Skip to main content
. 2023 Feb 26;11(5):697. doi: 10.3390/healthcare11050697

Table 11.

Competitive results from other methods.

Authors Year Data Size Number of Classes Method Accuracy (%)
Meena et al. [143] 2019 259,627 4 Decision Tree 97.35
Sow et al. [144] 2019 6935 4 ANN, SVM, RF, and NB 94.74
Laengsri et al. [67] 2019 186 2 DT, KNN, RF, ANN, and SVM 98.03
Ayyildiz and Tuncer [35] 2019 342 2 SVM and KNN 96.20
Kilicarslan et al. [74] 2020 15,300 5 GA-CNN and GA-SAE 98.50
Çil et al. [58] 2020 342 2 ELM, RELM, SVM, and KNN 95.59
Tyas et al. [145] 2020 7108 9 Multilayer Perceptron 93.77
De and Chakraborty [146] 2021 200 2 LR, RF, NB, MLP, DT, and KNN 92.00
Fu Yi-Kai et al. [147] 2021 350 3 Support Vector Machine 76.00
Dejene et al. [148] 2022 11,174 4 RF, Extreme Gradient Boosting, and Cat Boost 97.56
Memmolo et al. [149] 2022 1000 2 DT, DA, NB, SVM, KNN, and Ensemble Learning 84.30
Memmolo et al. [149] 2022 1000 5 DT, DA, NB, SVM, KNN, and Ensemble Learning 69.50
Islam et al. [30] 2022 3020 2 LR, LDA, KNN, SVM, QDA, NN, CART, and RF 81.29
Proposed Model 2023 190 4 ELM 99.21