometimes adipose tissue [19,20]. The definition of PNI was
based on the nerve sheath: the tumor is close to the nerve and involves at least 33% of
the circumference of adjacent nerve sheaths, or cancer cells exist in any of the three layers
of adjacent nerve sheaths [1]. The incidence of PNI is different among different cancers,
such as 70–100% in PAAD [8], 85–100% in PRAD [21], 20–57% in colorectal cancer [11],
25% to 80% in SCC of head and neck mucosa [4], and up to 80% in salivary adenoid
cystic carcinoma (SACC) [22]. Cases reported of PNI were commonly associated with
poor prognosis and decreased survival [1,11,23,24]. It has been reported that when PNI
occurs in nerves with a diameter of >1 mm, there is an independent correlation between
a higher local recurrence rate and PNI [25]. It has also been proved that the difference in
the position of the PNI site relative to the tumor will also lead to the difference in patient
prognosis [26]. Therefore, some researchers use the term “nerve invasion (NI)” instead of
“perineural invasion (PNI)” to describe this tumor behavior. Given the importance of the
invasion mode and the extremely serious clinical consequences, researches on this point
are essential to control tumor dissemination and monitor disease progression.

Although most research focused on the invasion of tumor cells to nerves, recent re-
search reported that PNI starts to include axon growth and possible nerve “invasion” to
tumors [27]. More studies have recognized PNI as the result of the interaction of tumor
cells, nerve cells, and nerve microenvironment, and all parties work together to promote
the invasion of tumors into the space around nerves [16]. The tumor microenvironment
(TME) plays an important role in PNI. The interaction of tumor cells, peripheral blood
vessels, extracellular matrix (ECM), other non-malignant cells [28,29], and signal molecules
in TME play key roles in the occurrence, development, and metastasis of cancer [2,22,30–33].
The nerve barrier constitutes a defense line against tumor invasion. When tumor cells
invade, peripheral nerve cells release neurotrophic factors, growth factors, chemokines,
and cell-adhesion molecules to promote nerve repair and regeneration and maintain the
stability of barrier function. At the same time, nerve cells such as Schwann cells and tumor
cells interact with each other through autocrine and paracrine signals, enhancing the adhe-
sion between cancer cells and nerves, and promoting tumor diffusion along nerves [34].
All kinds of cells in the microenvironment, including tumor-associated macrophages and
fibroblasts, are activated by chemokines to produce peripheral inflammation, release neu-
rotrophic factors, growth factors, and MMPs, and promote the growth, proliferation, and
invasion of tumors, resulting in PNI [34–36]. As our understanding of the pathogenesis of
PNI continues to progress, so will the definition of PNI [37,38]. The study of TME promotes
the understanding of the existence and function of nerves in the TME and leads to the emer-
gence of innovative anticancer therapy [39–41]. Based on the cellular components of TME,
we aim to summarize the current theories on the molecular mediators and pathogenesis of
PNI and add the latest scientific research progress. The application of some new research
methods and technologies may not only find new molecular targets for PNI but also pro-
vide valuable insights for the development of PNI in the tumor microenvironment and
neural microenvironment; to obtain a better understanding of PNI may help to understand
tumor metastasis and recurrence and will be beneficial for improving staging strategies,
new treatment methods, and even paradigm shifts in our treatment of patients.
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2. Main

Infiltrating cells constituting the tumor matrix include fibroblasts, bone marrow-
derived cells (BMDCs), tumor-associated monocytes and macrophages, endothelial cells,
endothelial progenitor cells (EPC), myeloid-derived suppressor cells (MDSCs), neurons,
T regulatory cells (Treg), and pericytes, and different components in neuroimmune axis
and many other unrelated pedigrees, and extra-cellular components (cytokines, growth
factors, hormones, extracellular matrix, etc. (see Figure 1 and Table 1) [41,42]. Several
populations of BMDCs are recruited into TME and niche, where they can differentiate
into tumor-promoting populations, such as EPC, MDSCs, and macrophage-like cells [3].
Factors derived by cells in this microenvironment promote the migration and proliferation
of adjacent vascular cells, tumor cells, and neurons, and grow together with tumors [43,44].
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Figure 1. A general observation on the invasion of peripheral nerves of tumors.

2.1. Monocytes/Macrophages

Monocytes/macrophages are usually the most abundant component in the immune
cell population of the TME, and affect tumor progression and metastasis through interaction
with tumor cells (see Figure 2) [45]. The main source of tumor-related macrophages (TAMs)
is circulating mononuclear cells, which were derived from myeloid progenitors in the
bone marrow and differentiated into mononuclear cells under the mobilization of the
chemokine (C-C motif) ligand 2 (CCL2)/chemokine (C-X-C motif) receptor 2 (CCR2) axis
and then enter the peripheral inflammation site through blood or further differentiate into
macrophages in primary tumors [29,41,46], and they actively migrate to the tumorigenesis
site and rapidly differentiate into TAMs during tumorigenesis, inhibiting various T-cell
reactions, maintaining normal tissue homeostasis in response to various systemic infections
and injuries, and helping anti-tumor escape [41]. They showed a high degree of functional
plasticity, and can rapidly adapt to the disturbance of the environment around them.
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Table 1. Summary of factor function and its mechanism.

Factor
Family Factors Receptor Mechanisms Functions

N
eu

ro
tr

op
hi

c
fa

ct
or

s

NGF TrkA Activation of Trk receptors results in
either neuronal differentiation or
mitogenic stimuli. Transmit the

signals related to the survival and
apoptosis of nerve cells to the inside

of cells, thus regulating the
development and apoptosis of cells.

Stimulate nerve growth

BDNF,
NT-4/5 TrkB Affects myelination during nerve regeneration;

Promote migration and invasion

NT3 TrkC
Inhibit the formation of myeloid cells in the
peripheral nervous system to promote the

proliferation of SCs

NRTN/
Artemin GFRα

Activate RET tyrosine kinase (TK)
by binding their homologous GDNF
family receptor -α (GFRα) receptors

Promote cancer cell invasion and neuronal
plasticity; Promote the proliferation of nerve

fibers around the tumor; Regulate the
interaction between SCs and tumor cells.

GDNF GFRα1 Active RAS/ERK, MAPK, JNK, and
PI3-K-Akt.

Prompt pro-MMP-9 expression and activation
of MMP-9 to affect nerve adhesion and

invasion; Initiate cancer cell migration, and
PNI effect, and induced migration along the

nerve; Prompt invasion and metastasis
formation; Enhance the expression of integrin.

N
eu

re
gu

lin
s

NRG1 ErbB Active MAPK, PI-3K.

Increase the gap connection communication
between SCs; Adjust the physiological
characteristics of SCs, and promote the

movement and migration of SCS

N
eu

ro
pe

pt
id

es

SP NK-1R,
EGFR, HER2

Active MAPK (including ERK1/2
and P38mapk); Active

NK-1R/Akt/NF-κB signal pathway;
Transactive EGFR and HER2.

Increase MMP-2, MMP-9, VEGF, and VEGFR;
Stimulate cell proliferation; Lead to growth;

Avoid apoptosis.

GAL GALR2 Active MAPK signal pathways and
inactive TTP.

Promote Prostaglandin E2 generation to
promote the secretion of pro-inflammatory

mediators and neuropeptides by tumor cells;
Promotes cytokine secretion (including IL-6,

VEGF, IL-8); Induce angiogenesis
and neurogenesis.

C
he

m
ok

in
es

CXCL10,
CCL21

CXCR3,
CCR7

Active AKT, MEK, and RAC signal
pathways in tumor cells Promote cancer cells’ invasiveness, migration,

proliferation, epithelial–mesenchymal
transition; and sensitize sensory nerves;

Recruit bone marrow-derived cells (BMDC)
and M2 macrophages; GDNF secreted by the
recruited macrophages activates RET-GDNF

receptor α1 (GFRα1) in cancer cells and
promotes the invasion of PNI and cancer cells;

Enhance the adhesion between cancer cells
and nerves.

CCL2 CCR2 Active MAPK, AKT
signal pathways.

CXCL12 CXCR4/
CXCR7

Active AKT, ERK, and sonic
hedgehog-dependent pathways;

CCL2 CCR2 Active RET-GDNF receptor α1
(GFRα1) in cancer cells.

CX3CL1 CX3CR1 CX3CL1 direct contact CX3CR1 to
adhere to nerve cells.
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Figure 2. Monocytes/macrophages. The M1 cell was activated by Th1 cytokine interferon-γ (IFN-γ),
interleukin-12 (IL12), tumor necrosis factor (TNF), and microbial products, while the M2 cell was
activated and differentiated by Th2 cytokines (such as IL4, IL5, IL10, IL13, colony-stimulating factor-
1 (CSF1), transforming growth factor-1 (TFGβ1) and prostaglandin E2 (PGE2). TAMs (generally
considered to be M2) exposed to hypoxia or lactate secretes a variety of cytokines with metabolic
functions, including IL6, TNF, CCL5, and CCL18 to enhance PNI. TAMs express PD-L1 and can
directly reduce the activation of T cells, then suppress the anticancer immune responses. TAMs
promote tumor progression and invasion by up-regulating matrix metalloproteinases (MMPs). TAMs
degrade the protein of nerve bundle membrane by expressing cathepsin B-mediated process. This
picture is drawn by Figdraw (www.figdraw.com).

TAMs were described into M1 and M2 subtypes according to their polarization
state [47]. The M1 cell was activated by Th1 cytokine interferon-γ (IFN-γ), interleukin-
12 (IL12), tumor necrosis factor (TNF), and microbial products to exert a tumor-killing
effect, while the M2 cell was activated and differentiated by Th2 cytokines (such as
IL4, IL5, IL10, IL13, colony-stimulating factor-1 (CSF1), transforming growth factor-1
(TFGβ1) and prostaglandin E2 (PGE2) to exert angiogenesis and immunosuppressive
effect [41,43,45,48,49]. Anti-tumor M1 type was recruited at an early stage of tumor devel-
opment, and the overexpression of the p50 subunit of nuclear factor kappaB (NFκB) in
macrophages promoted the repolarization of M1 to M2 [42,50–52], gradually differentiated
M1 into a tumor-promoting M2 type [53].

TAMs are generally considered to be M2 macrophages in the TME which, when
exposed to hypoxia or lactate, secretes a variety of cytokines with metabolic functions,
including IL6, TNF, CCL5, and CCL18 to enhance PNI [47]. TAMs express PD-L1 and can di-

www.figdraw.com
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rectly reduce the activation of T cells, then suppress the anticancer immune responses [42].
In addition, TAMs can promote tumor progression and invasion by up-regulating ma-
trix metalloproteinases (MMPs) [54,55]. Carcinoma-produced MMP1 activates neuronal
protease-activated receptor 1 (PAR1) and induces substance P (SP) release, activating car-
cinoma neurokinin 1 receptor (NK1R), which plays a pivotal role in tumor progression
and PNI [42,56]. Macrophage-derived IL-1β induces non-neuronal cells to synthesize
nerve growth factor (NGF), and activated macrophages can also release glial cell-derived
neurotrophic factor (GDNF)-activated RET receptors to trigger tumor cell migration.

Evidence from clinical and experimental studies shows that there is a close relationship
between TAM density and cancer cell metastasis in various cancers [28]. In PAAD, inflam-
matory monocytes (IM) expressing CCR2 can be driven by CCL2 released by Schwann
cells at the PNI site to recruit preferentially to the nerve site, then differentiated into
macrophages and enhance NI by expressing cathepsin B-mediated process to degrade
the protein of nerve bundle membrane [29,39]. Protein species degraded by cathepsin
B contained laminin, fibronectin, and collagen IV [29], which are important parts of the
protective nerve bundle membrane, and its function as a peripheral nerve protective barrier
is weakened when it is destroyed [57]. In addition, it has been reported that endoneurial
macrophages (EMϕ) can transform into microglia/macrophage subsets involved in cell
defense and peripheral nerve regeneration [30]; EMϕ around the nerve invaded by cancer
is recruited to the tumor front in response to colony-stimulating factor -1(CSF-1) secreted by
the tumor, then activated by tumor, secretes a higher level of GDNF as a chemical attractant
of cancer cells, which induces phosphorylation of the transmembrane helper receptor RET
in PAAD cells and activation of MAPK and PI3K pathways in downstream cancer cells
of the extracellular signal-regulated kinase (ERK), promotes the migration to nerves of
cancer cells, and enhances the PNI [30]. In addition, macrophages also regenerate injured
nerves by secreting VEGF, which was also used by Schwann cells to guide the growth and
migration of nerves for tumor axonogenesis [58].

2.2. Fibroblasts

Cancer-associated fibroblasts (CAFs) are an important subpopulation of fibroblasts to
support tumorigenesis by stimulating angiogenesis, cancer cell proliferation, and mediating
tumor-enhancing inflammation and invasion in tumors (see Figure 3) [13,59]. The origin of
CAFs in TME has not been clarified, while in PDAC and CCA, they are considered to be dif-
ferentiated from stellate cells [34,60], and bone marrow-derived circulating progenitor cells
of hematopoietic or mesenchymal lineage were also reported to derive from CAFs [61,62].
Currently, it is believed that local tissue fibroblasts are activated into CAFs, which account
for a large part of the stromal cells in TME and up to 80% of the tumor volume in advanced
squamous cell carcinoma of the head and neck (HNSCC) [13,63], due to the influence of
tumor-derived paracrine factors and cytokines [64].

They are responsible for the synthesis, deposition, and remodeling of most of the
ECM in the tumor matrix and are thought to be sources of growth factors that affect
paracrine, which affect the growth of cancer cells and have been shown to provide key
signals supporting tumor progression and allow a small population of cancer cells to
escape treatment [65–68]. Such as transforming growth factor β (TGF-β) secreted by CAFs
induced a fibroblastic response in the surrounding environment to synthesize collagen,
stiffen the tissue, and destroy microvascular structure by extensive collagen cross-linking,
then the mechanical stress of the connective tissue collapses the nearby blood vessels to
promote hypoxia [69]. Under hypoxic conditions, interleukin-6(IL-6) produced by cancer
cells induces the activation of Schwann cells and triggers the development of PNI [70],
which is also accompanied by the activation of a series of hypoxia-associated signaling
pathways. In addition, a dense structure formed by fibrosis around a cluster of cancer
cells in an adenocarcinoma caused internal high and lead to the rupture of glandular
structure, simultaneously, the high-density fibers formed a track that contributed to the
movement of the cancer cells to overflow and diffuse quickly [64]. By the anisotropic
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E-cadherin/N-cadher in junction, the frontier CAFs exert the physical force to enable the
synergistic invasion of CAFs and cancer cells through a dual mechanism: CAFs pull cancer
cells away from the tumor facilitating the invasion of cancer cells, while cancer cells polarize
its migration away from the tumor to enhance the diffusion of CAFs [71,72]. In addition,
fibroblasts contribute to Schwann-cell-induced axonal growth and, after nerve injury,
ephrin-B on fibroblasts activates EphB2 receptors on Schwann cells, and fibroblasts through
the ephrin-B/EphB2 signaling pathway induce Schwann cells to migrate through bridges as
dense groups or cords to guide axons through injury site [73]. At the same time, CAFs can
regulate the N-cadherin/β-catenin pathway through the production/secretion of the axonal
guidance molecule Slit2, affecting the neural remodeling related to glandular catheter
adenocarcinoma [74]. On the other hand, CAFs promote cancer invasion by secreting
factors that cause cancer cell activation and matrix remodeling. Studies have shown that
CAFs exist at the PNI site and the produced inactive matrix metalloproteinase-2(MMP-2) is
activated by membrane-type 1 matrix metalloproteinase (MT1-MMP) produced by tumor
cells, which degrades extracellular collagen in the perineural niche and promotes the spread
of cancer cells in the perineural space [68,75].
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derived paracrine factors and cytokines. They help with the synthesis, deposition, and remodeling of
most of the ECM in the tumor matrix. CAFs secrete TGF-β to synthesize collagen, stiffen the tissue,
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a track contributing to the movement, overflowing, and diffusion and of the cancer cells, and exert
physical force by the anisotropic E-cadherin/N-cadherin in junction, degrade extracellular collagen
and induce migration of SCs through the ephrin-B/EphB2 signaling pathway. This picture is drawn
by Figdraw (www.figdraw.com).

2.3. Schwann Cells (SCs)

Schwann cells are the main cells of peripheral nerves, which wrap the single or multi-
ple axons of peripheral nerves and promote signal transduction (see Figure 4). When it is

www.figdraw.com
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damaged or invaded by tumor cells, the axonal injury may trigger the dedifferentiation and
activation of SCs through various pathways [76]. The myelinated SCs are dedifferentiated
into “repair SCs” (RSCs) [77] with a demyelinating phenotype. By producing a variety
of neurotrophic factors and cell surface proteins, including GDNF, artemin and BDNF,
p75 neurotrophic factor receptor (p75NTR), and N-cadherin, remodeling the matrix and
releasing pro-inflammatory mediators to change the local signaling environment, the in-
jured SCs can induce macrophages to synergistically remove myelin debris [77], and guide
axonogenesis, participate in axon maintenance and post-injury repair, playing an important
role in maintaining axon health and neuron survival, opening the way for subsequent
nerve regeneration.
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important role in maintaining axon health and neuron survival, opening the way for sub-
sequent nerve regeneration. 

 
Figure 4. Schwann cell. The myelinated SCs are dedifferentiated into “repair SCs” (rSCs) with a 
demyelinating phenotype when it is damaged or invaded. By producing a variety of neurotrophic 
factors and cell surface proteins to interact with cancer cells, including GDNF, artemin and BDNF, 
p75 neurotrophic factor receptor (p75NTR), TGFβ, and N-cadherin, remodeling the matrix to help 

Figure 4. Schwann cell. The myelinated SCs are dedifferentiated into “repair SCs” (rSCs) with a
demyelinating phenotype when it is damaged or invaded. By producing a variety of neurotrophic
factors and cell surface proteins to interact with cancer cells, including GDNF, artemin and BDNF,
p75 neurotrophic factor receptor (p75NTR), TGFβ, and N-cadherin, remodeling the matrix to help
the migration of cancer cells, and releasing pro-inflammatory mediators: TGFβ, prostaglandin E, to
change the local signaling environment, the injured SCs can induce macrophages to synergistically
remove myelin debris, and produce (TASTs) as active scaffolds to guide axonogenesis or cancer
invasion. This picture is drawn by Figdraw (www.figdraw.com).

In the TME, SCs are thought to drive PNI—cancer cells using normal SCs nerve repair
procedures to promote PNI [78]. SCs can directly interact with cancer cells through nerve
cell adhesion molecule 1 (NCAM1) to break the connection between cells in the tumor cell
cluster, thereby dispersing them into single cells [79]. Contact between SCs and cancer cells
induces cancer cell protrusion and guides cancer cells to migrate from the cluster to SCs,
thereby promoting the invasion and migration of cancer cells along the nerve [79]. L1 cell
adhesion molecule (L1CAM) is overexpressed in SCs adjacent to cancer cells and invaded

www.figdraw.com
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nerves, which strongly induces cancer cells as a strong chemoattractant by activating MAP
kinase signaling, and L1CAM also up-regulates the expression of metalloproteinase -2
(MMP2) and MMP9 in PDAC cells by activating STAT3 and facilitates matrix remodeling
along the axon [80,81]. MMPs secreted by SCs, especially MMP2 and MMP9, enhance the
degradation of ECM and provide loose channels for the movement of cancer cells [82].
Schwann cells have also been identified as an important source of TGFβ, which can activate
SMAD signals that induce migration, invasiveness, and PNI in PAAD cells, increasing the
invasiveness of cancer cells [83]. Studies have suggested that before cancer cells migrate
to peripheral neurons, SCs migrate to pancreatic or colon cancer cells through the NGF-
TrkA-p75NTR signaling pathway, but do not migrate to benign cells, so activated oncogenic
SCs are likely to construct a pathway to cancer cells [84]. It has also been proposed in the
literature that tumor cells activated SCs by c-Jun, while non-myelinating activated SCs
form tumor-activated Schwann cell tracks (TASTs) as active scaffolds, and exert forces
on cancer cells to enhance cancer mobility, promote cancer cell migration and invasion,
a process similar to their reprogramming during nerve repair, leading to “neurogenesis”
of precancerous cells and the periphery of tumor cells [85]. At the same time, SCs were
demonstrated to be abundant in the surrounding stroma of the precancerous lesions of
PAAD, possibly capable of recruiting immune cells at the PNI site, and macrophages
recruited by SCs provided additional and persistent cytokine sources to further enhance
neural invasion of tumor cells [20,77,84,86]. In a recent study, SCs activated by tumor
produced prostaglandin E, polarized T cells to failure phenotype, leading to tumor-related
immunosuppression, and play an important role in tumor–nerve crosstalk [87]. In addition,
the differentiation of myoepithelial into SCs may be one of the mechanisms of PNI that
occur in SACC2.

2.4. Neurons, Nerve Fibers, and Neurotransmitters

The interaction between nerve and cancer cells leads to the relationship of mutual
growth promotion via the action of neurotrophic factors (NTFs) from nerve and cancer
cells, and the pro-invasive and proliferative characteristics of autonomic neurotransmitters
from nerve fibers [86,88].

Pathological neurogenesis is not only the physiological basis of chronic pain produced
by the tumors but also contributes to the PNI [86,89–91]. Sensory nerve fibers undergoing
pathological sprouting in cancers has been reported, which was driven by NTFs, espe-
cially the nerve growth factor (NGF), released from tumors and their associated stromal
cells [92]. The expression of NTFs by cancer cells and nerves at the same time implies that
cancer cells can make use of the same repertoire of trophic signals as nerves do to develop
themselves [88]. In addition, after partial peripheral nerves were injured, the sustained
demyelination state of the peripheral nerve relieves the axon of growth inhibition and
encouraged nerve sprouting [93]. In a cancer such as PAAD, increased neural density
(neural sprouting) and size (neural hypertrophy) occur, compared to normal pancreas
innervation [86,94–96]. The mutual trophic interaction changes neural distribution in a
solid tumor, which makes it more conducive to the exchange of signals between cancer
cells and nerves [88]. In another way, it could be explained as the pathological neural plas-
ticity induced by tumor-derived factors [86,91,97]. These signals were usually transferred
via chemical substances with chemoattractive attributes such as NTFs, neuropeptides,
neurotransmitters, and so on, leading to the mutual attraction between tumor cells and
nerves, and enhancing cancer cells’ chemoattraction and motility. In addition, neuroge-
nesis can also be induced by the recruitment of neural progenitor cells from the central
nervous system (CNS), especially from the subventricular zone (SVZ), traveling through
the bloodstream attracted by tumor-derived factors [42]. They will colonize in a tumor, and
differentiate into functional autonomic neurons to produce adrenergic neurons and release
neurotransmitters, and stimulate the growth of the tumor, mainly producing adrenergic
neurons and releasing neurotransmitters to enrich the TME [98]. It was also proposed that
cancer stem cells can differentiate and acquire an autonomic neuron-like phenotype, which
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may be able to perform neuron-related functions to influence the progression of tumors [42].
For example, cancer stem cells of gastric cancer and colorectal cancer can differentiate into
sympathetic neurons producing tyrosine hydroxylase (TH) and parasympathetic neurons
producing vesicular Ach transporter [99].

Studies have shown that in the process of PNI, when PAAD cells are close to neurons
and SCs of peripheral nerves, they are attracted by neural components of peripheral nerves
and migrate to neurons [84]. Neurotransmitters derived from fibers such as glutamic acid,
aminobutyric acid (γ-aminobutyric acid), NE, or Ach stimulate the survival, proliferation,
and migration of tumor cells [35]. Neurotransmitters regulate the immune-promoting and
anti-immune responses and affect the TME through this indirect mechanism [34]. Sym-
pathetic and parasympathetic nerve fibers release norepinephrine (NE) and acetylcholine
(ACh) in tumors and lymphatic organs, as well as other neuromodulators, to reduce the
anti-tumor immune response [100,101]. The sympathetic nerve fibers in the tumor are
related to the early stage of cancer, and the angiogenesis switch is triggered by adrener-
gic signals [102]. In the late stage of tumor development, parasympathetic nerve fibers
help to stimulate the invasion and metastasis of cancer cells [34,103,104]. NE derived
from sympathetic nerve fibers activates β2- adrenergic receptors and activates through
PKA/STAT3, which leads to the expression of NGF, MMP2, and MMP9 in PAAD cells,
enabling them to migrate and invade and induce PNI [42]. NE can also stimulate the
production of IL-6 and activate macrophages in TME, which can promote cancer migration
and nerve invasion by releasing GDNF [30]. Parasympathetic nerve fibers release Ach,
which inhibits immune response through nicotine receptors, while sensory nerve fibers
release substances P and CGRP to activate mast cells and blood vessels [42]. Catecholamine
activates the immunosuppressive switch in the TME of lung cancer, causing M1 to M2
macrophages to re-polarize and aggregate M2 polarized macrophages and MDSCs. At
the same time, it reduces anti-tumor dendritic cells (DC), which leads to the synthesis and
release of IL-10, inhibits immune response, leads to the synthesis and release of VEGF, and
promotes angiogenesis [105]. In addition, another β2 Adrenergic-Neurotrophin (NT) loop
driven by catecholamine can up-regulate NTs to increase sympathetic innervation and local
NE accumulation [106].

2.5. Neurotrophic Factors, Neuregulins and Neuropeptides

Peripheral nerve microenvironment includes neurons, Schwann cells, and microglia/
macrophages, which secrete various factors to participate in nerve homeostasis, dendritic
growth, and axon germination [30].

Neurotrophic factors (NTFs) are a kind of protein, which play an important role in the
development, survival, and apoptosis of neurons. Its members include nerve growth factor
(NGF), brain-derived neurotrophic factor (BDNF), neurotrophin (NRTN), neurotrophins-
3(NT-3), NT-4, NT-5, Artemin, etc, which promotes the growth of neurons and PNI together
with receptors [100,107]. There are two different membrane protein receptors of NTFs,
namely the tyrosine kinase receptor Trk(TrkA, TrkB and TrkC), which bind neurotrophins
with higher affinity and specificity, and p75 neurotrophic receptor (p75NTR), which binds all
neurotrophins with lower affinity and specificity [108]. NTFs interact with the extracellular
domains of these two receptors, and transmit the signals related to the survival and
apoptosis of nerve cells to the inside of cells, thus regulating the development and apoptosis
of cells. When the nerve is subjected to transverse or focal crush injury, the expression
of NGF and p75NTR far away from the injured site is rapidly induced [84,107]. In oral
squamous cell carcinoma (OSCC), Trk receptors have been confirmed to be overexpressed:
Tropomyosin receptor kinase A (NGF), TrkB (BDNF, NT-4/5), and TrkC (neurotrophins
3, NT3) receptors, TrkC and its ligand NTF3 can promote the proliferation of SCs by
inhibiting the formation of myeloid cells in the peripheral nervous system, and TrkC may
also participate in PNI by regulating the interaction between SCs and tumor cells [68].
Ovarian cancer cells overexpress TrkB, and BDNF/TrkB can promote the migration and
invasion of ovarian cancer cells by affecting myelination during nerve regeneration [67].
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Macrophage-derived IL-1β induces non-neuronal cells to synthesize NGF, and tumor
cells can also secrete NGF and BDNF to active their Trk receptors to stimulate nerve
growth [109,110]. ACC, a neurotrophic tumor, and BDNF receptor, which promotes the
survival and differentiation of axons and nerves, are abundant in the nerves invaded
around the tumor. The normal prostate is one of the most abundant sources of NGF outside
the nervous system [108]. Malignant prostate epithelial cells were reported to overexpress
NGF and BDNF, but also the corresponding TrkB and TrkC receptors, which may be related
to the migration of malignant cells, frequently occurs along nerves within the prostate,
because it may provide abundant neurotrophins to act as chemoattractive guidance clues
for tumor migration [111,112].

It was also reported that PAAD cells migrate preferentially toward human glial along
a GDNF concentration gradient [113,114]. GDNF promotes the expression of integrin,
activates MMP-9, and increases nuclear factor-κB(NF-κB), which affects nerve adhesion
and invasion and promotes PNI [115]. By binding to the RET tyrosine kinase receptor,
GDNF activates two downstream signaling pathways: the PI3-K-AKT pathway, which is
involved in pro MMP-9 expression, and the RAS/RAF-MEK-1-ERK1/2 pathway, which is
critical for the activation of MMP-9 [113]. In addition, neurons and their related SCs can
also release soluble GFRα1 and GDNF(secreted by nerve macrophages), strongly activate
RET in cancer cells and initiate the downstream activation of RAS/ERK, MAPK, JNK,
and PI3-K-AKT signaling pathways, cancer cell migration, and PNI effect, and induced
migration along the nerve [33,42,114,116,117].

Artemin sends signals through the Ret/GFRα3 receptor complex, as a member of
the GDNF family of ligands [118]. In PAAD, over-expressed neurotrophin (NRTN) and
Artemin activate RET tyrosine kinase (TK) by binding their homologous GDNF family
receptor -α (GFRα) receptors, promoting cancer cell invasion and neuronal plasticity, and
promoting the proliferation of nerve fibers around the tumor [119,120]. When the tumor
volume increases, the pressure on nerve fibers increases and axon neurotrophic factors
increase [89]. When an initial damage to the nerves by cancer cell, neurons and/or SCs
produce Artemin/GFRα3 to repair the nerves, but the abundance of Artemin attracts
further cancer cells to the site of injury, which produces a vicious cycle [121].

Axon injury may trigger the dedifferentiation and activation of SCs by releasing
neuregulin (NRG) from the remaining neurons [20]. Neuregulin 1 (NRG1), which is the best
studied of several neuregulin genes, can active ErbB receptor tyrosine kinases situated on
glial membranes and signal to adjacent glial cells [122,123]. NRG1 forms is an EGF-like do-
main, binding to and activating receptors belonging to the EGF family of receptor tyrosine
kinases erbB2, erbB3, and erbB4, after which it can produce erbB3/erbB2 or erbB4/erbB2
heterodimers or erbB4 homo-dimers and generate active signaling complexes and active
an intracellular kinase domain present on erbB2 and erbB4, which phosphorylates specific
tyrosine residues within the cytoplasmic tail of the receptor [124,125]. Then it leads to the
activation of the mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-
kinase (PI-3K) pathways [126–128]. A research work about PAAD has reported that nuclear
FGFR1 regulates the transcription of NRG1, which generates an autocrine loop through
ERBB2/4 to further drive invasion [129]. The expression and rapid release of NRG1 in
neurons and their axons can be stimulated by NGF, BDNF, NT-3, and GDNF, which are
extremely abundant in tumor microenvironment. NRG1 regulates the proliferation, mi-
gration and survival of developing SCs [130], which was one of the important members
in PNI.

Tumor-derived factors and inflammatory mediators activate peripheral sensory fibers,
resulting in the release of the substance P(SP), a neuropeptide that promotes tumor growth.
SP enters the tumor, activates NK1R in cancer cells, and activates growth factor receptor
through Src (EGFR, HER2) [3], and activates the MAPK pathway including extracellular
signal-regulated kinases 1 and 2 (ERK1/2), to stimulate mitogenesis, induce cell prolif-
eration, and avoid apoptosis by increasing the mRNA expression of MMP-2, MMP-9,
VEGF, and VEGFR [131], which can also be produced by transactive EGFR and activation
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of NK-1R/Akt/NF-κB signaling pathway [132,133]. By these pathways, SP mediate the
interaction between cancer cells and nerves, and promote the proliferation, invasion, and
neurotropism of cancer cells, and PNI [132]. It was shown that SP promotes PAAD cell
clusters gradually migrating to the dorsal root ganglions (DRGs) and SP-induced neurite
regeneration extended to the clusters from the DRGs which provides an invasive pathway
for the clusters [132,134].

In addition, neurogenic galanin (GAL) activates the G protein-coupled receptor galanin
receptor 2 (GALR2) in tumors to induce NFATC2-mediated transcription of cyclooxygenase-
2 and GAL, which causes the crosstalk between nerves and cancer cells [14]. Prostaglandin
E2 promotes cancer invasion by promoting the secretion of pro-inflammatory media-
tors and neuropeptides by tumor cells, GAL released by cancer induces neuritogenesis,
facilitating PNI [14,22]. In addition, GALR2-RAP1-p38MAPK-mediated inactivation of
Tristetraprolin(TTP), an RNA-binding protein that promotes decay of transcripts of proan-
giogenic factors (including IL-6, VEGF, IL-8) [135–137], and then induces angiogenesis,
which facilitates tumor progression by supplying oxygen and nutrients [138].

2.6. Chemokines

Chemokines play an important role in cell–cell interaction, which may mediate the
chemical attraction of neurons and/or SCs to cancer cells. Infiltration of tumor cells into
nerves can lead to nerve injury and release CCL, which induces inflammatory reaction
of nerve repair, and then induces the migration of cancer cells expressing CCR to injured
nerves, and finally promotes the PNI effect [139].

In prostate cancer (PRAD) cells, the expression of CCR2 (the receptor of CCL2) pro-
motes NI, and the expression of CCR2 is closely related to the activity of MAPK and Akt
pathways and the migration of cancer cells to chemokine (C-C motif) ligand 2 (CCL2) and
DRG [140]. In PAAD, sensory-neuron-derived mediators CXCL10 and CCL21 pass through
complementary receptors CXCR3 and CCR7 on tumor cells, activating AKT, MEK, and
RAC signaling pathways in tumor cells to mediate migration [141]. CXCL12 derived from
PAAD cells can induce SCs to infiltrate the tumor in the early canceration process and
promote cancer cells to attract and migrate to the nerves [141,142]. In addition, the main
chemokines include chemokine CCL2 and matrix-derived factor 1 (SDF-1/CXCL12), which
induce cancer cell migration under the action of CCR2 and CXCR4 receptors respectively,
and can also recruit bone marrow-derived cells (BMDC) and M2 macrophages, and the
recruited macrophages secrete GDNF, which can activate RET-GDNF receptor α1 (GFRα1)
in cancer cells to promote PNI and the invasion of cancer cells [30,143]. Nerve-related
macrophages accumulate in the nerves invaded by tumor cells along the gradient of CCL2
and CSF-1 recognized by CCR2 and CSF-1R receptors, respectively [29,144]. Nerve-derived
C-X3-C motif chemokine ligand 1 (CX3CL1) and NT-3 further support the interaction
between nerve tumors [145], and the former enhances the adhesion between cancer cells
and nerves, while the latter regulates the interaction between SCs and cancer cells [3].

2.7. Semaphorin

As a family of membrane-related or secreted glycoproteins, it was reported semaphorin
can participate in axon guidance and regulate cell migration such as WBCs, neurons, and
endothelial cells, to attend cancer progression [146]. Axonal guidance was the most im-
portant function, Semaphorin family can mediate axonal guidance by combining plexin
family members, such as Sema3D and plexin D1 (PlxnD1) [147], and semaphorin-3A
(Sema3A) binding to plexin A1 [148], and the tripartite complexes formed by semaphorins-
3 (Sema3s), plexin receptor and neuropilin coreceptor can also mediate axon guidance and
invasion [148–150]. Besides, there still are some other pathological processes mediated by
this combination of the Semaphorin family and plexin family, such as that semaphorin-4D
(Sema4D) induce tumor angiogenesis and vascular maturation by binding to the plexin
B1 receptor on endothelial cells [42]. They can also have an effect on regulating tumor cell
survival, such as Sema3E-PlxnD1 signaling suppressing apoptosis in breast cancer [151].
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Over-expression of Semaphorin-4F (Sema4F) in PRAD cells contributes to the communica-
tion between nerve fibers and cancer cells and induces the proliferation and migration of
PRAD cells [152].

2.8. Tumor Microenvironment

In solid tumors, the rapid growth of tumor tissue, high expansion, and incomplete
vascular system in tumor tissue, will lead to insufficient oxygen supply in tumor tissue,
and the TME presents overall hypoxia [153,154]. Due to hypoxia, tumor cells can only
metabolize energy through anaerobic glycolysis, which will lead to the accumulation of
lactic acid [155,156]. At the same time, ion-exchange proteins on tumor cell membranes
are constantly transporting H+ inside cells to outside cells to avoid self-acidosis [157].
These cellular reactions also caused the PH of the tumor microenvironment to decrease to
different degrees, and the overall environment was acidic [158]. In the microenvironment
of tumor occurrence and development, hypoxia, and acidity, a lot of apoptosis will occur in
tumor tissues and peripheral tissues, releasing cell fragments and chemokines, leading to
infiltration of inflammatory cells and secretion of inflammatory factors [158]. At the same
time, the occurrence and development of the tumor itself will also trigger the immune
response of the immune system, causing inflammatory cells to gather in this area, and
triggering a severe inflammatory response [159]. This local microenvironment tumor
promotes the growth and infiltration of tumor cells into nerve tissue [3,29]. It interacts with
the perineural environment (nerve cells, glial cells, and their products) to further change
the microenvironment and promote PNI [3].

Mitochondrial dysfunction and altered glucose metabolism are considered the typical
changes in the tumor microenvironment, and this metabolic change is potentially related to
the etiology of nervous system degeneration and nerve injury [160,161]. Oxidative stress
was reported to induce chronic neuroinflammation, which contributes to the functionality
switch of astrocytes from neurotrophic to neurotoxic, which can release more lactate
to reinforce their energetic support to neurons, although upregulating the detrimental
pathway [162]. An important feature of energy metabolism in tumor cells is called the
“Warburg effect”, which is characterized by heavy dependence on glycolysis and the
production of a large amount of lactate [163]. Lactate is easily absorbed and decomposed
by tumor cells to produce energy [164]. Lactate can promote tumor invasion and metastasis,
play an immunosuppressive role, and promote tumor development by inducing and
recruiting immunosuppressive-related cells and molecules [165,166]. In particular, lactate is
abundant in the nervous system, which was provided by myelinating Schwann cells (mSCs)
using aerobic glycolysis to support action potentials propagation along axons [167,168].
In addition, glycogen is indicated to be present in the peripheral nerve, primarily in
mSCs [168]. We speculate that this is helpful for the tumor to invade the nerve and obtain a
faster spread speed after the tumor invades the nerve.

3. Single-Cell Spatial Transcriptomics (sc-ST)

Recently, single-cell RNA sequencing (scRNA-seq) has provided unprecedented reso-
lution for revealing complex cellular events and deepening our understanding of biological
systems [169,170]. However, most scRNA-seq protocols require the complete recovery of
cells from tissues and the guarantee of cell survival, which excludes many cell types from
the scope of research, and largely destroys the spatial background that could have provided
information for cell identity and function analysis. However, the functions of many bio-
logical systems, such as embryos, liver lobules, intestinal villi, and tumors, depend on the
spatial organization of their cells. In the past decade, high-throughput technology has been
developed to quantify gene expression in space, and computational methods can be used
to identify genes with spatial patterns and describe the neighborhood in tissues, which is
called “spatial transcriptomics (ST)”. The emergence of this new technology has improved
the spatial resolution and high-dimensional evaluation of gene transcription [171]. Some
researchers have used single-cell spatial transcript information (sc-ST) obtained by com-
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bining single-cell sequence information with spatial transcriptome technology to decipher
cell components in the tumor invasion niche, and its transcription reprogramming and
potential crosstalk, so that the resolution of research becomes higher and accurate spatial
positioning can be obtained. It is well known that hypoxia, EMT, and inflammation sig-
natures contributed to intra-tumor spatial variations, which led to functional differences
in different niches [172]. In a study of skin cancer, the author confirmed that tumor cells
showed a collective migration phenotype and strongly expressed cytokine A, which con-
tributed to the spatial organization of the invasive niche of basal cell carcinoma [5]. ST
showed that tumor cell subgroups in the hypoxia group changed, and different subgroups
showed their location characteristics and different gene markers. Subgroups at the front of
invasion showed higher proliferation ability, invasiveness, and response to stress under
hypoxia [155]. This tech has been also used to explore the spatial landscape of multiple
cell subpopulations in esophageal squamous cell carcinoma (ESCC). A study reported the
intra- and inter-tumoral heterogeneity of ESCC, which, exploring inflammatory fibroblasts
(iCAFs), were mostly clustered in the stromal regions, whereas no difference was found
in the distribution of myofibroblast (myCAFs) between cancer and stromal regions [173].
Some specific pathways enriched in iCAF subpopulations may be candidates for future
research in the progression of ESCC. Another scRNA-seq analysis study also reported the
difference in cells between the primary and metastatic sites of HNSCC. Previous studies
have also confirmed that the position of macrophages relative to tumor cells is different in
various characteristics [45]. In an experiment in diffuse gastric cancer, fibroblasts, endothe-
lial cells, and bone marrow cells were found to be enriched in the deep layer, and it was
found that cell-type-specific clustering further revealed that the transition from the shallow
layer to the deep layer was related to the up-regulated enrichment of CCL2 transcript in
inflammatory endothelial cells and fibroblasts [40]. ST analysis confirmed that stromal cell
clusters located at the front of the tumor invasion were identified, which expressed genes
related to hypoxia signal transduction, angiogenesis, and cell migration, which proved
that hypoxia signal was involved in the metastasis process of invasive gastric cancer [174].
Another study also testified to this view by sc-ST technique, which showed that tumor
cells at the outermost edge responded strongest to their local microenvironment, behaved
most invasively, and activated the process of epithelial-to-mesenchymal transition (EMT) to
migrate to low-confluence areas, and induced similar phenotypic plasticity in neighboring
regions [175]. In a study of oral squamous cell carcinoma (OSCC), the spatial localization
of nerves in TME was evaluated and successfully summarized into four types of PNI to
provide more detailed and accurate pathological information [38]. For the exploration of
the interaction between nerve and tumor, the conventional laboratory methods are limited;
we could only observe an averaged biological signal over a large number of cells or con-
ventional description based on morphological layer, so the sc-ST should be used to explain
the communication between nerve and tumor cells and provide more exact information
of tumor cells and nerve [176]. In future research, we expect to make full use of sc-ST to
further explain the phenomenon of a tumor’s perineural infiltration, observe its interaction
at different spatial points, and explore its mechanism.

4. Conclusions and Future Perceptives

A lot of early studies have been carried out to explore the inner pathology process
of the perineural invasion of some cancers. Important cells, such as SCs, TAMs, CAFs,
and some other related cells have been thoroughly studied or are on the way. However,
all of these studies were limited and it appears we cannot go any further at present. In
this review, we try to introduce a new technology into this pathology process, single-cell
spatial transcriptomics. This technology has been used in some studies of common tumors;
we can observe the cell components in tumors and their distribution, and then explore
the information that we had no chance to capture before through conventional research
techniques. According to some studies that have been reported, we hope we can find some
transforming cells with an important effect on the PNI process, such as some special CAFs
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explored in gastrointestinal cancer and the cell-type-specific clustering characteristics. We
are trying to understand PNI with this new technology. Maybe soon, we can find a way to
stop PNI and the distant metastases that follow.
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