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Abstract: A wide range of histological as well as clinical properties are exhibited by B-cell non-
Hodgkin’s lymphomas. These properties could make the diagnostics process complicated. The
diagnosis of lymphomas at an initial stage is essential because early remedial actions taken against
destructive subtypes are commonly deliberated as successful and restorative. Therefore, better
protective action is needed to improve the condition of those patients who are extensively affected by
cancer when diagnosed for the first time. The development of new and efficient methods for early
detection of cancer has become crucial nowadays. Biomarkers are urgently needed for diagnosing
B-cell non-Hodgkin’s lymphoma and assessing the severity of the disease and its prognosis. New
possibilities are now open for diagnosing cancer with the help of metabolomics. The study of all the
metabolites synthesised in the human body is called “metabolomics.” A patient’s phenotype is directly
linked with metabolomics, which can help in providing some clinically beneficial biomarkers and is
applied in the diagnostics of B-cell non-Hodgkin’s lymphoma. In cancer research, it can analyse the
cancerous metabolome to identify the metabolic biomarkers. This review provides an understanding
of B-cell non-Hodgkin’s lymphoma metabolism and its applications in medical diagnostics. A
description of the workflow based on metabolomics is also provided, along with the benefits and
drawbacks of various techniques. The use of predictive metabolic biomarkers for the diagnosis and
prognosis of B-cell non-Hodgkin’s lymphoma is also explored. Thus, we can say that abnormalities
related to metabolic processes can occur in a vast range of B-cell non-Hodgkin’s lymphomas. The
metabolic biomarkers could only be discovered and identified as innovative therapeutic objects if we
explored and researched them. In the near future, the innovations involving metabolomics could
prove fruitful for predicting outcomes and bringing out novel remedial approaches.

Keywords: metabolomics; B-cell non-Hodgkin’s lymphoma; biomarkers; metabolites; early
diagnosis; therapeutic

1. Introduction

B-cell non-Hodgkin’s lymphomas (B-NHLs) are a genetically, metabolically, and clini-
cally heterogeneous group of neoplasms, with most emerging from B lymphocytes in the
germinal centre (GC). B-NHLs account for approximately 90% of all non-Hodgkin’s lym-
phomas [1]. Diffuse large B-cell lymphomas (DLBCLs), follicular lymphoma (FL), Burkitt
lymphoma (BL), and B-cell chronic lymphocytic leukaemia/small lymphocytic lymphoma
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(CLL/SLL) are typical B-NHL subtypes [2]. Myc amplification [3] and metabolic hetero-
geneity in B-NHL are important biologically because they influence therapy responses and
can predict clinical outcomes [4,5].

As cells are driven to grow, proliferate, or die, their metabolic needs fluctuate, and it
is essential that cellular metabolism correspond to these needs [6]. B-cell lymphoma and
cancer cells have dysregulated metabolisms that promote uncontrolled proliferation [7,8].
This altered metabolism leads to metabolic phenotypes that can be utilised for earlier cancer
detection and/or therapy response biomarkers [9]. Fluorodeoxyglucose-PET imaging is an
essential tool for the management of many malignancies, including B-cell lymphomas [10].
Other metabolites in biological samples have been in the limelight for diagnosis, monitoring,
and therapy [11].

Metabolomics is a comprehensive evaluation of both qualitative and quantitative
parameters of all the metabolites present in cells, tissues, and bodily fluids, which can
reveal crucial information about the cancer state that would not be obvious otherwise.
Metabolomics-based diagnosis investigates the metabolites present in the human body
and how they react under stress conditions, like various diseases and disorders [12,13].
Metabolomics is a powerful tool that can identify cancer biomarkers and drivers of tu-
morigenesis. An example includes the de novo synthesis of phospholipid compounds in
malignant tissues, which increases at the time of the progression of the tumour [14,15].
Worthy, LDH-A was the first metabolic target demonstrated to be directly regulated by
an oncogene (MYC), and genetic or pharmacologic inhibition of LDH-A diminishes MYC-
dependent tumours [16]. Even now, it is a challenging task to detect and treat the lymphoma
at an initial stage.

This review provides an overview of existing and future metabolomics prospects to
improve B-cell non-Hodgkin’s lymphoma diagnosis, monitoring, and treatment. First,
we review B-cell non-Hodgkin’s lymphoma metabolism. We then introduce general
metabolomics techniques, including their analytical advantages and disadvantages. In the
final section, we present instances where metabolomics has been employed in the clinical
and research areas as a way to lead prospective future applications for the prognosis and
diagnosis of B-cell non-Hodgkin’s lymphoma. In practice, metabolomics has been widely
covered. For more information on best practises in metabolomics analysis, the reader is
referred to other excellent reviews cited throughout this article.

2. Metabolism in B-Cell Non-Hodgkin’s Lymphoma (B-NHL)

Cell metabolism is a well-defined set of metabolic activities that generate and store
energy equivalents, maintain redox homeostasis, synthesise biologically active macro-
molecules, and eliminate organic waste [17]. Catabolism breaks down carbon sources into
simpler intermediates, which are then employed as building blocks in the production of
lipids, amino acids, carbohydrates, and nucleotides (anabolism) [18]. Tumour cells are able
to survive, grow, and divide because of their metabolic versatility and plasticity, which
allow them to produce ATP as an energy source while maintaining the reduction–oxidation
(redox) balance and devoting resources to biosynthesis [19]. Recent sequencing approaches
have not discovered significant metabolic genes as direct lymphoma driver mutations
(Figure 1) [20,21].

Metabolic alterations in B-NHL are characterised by the production of enough energy
and maintenance of anabolism for survival, growth, and division in the face of low levels
of nutrients and oxygen (such as HIF1 and MYC), deregulation of metabolic regulators
(like mTORC1), and rewiring of metabolic pathways (e.g., BCR signalling) [22,23].

The Warburg effect promotes aerobic glycolysis over aerobic oxidation [24], and this is
supported by HIF1-alpha and MYC. This leads to the production of lactate and poor pro-
ducing ATP, but helps create biomass. As a result, the body’s reaction to hypoxia-induced
metabolic abnormalities may promote anabolism in GC-derived B-cell lymphoma [22].

MYC oncogene aberrations, including translocations or overexpression, are character-
istics of B-cell lymphoma aetiology [25]. B-cell lymphomas require higher MYC levels to
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maintain their rapid proliferation rate. MYC upregulates nucleoside metabolism, which
is essential for cell development. Glutamine metabolism is similarly regulated by MYC
expression [25,26]. Glucose uptake, glycolysis, and lipid biosynthesis are all controlled
by MYC as well [27]. On the other hand, alpha-ketoglutarate (αKG) synthesis can be
inhibited by hypoxia and mitochondrial dysfunction, which in turn reduces the activity
of αKG-dependent enzymes, leading to increased DNA and histone hypermethylation
and stabilisation of HIF1α. HIF1α is the primary transcriptional regulator of the adaptive
response to hypoxia and is constitutively stabilised in a significant proportion of DLBCLs
and FLs [22]. HIF1α and MYC promote anaerobic glycolysis by activating genes for glucose
transporter (GLUT), hexokinase (HK), monocarboxylate transporter (MTC), pyruvate dehy-
drogenase (PDK), phosphofructokinase (PFK), phosphoglycerate kinase (PGK), pyruvate
kinase (PK), and lactate dehydrogenase (LDHA) [27].

mTORC1 is essential for generating metabolic precursors via the tricarboxylic acid
cycle (TCA) and stimulating cellular proliferation. Activation of mTORC1 thereby enhances
the survival of B-cell lymphoma. T-cell-selected GC B cells in the light zone necessitate
mTORC1 activation in order to proliferate and mutate in the dark zone. mTORC1 may be
aberrantly activated in GCB-DLBCL through activating mutations of PI3K/Akt/mTOR
pathway genes [22].

A further marker of B-cell lymphoma is altered B-cell receptor (BCR) signalling, which
is essential for the maintenance and creation of both healthy and malignant B cells [28].
PI3K/AKT/mTORC1 is one of the BCR signalling pathway’s downstream branches. PI3K
regulates glycolysis and energy generation, and consequent AKT signalling influences
the cellular metabolome. AKT promotes glucose uptake and glycolysis by increasing the
expression and translocation of GLUT1 and glycolytic enzymes, including hexokinase (HK)
expression and activation [28].

In a subset of DLBCL and MCL, PTEN mutations lead to AKT/mTORC1 pathway
gene expression [29]. RagC mutations in FL enhance mTORC1 signalling by eliminating
amino acid dependence [30]. Numerous anabolic and energy-generating processes, includ-
ing protein synthesis, pyrimidine synthesis, HIF1α expression, glycolysis, the oxidative
portion of the pentose phosphate pathway (PPP), lipid and mitochondrial metabolism, and
glutaminolysis, are stimulated by mTORC1 expression [23].

There is an urgent need for biomarkers based on non-invasive sampling procedures
(e.g., blood, urine, etc.) that can help in the diagnosis of lymphoma, such as metabolite
profiling. The perfect test should be easy, reliable, and accurate. “What simple, non-
invasive, painless, and convenient tests can be used to detect cancer early?” ranked as
the most important research priority for the early detection of cancer in the UK-focused
research gap survey performed by the James Lind Alliance, which includes patients and
doctors [31]. Accordingly, serum biomarkers of lymphoma activity have been studied
extensively over the last decade [32], and we conclude that they are clinically relevant
for the diagnosis, prognosis, and therapeutic monitoring of lymphomas. In this review,
we shed light on the major metabolic dysregulation described in B-cell non-Hodgkin’s
lymphoma research (Table 1 and the 3rd Table in Section 3.5).
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Figure 1. Altered gene expression and mutations associated with key metabolic pathways found in 
B-NHL subtypes. The figure illustrates: (A) The major B-cell non-Hodgkin’s lymphoma subtypes 
that emerge from different cells that originate within the lymph node; (B) mutated genes that influ-
ence metabolic reprogramming; and (C) critical metabolic pathways observed in B-NHL subtypes. 
The references used for this figure are CLL/SLL [33–35], MCL [36], BL [37], FL [38], and DLBCL 
[33,39]. 

2.1. Diffuse Large B-Cell Lymphoma (DLBCL) 
The most prevalent B-cell non-Hodgkin’s lymphoma is DLBCL. Over 40% of DLBCL 

patients are refractory and have a worse prognosis for survival [40]. The International 
Prognostic Index (IPI) is currently used as the primary risk-stratification tool for prognosis 
in the clinic, and higher IPI scores indicate a worse outcome [41]. However, IPI cannot 
identify high-risk individuals [42]. Multiple investigations have failed to replicate the pre-
dictive power of the molecular heterogeneity of DLBCLs [43], which is widely regarded 
as a crucial factor influencing the response to therapy [42]. Therefore, additional research 
is required to identify new prognostic biomarkers to enhance the current DLBCL stratifi-
cation system and direct the optimisation of therapeutic strategies. 

Increased uptake of the glucose analogue 18F-fluoro-2-deoxy-D-glucose (18F-FDG) 
and up-regulated expression of GLUT1 and HK are indicative of the robust metabolism 
of DLBCL cells [41,44]. Metabolic heterogeneity, as shown by malignancies’ varied sub-
strate dependency, is common among tumour types and subtypes [4]. DLBCL is metabol-
ically heterogeneous and categorised into oxidative phosphorylation (OxPhos) and BCR 
groups [20,45]. Few studies to date have identified specific metabolic indicators involved 
in the diagnosis and prognosis of DLBCL (the 3rd Table in Section 3.5); the reader is di-
rected to previous studies on these topics [46–58]. 

2.2. Follicular Lymphoma (FL) 
An indolent lymphoma originating from germinal centre B cells is called follicular 
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Figure 1. Altered gene expression and mutations associated with key metabolic pathways found in
B-NHL subtypes. The figure illustrates: (A) The major B-cell non-Hodgkin’s lymphoma subtypes that
emerge from different cells that originate within the lymph node; (B) mutated genes that influence
metabolic reprogramming; and (C) critical metabolic pathways observed in B-NHL subtypes. The
references used for this figure are CLL/SLL [33–35], MCL [36], BL [37], FL [38], and DLBCL [33,39].

2.1. Diffuse Large B-Cell Lymphoma (DLBCL)

The most prevalent B-cell non-Hodgkin’s lymphoma is DLBCL. Over 40% of DLBCL
patients are refractory and have a worse prognosis for survival [40]. The International
Prognostic Index (IPI) is currently used as the primary risk-stratification tool for prognosis
in the clinic, and higher IPI scores indicate a worse outcome [41]. However, IPI cannot
identify high-risk individuals [42]. Multiple investigations have failed to replicate the
predictive power of the molecular heterogeneity of DLBCLs [43], which is widely regarded
as a crucial factor influencing the response to therapy [42]. Therefore, additional research is
required to identify new prognostic biomarkers to enhance the current DLBCL stratification
system and direct the optimisation of therapeutic strategies.

Increased uptake of the glucose analogue 18F-fluoro-2-deoxy-D-glucose (18F-FDG)
and up-regulated expression of GLUT1 and HK are indicative of the robust metabolism of
DLBCL cells [41,44]. Metabolic heterogeneity, as shown by malignancies’ varied substrate
dependency, is common among tumour types and subtypes [4]. DLBCL is metaboli-
cally heterogeneous and categorised into oxidative phosphorylation (OxPhos) and BCR
groups [20,45]. Few studies to date have identified specific metabolic indicators involved in
the diagnosis and prognosis of DLBCL (the 3rd Table in Section 3.5); the reader is directed
to previous studies on these topics [46–58].

2.2. Follicular Lymphoma (FL)

An indolent lymphoma originating from germinal centre B cells is called follicular
lymphoma (FL) [59]. It is the second most prevalent lymphoid malignancy, and accounts
for 20% of non-Hodgkin’s lymphomas and is a disease of adults [60]. Transformation into
DLBCL is related to increased glycolytic enzyme expression, which is in line with higher
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glucose uptake by 18F-FDG PET/CT [61]. Banoei et al. found higher levels of ADP, AMP,
GTP, NADHP, glucose, and uridine diphosphate glucose (UDP-glucose) in FL compared
with controls; and this was linked to aggressive cases of FL [62]. Regrettably, little is known
about the metabolism of FL.

2.3. Mantle Cell Lymphoma (MCL)

MCL represents about 5–10% of B-NHLs. MCL is classified as indolent, but the
disease progresses quite aggressively [63]. Many studies have pointed to a disruption of
the upstream PI3K/AKT pathway as a driver of mTOR in MCL. Supporting this idea is
the finding that PTEN, an intrinsic PI3K/AKT inhibitor, is often absent or at low levels
in MCL [64]. Evidence from clinical trials shows that mTOR inhibition effectively targets
MCL metabolism, and so it is authorised for the relapsed/refractory (r/r) setting [61,65].
Glycolysis, PPP, and lipid biosynthesis are all stimulated by mTOR signalling [66]. Higher
quantities of lactic acid, TCA metabolites, and amino acids were found in MCL compared
with controls, which may suggest a cancer-specific energy metabolic mechanism to ensure
ongoing proliferation within the constrained resources of their microenvironment, as
reported by Sekihara et al. [64]. By analysing the metabolic processes of MCL cells and their
response to the Bruton’s tyrosine kinase (BTK) inhibitor ibrutinib (IBR), Lee et al. proposed
imaging biomarkers (lactate and alanine) to detect response and resistance to IBR in MCL
and suggested pathways to overcome IBR resistance, most notably glutaminolysis, the
major oxidative ATP-producing pathway in these cells [67].

2.4. Burkitt Lymphoma (BL)

Dennis Burkitt discovered the rare and aggressive Burkitt lymphoma (BL) [2]. BL is
characterised by chromosomal rearrangements of the c-Myc proto-oncogene, which stimu-
lates the expression of multiple enzymes in serine biosynthesis [46]. Serine is necessary for
one-carbon metabolism and nucleotide synthesis [68]. Yang et al. studied BL mice serum
metabolomics. Glucose, glutamate, and unsaturated lipids were significantly different in BL
and controls. Abnormal metabolism and metabolites of BL were found. These discoveries
may help create noninvasive approaches for BL diagnosis and prognosis based on these
biomarkers [69].

2.5. Chronic Lymphocytic Leukaemia (CLL)

Chronic lymphocytic leukaemia (CLL) is characterised by the heterogeneous malignant
proliferation of mature monoclonal B cells in the blood, bone marrow, and lymphoid
organs [70]. Alterations in carbohydrate metabolism, lipid metabolism, and OXPHOS are
all part of the dynamic metabolic reprogramming of CLL that occurs at different stages of
the tumour [71]. Furthermore, TP53, ATM, and MYC, among others, are tumour-suppressor
genes that regulate the metabolic reprogramming that occurs during CLL [21]. CLL cells
are highly glycolytic, but not as much as DLBCL cells [72]. CLL cells exploit altered lipid
metabolism to promote mitochondrial function via activating STAT3 [73]. High FDG uptake
in a PET/CT scan is an indication of a glycolytic phenotype in CLL cells, which may predict
Richter’s transformation into an aggressive lymphoma, most often DLBCL [74].
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Table 1. Significant metabolites in common B-NHL subtypes.

B–NHL Subtypes Metabolites Study Purpose Potential Clinical Utility References

B-cell lymphoma ↑ Uracil Uracil levels in normal and malignant
B cells from mice and humans Early detection [75]

FL
↑ ADP, ↑ AMP, ↑ GTP,
↑ NADHP, ↑ glucose, and
↑ UDP-glucose

Metabolomics signatures that
distinguish FL from controls Predictive of outcome [62]

MCL ↓ lactate and ↓ alanine Examine ibrutinib’s mechanism of
action in MCL cells Therapeutic monitoring [67]

BL ↓ Glucose, ↑ glutamine, and
↑ choline

Investigated the serum metabolomics
of BL mice models

Diagnosis
Prognosis [69]

CLL ↓ Glucose, ↑ glutathione,
↑ lipid, and ↑ glycerolipid Investigate miR-125b’s role in CLL Diagnosis

Prognosis [76]

3. Metabolomics and B-NHL Biomarker Discovery

Metabolomics uses nuclear magnetic resonance (NMR) or mass spectrometry (MS) to
look at global, dynamic, and endogenous metabolites [77,78]. Metabolomics has been used
to explore disease pathogenesis and discover novel biomarkers. Thus, metabolomics can
be utilised not just to identify new biomarkers but also to develop noninvasive diagnostic
and prognostic tools for medical conditions [69,79]. In the study of cancer, introducing
certain novel technologies such as metabolomics is found to impart fruitful and reliable
information regarding cancer metabolism, particularly for the main mechanism in tumour
proliferation [77]. The impact of B-cell lymphoma on the patient’s metabolomics is still not
fully known. Little research has been conducted on the treatment response and prognosis
of B-cell lymphoma [80]. When looking for alternative methods to improve the rate of
detection and compliance in the assessment of B-cell non-Hodgkin’s lymphoma, the study
of metabolomics with its comprehensive and unbiased exploration for changes in the
metabolic profile has been found to be an effective approach [12]. Thus, developing
metabolomics technology and functional metabolic assessment in B-cell non-Hodgkin’s
lymphoma remains an interesting subject for enhanced diagnosis and therapy [23].

As discussed below, there are a variety of steps to metabolomics analysis (Figure 2),
each with their own set of benefits and drawbacks [81,82].

3.1. Metabolomics Study Design

Metabolomics studies can be divided into two classes: targeted and non-targeted.
Targeted analysis is used for the identification and quantification of pre-defined metabolites
and can be used for quantitative as well as qualitative analysis [83]. Non-targeted analysis
consists of analysing all accessible metabolites in a given sample and is the first choice for
cancer biomarker discovery studies [84]. Therefore, non-targeted metabolomics research
necessitates advanced analytical methodologies, computerised spectral data processing,
biological data elucidation, and hypothesis generation [85–87]. In the DLBCL studies,
non-targets were the most frequently applied, with an average of 61.5% compared with
targeted methods (the 3rd Table in Section 3.5).

3.2. Sample Collection and Preparation

The collection of the sample, its preparation, and storage are the second step in the
metabolomics study plan. The most common samples for conducting clinical metabolomics
research are blood and urine [88]. It is important to design the research based on metabolomics
to reduce the influence of certain constituents such as age, gender, state of fasting, diet,
physical activity, exercise, and the day and time of sample collection. Before starting the
actual research, it is important to conduct a pilot study of healthy individuals and report
it as part of the research to validate the results’ reproducibility. The samples (particu-
larly plasma, serum, and urine) must be kept in various aliquots soon after collection to
avoid the production of compounds from the many freeze–thaw cycles used for differ-
ent metabolomics studies [89]. The factors used for processing the sample, such as pH
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buffering and extraction, should also be uniform and follow standard operating procedures
(SOPs) [81,82,90,91]. The samples that are non-invasive in nature, such as blood or urine,
are the best for regular clinical analysis [85]. Comparing the serum metabolomics of high-
risk individuals with those who have been cured by standard chemotherapy can provide
useful information about the prognosis of DLBCL as well as the mechanisms involved
in failed treatment procedures [92,93]. For best practices in metabolomics, the reader is
directed to previous reviews on these topics [94–97].
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Figure 2. B-NHL Metabolomics Workflow Steps: (1) study design; (2) pre-analytical process, including
sample collection and processing; (3) analytical process, which is platform choice (either LC–MS,
GC–MS, or NMR); and (4) post-analytical process, including data processing, results interpretation,
and biomarker identification.

3.3. Analytical Techniques

The study of metabolomics is regarded as one of the most trustworthy and compre-
hensive tools for investigating the physiological parameters of an individual, analysing the
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metabolic pathways, and discovering new biomarkers [98] by employing mass spectrome-
try (MS), and nuclear magnetic resonance (NMR) spectroscopy technologies [85,92].

3.3.1. LC–MS

The MS technique has the ability to isolate the intricate mixture of compounds for
their detection and quantification with elevated sensitivity and specificity, and can also
demonstrate information regarding molecular structures [99]. MS separation techniques
are essential for reducing sample complexity and minimising ionisation suppression ef-
fects [100]. A preceding separation stage, such as high-performance liquid chromatography
(HPLC), or ultra-performance liquid chromatography (UPLC), and capillary electrophoresis
(CE), is frequently required. There are three main components in a mass spectrometer: an
ion source, a mass analyser, and a detector. The ion source is used for converting the sample
molecules into ions, which are then resolved into an electromagnetic field or time-of-flight
tube by the mass analyser, while the detector is employed for measuring the end results.
For maximising the coverage of the metabolome, it is advisable to conduct the analysis
of biological samples in the m/z 50–1000 scan range and in both positive and negative
ionisation forms [101,102]. Electrospray ionisation (ESI) is used in metabolomics trials due
to its “soft ionization” competency and ability to produce unbroken molecular ions [102].

Medriano et al. examined the metabolomics of two types of blood cancers, myeloma
and non-Hodgkin’s lymphoma, using plasma samples from both cancer patients and
healthy individuals to detect all the potential metabolites and pathways that were af-
fected by employing metabolomics based on LC–MS. Their results revealed a significant
metabolomic difference between the healthy control individuals and the myeloma and NHL
patients, with disturbed metabolic pathways such as choline metabolism and oxidative
phosphorylation being associated with the progression and growth of tumours [77].

3.3.2. GC–MS

GC–MS is a technique that combines great separation efficacy with sensitive, selective,
and versatile mass evaluation and is suitable for comprehensive analysis. It is a combination
of MS and GS that is used for the detection and quantification of a wide range of chemical
compounds, such as natural products, blood, and urine. GS–MS is used in many fields of
study, such as detecting drugs, amino acid evaluation, doping control, and the detection of
natural materials like food products [103]. EI, or electron ionization, is used for combining
MS with GC in almost all the metabolomics applications that are based on GC. The EI–MS
method works well for chemical compounds that do not change when heated and that are
volatile and are separated by chromatography at high temperatures [104].

Bueno Duarte et al. collected urine samples from NHL patients and conducted their
metabolic analysis by employing untargeted GC–MS, which was found to be a valuable
tool for distinguishing the population under study. Their GC–MS results indicated the
presence of as many as 18 metabolites in the urine sample that contributed to differentiating
healthy subjects from DLBCL patients with an accuracy of about 99.8% (p < 0.001). GC–MS
is considered a valuable option for studying metabolomics due to its operational simplicity,
low cost, reliable identification of metabolites, robustness, and easy availability [105].

3.3.3. NMR

NMR spectroscopy is a universal metabolite detection method that allows for di-
rect analysis of samples with little sample preparation and simultaneous measurement
of numerous types of tiny metabolites [106,107]. However, it has limitations, such as
high equipment costs, high maintenance costs, and decreased sensitivity [108,109]. Mass
spectrometry is better than NMR in several ways, although NMR has its own advantages
(Table 2). The B-NHL study design determines the optimal analysis.
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Table 2. Comparison between LC–MS, GC–MS, and NMR platforms.

Characteristics LC–MS GC–MS NMR

Sensitivity High High Low
Reproducibility Moderate Low High
Quantitative analysis Not very quantitative Quantitative Quantitative
Metabolite identification More (database available) Few Limited
Non-destructive sample No No Yes

Sample preparation Need derivatisation/chemical
modification

Requires sample
derivatisation

Requires minimum sample
preparation

Tissue samples extraction Required Required Not required
Experimental time Slow Slow Fast
Experiment cost High Affordable Low

3.4. Data Acquisition and Processing

When the metabolomics data are produced, it is important to ensure that they are
reproducible [89,110]. Quality standardisation and quality control are considered for the
optimisation of the reproducibility of results. Data analysis and bioinformatics are used to
process the data, which are then subjected to statistical analysis. There are two classical
approaches to the statistical analysis of multivariate data: unsupervised learning and
supervised learning. A popular unsupervised learning method is principal component
analysis (PCA). The second main approach is supervised learning, such as with artificial
neural networks (ANN), partial least squares discriminate analysis (PLS-DA), etc., which
can be used for excavating the data further to obtain the biomarkers [111,112]. The discovery
process of biomarkers can be driven through supervised models that can be linked with
clinical results, histopathological scores, and various other omics data. It is important to test
the supervised models with precise internal cross-validation processes or external tests to
obtain trusted biomarkers and models and to decrease the chances of data overfitting [113].

3.5. Metabolites Identification: Biomarker Discovery and Validation

Profiling the metabolites in each biological entity is incomplete without accurate
data measurement and precise interpretation. To identify the features of potent spectral
biomarkers, attempts are made to recognise the unidentified spectral biomarkers. The
peaks can be identified with the help of public metabolomics databases and in-house
spectral databases such as the Golm database, LIPID MAPS, human metabolome database
(HMDB), METLIN database, etc. Following the identification of metabolomics biomarkers,
additional experiments are required to validate or test the biomarkers [82,112,114].

DLBCL is the most common non-Hodgkin’s lymphoma, and therefore 13 publications
of relevance to our research interest are included in this review (search query in PubMed:
“Metabolomics” and “DLBCL”), and summarised in Table 3.

Table 3. Metabolic markers of diagnostic and prognostic significance in DLBCL.

Metabolic Markers Study Design Sample Type Analytical Platform Statistics References

Alanine, aspartate,
glutamate, cysteine, &
methionine

Untargeted Cell lines UHPLC/MS t-test & partial least square
discriminant analysis (PLS-DA) [47]

Asparagine & serine Targeted Cell lines NMR
Two-sided Fisher’s exact test &
principal component analysis
(PCA)

[46]
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Table 3. Cont.

Metabolic Markers Study Design Sample Type Analytical Platform Statistics References

lysine & arginine Untargeted Serum NMR Supervised multivariate analysis [48]
Valine, hexadecenoic
acid & pyroglutamic
acid

Untargeted Serum GC/MS PCA & PLS-DA [49]

2-aminoadipic acid,
2-aminoheptanedioic
acid, erythritol &
threitol

Untargeted Plasma GC/MS t-test, multivariate analyses &
PLS-DA [50]

Ornithine Untargeted Cell lines GC/MS

t-test, one-way ANOVA) &
orthogonal partial least-squared
discrimination analysis
(OPLS-DA)

[51]

Pyruvic acid Targeted Cell lines & FFPE NMR & GC/MS
The Shapiro–Wilk test, two-sided
Welch test, the nonparametric
Mann–Whitney U test & PCA

[52]

Malate Untargeted Plasma GC/MS
two-tailed Student’s t-test,
one-way ANOVA, PCA, a
supervised PLS-DA & OPLS-DA

[53]

2-arachidonoylglycerol
(2-AG) Untargeted Serum & cell lines HPLC/MS Two-tailed t-test, and XCMS/R [55]

Lactate Targeted Cell lines GC/MS Two-tailed t-test, Kaplan–Meier
curves & log-rank test [54]

Glycine Targeted Cell lines HPLC/MS t-test [56]
Choline Targeted Serum UPLC/MS Two-tailed t-test [57]

Choline Untargeted Plasma UHPLC/MS &
GC/MS

t-tests & supervised multivariate
analysis [58]

4. Applications of Metabolomics in B-NHL

In the clinical setting, metabolomics is finding an expanding number of applications,
including disease diagnosis and understanding, the discovery of novel drug targets, the
customisation of medication treatment, and the monitoring of therapeutic results [115]. In
this last section, we discuss the clinical applications of metabolomics and offer examples
to clarify how metabolism will open a new era in lymphoma research and how this will
positively influence diagnosis and treatment.

4.1. Discovering Targeted Therapies Based on Metabolomics

Metabolism in B-NHL plays a crucial role in established therapeutic approaches
(Table 4). Antimetabolites were the name given to the chemical compounds that were
first used to treat cancer. The reason for choosing this name was that these compounds
were found to resemble endogenous metabolites in their chemical structure and disrupt
the process of normal metabolism. In comparison to other omics, metabolomics is best for
evaluating the potential of these cancer treatment regimens. This study was carried out to
discover whether the therapies could cause alterations in the metabolic pathways and detect
the pharmacokinetics of drugs simultaneously or not. In the coming time, it will become
crucial to combine the study of pharmacometabolomics with other biological systems
knowledge, such as mRNA, genetics, miRNA, and imaging. This will help in determining
the correlation of the metabolomics response with the cancer stage, undesirable incidents,
and the growth or recession of the tumour. The study of pharmacometabolomics is capable
of monitoring a patient’s metabolic response to a drug; thus, it is very interesting to use
metabolomics in detecting cancerous growth, prognosis, and therapy management [82].
Moreover, the therapies based on metabolomics can not only enhance the responses of
immune cells to extremely immunogenic tumours but can also elevate the immunogenicity
of cancer cells, thereby increasing the ability of immunotherapy to cure a vast variety of
carcinomas. For further information, the reader is directed to previous reviews on these
topics [23,116–120].
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Table 4. Therapeutic drugs for B-NHL metabolism.

Agents Target Status Tumour Effect References

Ritonavir + metformin GLUT4+ETC inhibition Approved for
non-malignant indication CLL cell death [121]

Idelalisib PI3Kδ inhibition Approved CLL and FL cell death [122,123]

Ibrutinib BTK inhibition Approved CLL and MCL proliferation
inhibition [124,125]

AZD3965 MCT1/MCT2
inhibition

Phase I trial currently
running

DLBCL and BL
proliferation inhibition [126]

4.2. Determining B-NHL Diagnostic and Prognostic Biomarkers

A recent metabolomics study suggested a methodology for discovering novel biomark-
ers that can be used for the diagnosis and characterisation of various lymphoma subtypes.
The GC–MS method was used for the investigation and evaluation of plasma samples taken
from individuals with different subtypes of lymphomas. The results showed a significant
prevalence of elaidic acid and hypoxanthine (HX) in patients suffering from Hodgkin’s
lymphoma, MM, CLL, and DLBCL compared with healthy control individuals in all the
study groups [50]. Yoo et al. analysed the urine samples taken from lymphoma patients
and translated the data into ions of low mass, i.e., less than 1000 m/z. They chose three
peaks of high intensity and low mass ions for the analysis, of which the peak in the range of
137.08 m/z ion was detected as HX. The levels of HX and xanthine inside the cells are found
to be inversely proportional to the energy modifications of adenylate and thus to the ATP
of the cells. Additional research is required as abnormal metabolic processes are detected
as initial lymphoma biomarkers [127]. For further information, the reader is directed to
previous reviews on these topics [53,80,118,128].

4.3. Determining the Lymphomagenesis Risk Factors

Genetic mutations accumulate sequentially during tumour development, eventually
resulting in malignant tumours. However, it has also been shown that metabolic processes
and inflammatory factors indirectly contribute to the development of the tumour [11].
In their study, Pettersena et al. proved that the cell line of B-cell lymphoma surrounds
numerous amplified genomic uracil concentrations in comparison with non-lymphoma
cell lines or normal lymphocytes. They utilised a method based on liquid chromatography
combined with mass spectrometry (LC/MS) for quantifying the genomic sequence of
2-deoxyuridine and proving their study. In harmony with uracil generated by activation-
induced cytidine deaminase (AID), they discovered a distinctive mutational signature of an
AID hotspot in the lymphoma area where there was clustered mutation. They also presented
an important revelation about the expression of SMUG1 and uracil-DNA glycosylases
UNG along with the excision capacity of uracil by stating its negative correlation with the
concentration of genomic uracil, which somewhat decreased the AID effect [129]. Another
study was also conducted on the metabolomic pattern of Burkitt lymphoma that was
induced by MYC glucose deprivation, as well as hypoxic and aerobic conditions. They used
a [U-13C, 15N]-glutamine tracer to detect glutamine import and metabolism via the TCA
cycle under hypoxia conditions and discovered that glutamine is significantly precipitated
to citrate carbons. The deficiency of glucose leads to the significant augmentation of citrate,
fumarate, and glutamine-derived malate. Their arrangements showed a different pathway
for the generation of energy called glutaminolysis, which is associated with the glucose-
independent TCA cycle. Under the conditions of hypoxia and scarcity of glucose, the
critical role of glutamine in the proliferation of cells makes them susceptible to BPTES
(glutaminase inhibitors), which in turn can be used for treating tumours [130].

5. Conclusions

As the use of metabolomics is continuously increasing in clinical trials, it may soon
become one of the most successful tools for detecting and healing cancerous growths.
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The changes related to metabolic pathways may occur in a broad range of B-cell non-
Hodgkin’s lymphomas. Researching and knowing about them can help in identifying
new remedial targets and discovering novel metabolic biomarkers. In the near future, the
study of metabolomics will become crucial for outcome prediction and the revelation of
new treatment regimens. There is a need for conducting metabolomics research on B-cell
lymphomas in large cohort trials to discover new biomarkers, which will thus prove to
be an influential step in the path of clinical integration of biomarkers that are discovered
by metabolomics.
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