Meena et al. [143] |
2019 |
259,627 |
4 |
Decision Tree
|
97.35 |
Sow et al. [144] |
2019 |
6935 |
4 |
ANN, SVM, RF, and NB |
94.74 |
Laengsri et al. [67] |
2019 |
186 |
2 |
DT, KNN, RF, ANN, and SVM |
98.03 |
Ayyildiz and Tuncer [35] |
2019 |
342 |
2 |
SVM and KNN |
96.20 |
Kilicarslan et al. [74] |
2020 |
15,300 |
5 |
GA-CNN and GA-SAE |
98.50 |
Çil et al. [58] |
2020 |
342 |
2 |
ELM, RELM, SVM, and KNN |
95.59 |
Tyas et al. [145] |
2020 |
7108 |
9 |
Multilayer Perceptron
|
93.77 |
De and Chakraborty [146] |
2021 |
200 |
2 |
LR, RF, NB, MLP, DT, and KNN
|
92.00 |
Fu Yi-Kai et al. [147] |
2021 |
350 |
3 |
Support Vector Machine
|
76.00 |
Dejene et al. [148] |
2022 |
11,174 |
4 |
RF, Extreme Gradient Boosting, and Cat Boost
|
97.56 |
Memmolo et al. [149] |
2022 |
1000 |
2 |
DT, DA, NB, SVM, KNN, and Ensemble Learning |
84.30 |
Memmolo et al. [149] |
2022 |
1000 |
5 |
DT, DA, NB, SVM, KNN, and Ensemble Learning |
69.50 |
Islam et al. [30] |
2022 |
3020 |
2 |
LR, LDA, KNN, SVM, QDA, NN, CART, and RF
|
81.29 |
Proposed Model
|
2023
|
190
|
4
|
ELM
|
99.21
|