Skip to main content
. 2023 Feb 26;11(5):697. doi: 10.3390/healthcare11050697
Training Data
Step 1 : Prepare a training data matrix X of N number with features of d.
Step 2 : Prepare training data target label t.
Step 3 : Determine the number of neurons H in the hidden layer.
Step 4 : Create a matrix of initial weight values w of size H×d.
Step 5 : Fill w with a random value.
Step 6 : Calculate the output hidden layer initialization matrix,
           Hinit=X.wT
(8)
Step 7 : Calculate the hidden layer output matrix using a sigmoid function.
Step 8 : Count H,
         H=(HT.H)1.HT
(9)
Step 9 : Calculate output weight,
            β=H.t
(10)
Step 10 : Calculate output value,
            O=H.β
(11)
Testing Data
Step 1 : Prepare a testing data matrix X of N number with features of d.
Step 2 : Calculate the output initialization matrix for the hidden layer using step 6.
Step 3 : Calculate the output matrix for the hidden layer using step 7.
Step 4 : Calculate the output value using step 10.