Skip to main content
. 2023 Feb 23;13(5):858. doi: 10.3390/diagnostics13050858
Algorithm 2: FHR Classsification using Multi Layer Perceptron
Input: X=[x1,.,x10], class labels, initial weight vector w=[wi]T
Step 1: Weighted sum of the input features
g(x)i=1n10wixi
Step2: Pass the value to the sigmoid activation function f.
Step3: Produce the output
yf(g(x))
Step4: Compute the error ei=hiyi
Step5: Adjustwto minimize ei.
Output:
y^=i=110wifii=110wi