Training Data
|
Step 1 |
: |
Prepare a training data matrix X of N number with features of d. |
|
Step 2 |
: |
Prepare training data target label . |
|
Step 3 |
: |
Determine the number of neurons H in the hidden layer. |
|
Step 4 |
: |
Create a matrix of initial weight values of size . |
|
Step 5 |
: |
Fill with a random value. |
|
Step 6 |
: |
Calculate the output hidden layer initialization matrix,
|
(8) |
Step 7 |
: |
Calculate the hidden layer output matrix using a sigmoid function. |
|
Step 8 |
: |
Count ,
|
(9) |
Step 9 |
: |
Calculate output weight,
|
(10) |
Step 10 |
: |
Calculate output value,
|
(11) |
Testing Data
|
Step 1 |
: |
Prepare a testing data matrix X of N number with features of d. |
|
Step 2 |
: |
Calculate the output initialization matrix for the hidden layer using step 6. |
|
Step 3 |
: |
Calculate the output matrix for the hidden layer using step 7. |
|
Step 4 |
: |
Calculate the output value using step 10. |
|