Skip to main content
. 2023 Feb 23;13(5):858. doi: 10.3390/diagnostics13050858
Algorithm 3: FHR Classsification using Support Vector Machine
Input: Δ={(d1,y1),.,(dn,yn)}, class labels
C=[c1|,c2,c3], initial weight vector w=[wi]T, hyper-parameters, training set T
Step1: Define the hyperplane wTd+b0
Step3: Maximize the margin
wd+bw|w|1|w|
between the hyperplane and the plane median
Step4: Minimize |w| to maximize the margin
Output: wT+1