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Simple Summary: This study examined the biodistribution of Escherichia coli and an attenuated
strain of Salmonella enterica serovar Gallinarum with defective ppGpp synthesis after injection into
tumor-bearing mice through the tail vein. Bacteria targeting tumor tissues, but not those in the
liver and spleen, were metabolically active and proliferated substantially. Recombinant bacteria
derived from the attenuated Salmonella enterica serovar Gallinarum that constitutively expressed
transforming growth factor α (TGFα) fused to a modified Pseudomonas exotoxin A (PE38) showed
marked antitumor effects on tumor-bearing mice without any notable systemic toxicity.

Abstract: Bacterial cancer therapy is a promising next-generation modality to treat cancer that often
uses tumor-colonizing bacteria to deliver cytotoxic anticancer proteins. However, the expression
of cytotoxic anticancer proteins in bacteria that accumulate in the nontumoral reticuloendothelial
system (RES), mainly the liver and spleen, is considered detrimental. This study examined the fate of
the Escherichia coli strain MG1655 and an attenuated strain of Salmonella enterica serovar Gallinarum
(S. Gallinarum) with defective ppGpp synthesis after intravenous injection into tumor-bearing mice
(~108 colony forming units/animal). Approximately 10% of the injected bacteria were detected
initially in the RES, whereas approximately 0.01% were in tumor tissues. The bacteria in the tumor
tissue proliferated vigorously to up to 109 colony forming units/g tissue, whereas those in the
RES died off. RNA analysis revealed that tumor-associated E. coli activated rrnB operon genes
encoding the rRNA building block of ribosome needed most during the exponential stage of growth,
whereas those in the RES expressed substantially decreased levels of this gene and were cleared soon
presumably by innate immune systems. Based on this finding, we engineered ∆ppGpp S. Gallinarum
to express constitutively a recombinant immunotoxin comprising TGFα and the Pseudomonas exotoxin
A (PE38) using a constitutive exponential phase promoter, the ribosomal RNA promoter rrnB P1.
The construct exerted anticancer effects on mice grafted with mouse colon (CT26) or breast (4T1)
tumor cells without any notable adverse effects, suggesting that constitutive expression of cytotoxic
anticancer protein from rrnB P1 occurred only in tumor tissue.

Keywords: Escherichia coli; Salmonella enterica serovar Gallinarum; anticancer protein expression; host
response; bacterial cancer therapy

Cancers 2023, 15, 1486. https://doi.org/10.3390/cancers15051486 https://www.mdpi.com/journal/cancers

https://doi.org/10.3390/cancers15051486
https://doi.org/10.3390/cancers15051486
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0002-2974-931X
https://orcid.org/0000-0003-0019-1073
https://orcid.org/0000-0001-7603-0458
https://orcid.org/0000-0002-5544-9572
https://doi.org/10.3390/cancers15051486
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers15051486?type=check_update&version=1


Cancers 2023, 15, 1486 2 of 16

1. Introduction

Bacterial cancer therapy relies on the inherent traits of certain facultative anaerobic bacte-
ria that are capable of intratumoral penetration and localization in hypoxic areas presumably
because of chemotaxis toward molecules produced by tumors and the immune-privileged
environment of tumors [1–3]. Among gram-negative anaerobes, Salmonella spp. has prevailed
as a therapeutic candidate because it is amenable to genetic manipulation and can trigger
an immune response [4–9]. The initial response to the bacterial colonization of tumors is the
secretion of the proinflammatory cytokine TNFα by innate immune cells, which causes a
hemorrhage in the tumor and the formation of large necrotic regions [10,11]. The hemorrhage
and necrosis formation induce tumor growth retardation. This is followed by the strong
adjuvant effect of tumor-specific T cells that are activated by the colonizing bacteria [12–16].
CD8+ cytotoxic T cells are the main type of cells that counteract tumor growth.

Tumor-colonizing bacteria can be used as a delivery system for therapeutic molecules
that promote tumor elimination. However, this type of application is problematic for
pathogenic Salmonella spp. that can invade animal cells and reside within membrane-bound
compartments, namely, Salmonella-containing vacuoles (SCVs) [17,18]. The transportation
of anticancer proteins expressed by SCV-bound Salmonella into the cancer cell cytosol is
another potential complication; therefore, Salmonella should be prevented from invading
host cells. Another challenging aspect of this approach is the specific targeting of cytotoxic
anticancer proteins to solid tumors but not to the reticuloendothelial system (RES), the
liver and spleen, where most of the bacteria are initially trapped [19–21]. To overcome this
problem, bacteria are often genetically engineered to express a specific cytotoxic anticancer
gene only when they accumulate in tumor tissues after being eliminated from the RES to
prevent damage to these organs by toxic therapeutic molecules. We previously used the
PBAD promoter from the E. coli arabinose operon, which can be activated by L-arabinose to
induce the selective expression of cytotoxic anticancer proteins, although multiple injections
of the inducer can cause problems for patients [20,22–25].

In this study, we determined the fate of the E. coli K12 strain MG1655 and an attenuated
strain of Salmonella enterica serovar Gallinarum (S. Gallinarum), in which ppGpp synthesis
was disabled after intravenous injection into tumor-bearing mice. The results showed that
the bacteria that colonized the tumor tissue proliferated vigorously, whereas those in the
RES were metabolically inert and were cleared in a short time by the innate immune cells.
The ∆ppGpp strain of avian-specific S. Gallinarum, the antitumor characteristics of which
will be described in a separate manuscript, is defective in host cell invasion or intracel-
lular survival [26]. We engineered ∆ppGpp S. Gallinarum to express an immunotoxin
(TGFα-PE38, TP) using the constitutive exponential phase promoter, the ribosomal RNA
promoter rrnB P1, and found that it has remarkable antitumor effects on tumor-bearing
mice without causing any adverse effects.

2. Materials and Methods
2.1. Bacterial Strains, Plasmids, and Culture Conditions

Bacterial strains and plasmids are listed in Table 1. E. coli K-12 MG1655 and S. enterica
serovar Gallinarum clinical isolate (SG4021) were used as wild-type strains and cultured
in Luria Bertani broth (LB, Difco Laboratories, Franklin Lakes, NJ, USA). The ∆ppGpp
S. Gallinarum (SG4023) was constructed from SG4021 using the λ red system to disrupt
the relA and spoT genes as described previously [26]. The ∆ppGpp ∆glmS S. Gallinarum
(SG4030) was constructed by p22 phage transduction as described previously [27] using 10%
N-acetyl-D-glucosamine in LB medium. To monitor rrnB P1 promoter activity, the prrnBP1-
gfpOVA plasmid was constructed by Gibson assembly as follows: first, the rrnB P1 promoter
containing Fis-binding sites in the upstream activation region (−154–+3) was amplified
from the E. coli K-12 MG1655 chromosome [28] and cloned into a reporter gene (gfpOVA)
by replacing the katG promoter sequence in the pkatG::gfpOVA plasmid [29]. The rrnB P1
promoter replaced the araBAD promoter sequence in the pSEC-TGFα-PE38 plasmid [25] with
the specific primer set listed in Table 2, generating the prrnBP1-psp-TP plasmid. The balanced-
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lethal system based on the glmS gene was introduced into prrnBP1-psp-TP in the claI site
to maintain the plasmid in vivo [23,27]. Plasmids were confirmed via DNA sequencing
(Macrogen, Seoul, Republic of Korea). Each plasmid was introduced into E. coli by heat
shock or Salmonella by electroporation. Bacteria strains carrying the plasmid were grown
in LB medium with 1% NaCl at 37 ◦C with vigorous shaking. When necessary, ampicillin
(Sigma-Aldrich, Darmstadt, Germany) was added at a concentration of 100 µg/mL. To iden-
tify amino acids required for growth, wild-type S. Gallinarum and ∆ppGpp S. Gallinarum
were cultured on M9 Minimal Medium plates (Welgene Precision SolutionTM, Gyeongsan,
Republic of Korea) supplemented with glucose (0.2 g/mL), thiamine (5 mg/mL), magne-
sium sulfate (1 M), calcium chloride (1 M), and a mixture of 19 amino acids (100 µg/mL,
each) with 1 omitted from 20 essential amino acids.

Table 1. Bacterial strains and plasmids used in this study.

Strains Description References

Escherichia coli

MG1655 Wild type (with defects in ilvG, rfb50, and rph-1) ATCC
[30,31]

EMP4002 MG1655, prrnBP1-gfpOVA, Ampr This work

Salmonella enterica serovar Gallinarum

SG4021 Wild-type isolate, clinical

SG4023 SG4021, ∆relA, ∆spoT [26]

SG4030 SG4023, ∆relA, ∆spoT, ∆glmS::Kanr This work

SMP4001 SG4023, prrnBP1-gfpOVA, Ampr This work

SMP4003 SG4030, prrnBP1-psp-TP, glmS+, Ampr This work

SMP4004 SG4030, pSEC-TGFα-PE38, glmS+, Ampr This work

Plasmids

prrnBP1-gfpOVA gfpOVA under control of PrrnB P1 in pBR322 This work

prrnBP1-psp-TP psp-TP under control of PrrnB P1 in pBAD24 This work
(Figure S1)

pSEC-TGFα-PE38 psp-TP under control of ParaBAD in pBAD24 [25]

Table 2. Specific primer sequences for engineered plasmids.

Construction Name and
Direction * Sequence **

prrnBP1-gfpOVA

GFP-vector-FW 5′-CGGAATAACTCCCTATAATGCGCCACC
ACTTCTAGATTTAAGAAGGAGATATACATATGA-3′

GFP-vector-RV 5′-AACGCTGTAAAACGGGCAATAATTGTTCAGC
GCATGCACCATTCCTTGCGGCG-3′

rrnB1-insert-FW 5′-CGCCGCAAGGAATGGTGCATGC
GCTGAACAATTATTGCCCGTTTTACAGCGTT-3′

rrnB1-insert-RV 5′-TCATATGTATATCTCCTTCTTAAATCTAGA
AGTGGTGGCCATTATAGGGAGTTATTCCG-3′

Seq-GFP-FW 5′-ATAAGTGCGGCGACGATAGTCAT -3′

prrnBP1-psp-TP

psp-vector-FW 5′AATAACTCCCTATAATGCGCCACCACT
ATGGGTTTGAAGATGAAGAAAAGATCAG-3′

psp-vector-RV 5′-AACGCTGTAAAACGGGCAATAATTGTTCAGC
CTCTGAATGGCGGGAGTATGAAAA-3′

rrnB2-insert-FW 5′-CCATACTTTTCATACTCCCGCCATTCAGAG
GCTGAACAATTATTG CCCGTTTTAC-3′

rrnB2-insert-RV 5′-GCCTGATCTTTTCTTCATCTTCAAACCCA
TAGTGGTGGCGCATTATAGGG-3′

Seq-psp-FW 5′-AAAATCGAGATAACCGTTGGCC-3′

* FW: forward primer; RV: reverse primer. ** The underlined nucleotides are the homologous sequences for
the assembly.
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2.2. Cell Lines and Animal Experiments

Female BALB/c mice (6–8 weeks, 18–20 g) were obtained from Orient Bio (South
Korea). CT26 colon cancer cells and 4T1 murine mammary carcinoma cells were purchased
from ATCC Korea and cultured in high-glucose DMEM supplemented with 10% fetal
bovine serum and 1% penicillin-streptomycin. Cells (1 × 106) in 30 µL of 1× PBS were
subcutaneously injected into the right thigh of each mouse. Bacterial injections were
executed when tumors reached a size of 100–150 mm3. For confirmation of rrnB P1 promoter
activity in the tumor targeted bacteria, E. coli K-12 MG1655 and ∆ppGpp S. Gallinarum,
mice carrying CT26 xenografts were intravenously injected with bacteria carrying prrnBP1-
gfpOVA (1 × 108 colony forming units [CFU]/mouse). To examine the antitumor effects
of the TP immunotoxin, the mice grafted with CT26 and 4T1 cells were injected with
∆ppGpp ∆glmS S. Gallinarum carrying prrnBP1-psp-TP through the tail vein. Tumor
size was determined by measuring the length, width, and height of each tumor every
2 days after the injection (V = length × width × height × 0.5). For bacterial distribution
in vivo, solid tumors and other organs were extracted from mice and homogenized in
1× PBS using a homogenizer (IKA, Ultra–Turrax T10). The bacteria counting method
was previously described [25]. All mouse experiments were performed by following the
guidelines of Chonnam National University–Institutional Animal Use and Care Committee
(CNU IACUC-H-2020-7). The protocol requires sacrifice of the mice when the implanted
tumor volume reaches > 1500 mm3.

2.3. Bacterial RNA and cDNA Library Preparation

For in vivo experiments, excised tissues were stored at −80 ◦C in 1 mL tubes contain-
ing RNA protection reagent (Qiagen, Hilden, Germany). For RNA isolation, 50–100 mg
tissue was homogenized in 1 mL Trizol (Gene All, Seoul, Republic of Korea, RiboEx, cat.
no. 301–001). RNA extraction procedures were performed according to the manufacturer’s
recommendations. RNA samples were treated with DNase I to minimize genomic DNA con-
tamination, and RNA integrity and quantity were confirmed by agarose gel electrophoresis
and NanoDrop (Eppendorf, Tokyo, Japan, BioSpectrometer). cDNA was synthesized from
1–5 µg total RNA using reverse transcriptase with random hexamer primers (Enzynomics,
Daejeon, Republic of Korea, TOPscriptTM cDNA Synthesis Kit, cat. no. EZ005S).

2.4. Quantitative Polymerase Chain Reaction (Real-Time PCR)

The qPCR mixtures (20 µL) consisted of the template cDNA (30 ng), a primer set
(0.25 µM, each), and qPCR 2× PreMix (10 µL) (Enzynomics, TOPrealTM qPCR 2× PreMix,
SYBR Green with lox ROX). To measure the expression level of gfp derived by the rrnB P1
promoter, cDNA was amplified with the forward primer 5′-GCAGACCATTATCAACA
AAATACTCC-3′ and the reverse primer 5′-CTTTCGAAAGGGCAGATTGTGT-3′. As a ref-
erence gene, rpoB was used for qPCR using the forward primer
5′-CGCGTATGTCCAATCGAAA-3′ and the reverse primer 5′-GAGTCTCAAGGAAGCC
GTATTC-3′ for E. coli, and the forward primer 5′-GCGTCTCAAGGAAGCCATATTC-3′

and the reverse primer 5′-GTCGCGTATGTCCTATCGAAAC-3′ for S. Gallinarum. The
analysis was performed with a Rotor-GenQ real-time PCR system (Qiagen, Rotor-GenQ
series software, v.2.2.3). The 40 PCR cycles were conducted as follows: initial denaturation
at 95 ◦C for 15 min, denaturation at 95 ◦C for 10 s, annealing at 60 ◦C for 15 s, and elongation
at 72 ◦C for 15 s. The cycle threshold (Ct) values obtained from amplifying the cDNA of the
gfp gene were normalized to Ct values of the reference gene rpoB by the 2−∆∆Ct method
in triplicate.

2.5. RNA Sequencing Analysis

At 1 and 3 days after E. coli injection, total RNA was extracted from the indicated
organs and tumor tissues as described above. RNA quantification and purity assessment
were performed using a 2100 Bioanalyzer (Agilent Technologies, Waldbronn, Germany).
A sequencing library was prepared with 1µg total RNA for each sample using the Illu-
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mina TruSeq Stranded Total RNA LT Sample Prep Kit (Illumina, San Diego, CA, USA).
The resulting cDNA libraries were sequenced using the NovaSeq platform (Illumina),
generating approximately 2.78 billion paired end reads of 101 nucleotides in length. To
obtain high-quality clean reads from the sequenced raw reads, quality-based filtering
and trimming were performed using Trimmomatic (v.0.36) with the following parameters:
ILLUMINACLIP:TruSeq3-PE-2.fa:2:30:10LEADING:3TRAILING:3SLIDINGWINDOW:4:15
MINLEN:36. To analyze the E. coli transcriptome in the mouse liver and tumor tissues,
clean reads were mapped to the mouse reference genome (mm10) using HISAT (v.2.1.1)
with default parameters. Then, unmapped reads were extracted using Samtools (v.1.9) and
remapped to the E. coli K-12 MG16555 reference genome. To identify the read coverage of
the rrnB operon, the alignment results were input to the Samtools depth command with the
following range of E. coli chromosome 4: 165,658–4,172,756. The number of total RNA-seq
reads was used for normalization.

2.6. Bacterial Division Analysis

Flamma® Fluors 552 N-hydroxysuccinimide (NHS) ester, a labeling fluorescent dye,
was purchased from BioActs (Incheon, Republic of Korea, cat. no. PWS1122) and dissolved
in DMSO (Biosesang, DR1022-500-00). The overnight culture of ∆ppGpp S. Gallinarum
(1 × 109 CFU/mL) in 2 mL 1× PBS was conjugated with the above fluorescent dye (final
concentration: 100 µg/µL) under slow-speed rotation at room temperature overnight. The
stained bacteria were subcultured in LB broth (ratio: 1:100) in a 37 ◦C shaking incuba-
tor. Bacterial growth at A600 and red fluorescence intensity at λexcitation = 550 nm and
λemission = 610 nm were measured every hour using a spectrophotometer (Shimazu, Kyoto,
Japan, UV-1800) and a fluorometer (Thermo Scientific, Waltham, MA, USA, VarioskanLux).

For in vivo analysis, the NHS-conjugated bacteria were injected into CT26-grafted
mice through the tail vein (n = 5 per group, 1 × 108 CFU/mouse). To examine bacterial
conditions in mice, the tumors, livers, and spleens were excised at the indicated times after
bacterial infection and processed for the detection of bacteria and F4/80+ macrophages by
confocal microscope.

2.7. Immunofluorescent Staining and Confocal Microscope

NHS-conjugated Salmonella was collected at the indicated times, washed with 1× PBS,
fixed with 3.9% formaldehyde, and placed on glass slides. The samples were incubated with
an anti-Salmonella antibody (antirabbit, Abcam (Cambridge, UK), ab35165, 1:50) overnight
at 4 ◦C. After washing with 1× PBS, the samples were treated with the secondary antibody,
Alexa Fluor® 488-conjugated goat antirabbit antibody (Invitrogen (Waltham, MA, USA),
REF. A11008, 1:100).

In vivo analysis of tumor targeting bacteria was performed using the isolated organs
from tumor-bearing mice treated with each bacterial strain. The organs from the mice
were fixed with 3.9% formaldehyde overnight at room temperature and embedded in
20% sucrose (Sigma-Aldrich) to remove formaldehyde. Tissues were then frozen in OCT
compound (Optimal Cutting Temperature, Tissue-Tek, Torrance, CA, USA) and sliced into
7 µm-thick sections using a microtome (Thermo Scientific, Cryostat Microm HM525). To
remove the OCT compound, the slices were dried for 15 min at room temperature, washed
three times with 1× PBS, and fixed with absolute acetone. The slides were incubated
in 1× PBS containing rabbit anti-Salmonella (Abcam, ab35165, 1:100) and rat anti-F4/80+

macrophage (Abcam, ab6640, 1:100) primary antibodies overnight at 4 ◦C, followed by
washing and incubation in 1× PBS with Alexa Fluor® 633-conjugated goat antirabbit
antibody (Life Technologies, Carlsbad, CA, USA, REF. A21071, 1:100) and Alexa Fluor®

488-conjugated goat antirat antibody (Life Technologies, REF. A11006, 1:100) for 2 h at room
temperature. Nuclei were stained with DAPI for 10 min at room temperature (Invitrogen,
1:1000), and slides were covered with antifade DAPI (Invitrogen, REF. P36935). Samples
were visualized using a confocal microscope, and images were acquired using ZEN blue
edition 2.6 V7.0.



Cancers 2023, 15, 1486 6 of 16

2.8. Western Blot Analysis

To examine the expression of the TP protein in vitro, overnight cultures of ∆ppGpp
S. Gallinarum (SG4023) and ∆ppGpp ∆glmS S. Gallinarum harboring the plasmid prrnBP1-
psp-TP (SMP4003) were subcultured in LB broth (1:100) and grown for 7 h. At the indicated
time points, bacterial pellets were collected and sonicated in 1× PBS. The supernatants
were collected and filtered through 0.2 µm filters (GVS Filter Technology, USA). For animal
experiments, SMP4003 (1 × 108 CFU/mouse) was injected into the mice grafted with CT26
tumors through the tail vein when tumors reached 130–150 mm3. Tumors were excised at
the indicated days and homogenized in 1 mL RIPA buffer (Intron Biotechnology, Seongnam,
Republic of Korea) containing 1× Protease & Phosphatase Inhibitor Cocktail and 1× EDTA
(Thermo Scientific). The filtered supernatants were mixed with 6× SDS and boiled at
95 ◦C for 10 min. The proteins were loaded onto 10% SDS-PAGE gels and transferred
to nitrocellulose membranes (GE Healthcare, Solingen, Germany, cat no. 10600002). TP
expression was determined by western blot analysis using a primary polyclonal antibody
against PE38 (Sigma-Aldrich, P2318, antirabbit, 1:5000). Spontaneous bacterial lysis was
examined by detecting GroEL using a specific antibody (Sigma-Aldrich, G6532, antirabbit,
1:5000). The level of β-actin was determined using a specific rabbit polyclonal antibody
(Abcam, ab8227, 1:2000). Membranes were incubated with primary antibodies diluted
in 5% skim milk in TBST at 4 ◦C overnight, followed by incubation in mouse antirabbit
IgG-HRP (Santa Cruz Biotechnology, Dallas, TX, USA, sc-2357, 1:2000) for 1 h at room
temperature. The proteins were visualized using ECL (Thermo Scientific, REF. 32209).

2.9. Statistical Analysis

Data were analyzed using GraphPad Prism v.8.0.2 software. The differences between
the mean values of the two groups were analyzed using the unpaired two-tailed Student’s
t-test. Two-way analysis of variance (ANOVA) was used for time-course studies. The sur-
vival rates are shown in Kaplan–Meier curves with log-rank (Mantel-Cox) test. Differences
with p < 0.05 indicated statistical significance.

3. Results
3.1. Fate of E. coli Injected into Tumor-Bearing Mice

The fate of bacteria injected into tumor-bearing mice through the tail vein was ex-
amined using a common laboratory strain of E. coli, MG1655. E. coli MG1655 (1 × 108

CFU/mouse) was injected into BALB/c mice bearing CT26 colon cancer xenograft tumors.
At the indicated times after the injection, bacterial numbers were counted in the RES, in
the liver and spleen, and in tumors using plating methods (Figure 1A). At 2 h after the
injection, there were approximately 1 × 107 CFU in the RES, and this number decreased
gradually in a time-dependent manner, reaching approximately 5 × 104 CFU at 120 h. The
bacterial number in tumors was 1 × 104 CFU at 2 h after the injection, and this increased
to approximately 5 × 108 CFU at 72 h. This result indicates that although ~0.01% of the
injected bacteria accumulated in tumor tissues initially, the immunocompromised environ-
ment allowed substantial proliferation of those bacteria, whereas those in the RES were
cleared presumably by phagocytic immune cells (see below). Among the most activated
genes the most highly induced was the rrnB operon, consisting of the transcription unit
rrsB-gltT-rrlB-rrfB encoding the three major rRNA building blocks of ribosomes [32]. The
expression profile of the rrnB operon (number of reads) was determined by RNA sequenc-
ing (Figure 1B). The normalized read coverages in the liver and tumor were 58,220 and
1,148,213 reads at 1 dpi, respectively. At 3 dpi, these values changed drastically because
of a shortfall of reads in the liver, showing 67 and 1,780,236 reads for the liver and tumor,
respectively. We hypothesized that the reads on day 1 in the liver were remnants of those
from overnight culture. By day 3, the bacteria in the liver were perishing as rrnB expression
ceased, whereas those in the tumor proliferated. To confirm these findings, we measured
the activity of the rrnB P1 promoter, which is the major promoter driving the rrnB operon.
This promoter is active during the early exponential phase of growth, when ribosomes
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are needed most, and declines sharply thereafter during the stationary phase [33]. Three
Fis-binding sites in the upstream activation region are responsible for the activation of
the rrnB P1 promoter (Figure 1C) [28]. A gene reporter system was constructed using the
unstable GFP variant gfpOVA [29], which was cloned downstream of rrnB P1 in pBR322,
generating prrnBP1-gfpOVA. E. coli transformed with this plasmid were used to monitor
rrnB P1 activity. During growth in vitro (Figure S2A), fluorescence intensity determined at
488–522 nm indicated activation of rrnB P1 during the exponential phase of growth in LB
medium, in agreement with the results of qPCR analysis of gfpOVA structural RNA. Then,
we attempted to determine rrnB P1 activity in the E. coli injected into tumor-bearing mice
using a fluorescence microscope; however, this failed due to weak emission of fluorescence.
Alternatively, we measured rrnB P1 activity by qPCR analysis of the gfpOVA structural
RNA relative to rpoB RNA, which is maintained at constant levels (Figure 1D) [34]. The
activity of rrnB P1 increased by up to 40-fold in the bacteria in tumor tissues at 120 h,
whereas those in the liver and spleen decreased over time. This result supports that those
bacteria in tumor tissues proliferated, whereas those in the RES perished. We did not
quantify the rRNA from the genomic rrnB operon because there are seven rrn operons in
E. coli with similar sequences, and the ribosomal RNAs that provide the foundation for
ribosomes are extremely stable.
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Figure 1. Fate of E. coli injected into tumor-bearing mice. BALB/c mice grafted with CT26
colon carcinoma cells received intravenous injection of Escherichia coli MG1655 (n = 4 per group,
1 × 108 CFU/mouse) when tumor volumes reached 130–150 mm3. (A) At the indicated times after
the injection, tumors, livers, and spleens were extracted to determine bacterial counts (CFU/gram).
(B) RNA sequencing analysis was performed to determine the expression profile of the rrnB operon
(number of reads) (NC_000913.3) in E. coli residing in tumors and livers at 1 and 3 days postinjection
(dpi). (C) The rrnB P1 promoter sequence with three Fis-binding sites (I–III) in the upstream activation
region. (D) E. coli MG1655 carrying prrnBP1-gfpOVA (EMP4002) was administered intravenously
to CT26-grafted mice (n = 5/group, 1 × 108 CFU/mouse). To monitor rrnB P1 promoter activities
in vivo, the levels of gfp expression in tumors, livers, and spleens at each time point were determined
by quantitative real-time PCR. The E. coli rpoB gene was used as a reference, and data were normal-
ized by the 2−∆∆Ct method. All data are expressed as the mean ± SD. p-values indicate differences
between groups (unpaired Student’s t-tests; ns: not significant).
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3.2. Fate of ppGpp-Defective S. Gallinarum Injected into Tumor-Bearing Mice

For bacteria-mediated cancer therapy, Salmonella spp. that trigger effective IL-1β/TNF-
α-mediated immune responses in the tumor leading to tumor regression are preferred over
E. coli [9]. An attenuated strain of avian host-specific S. enterica serovar Gallinarum was
constructed by deleting relA and spoT, which encode enzymes that synthesize the bacterial
signaling molecule ppGpp [26]. The ppGpp defect causes amino acid auxotrophy in
S. Typhimurium and in E. coli [35]. We observed that the ppGpp-defective S. Gallinarum also
required several amino acids to grow, including branched chain amino acids in addition
to lysine and serine (Table S1). The ∆ppGpp strain of S. Gallinarum was attenuated by
approximately 1000-fold in mice, which allowed injection of 108 CFU/mouse, resulting in
regression of various tumors grafted in mice (manuscript in preparation). In this study, we
examined the fate of ∆ppGpp S. Gallinarum after its injection into the tail vein of BALB/c
mice bearing CT26 xenograft tumors. Similar to the E. coli, the bacterial counts in the tumor
increased, whereas those in the RES decreased in a time-dependent manner (Figure 2). To
obtain a clear picture of the fate of ∆ppGpp S. Gallinarum injected into tumor-bearing
mice, we measured cell division using bacteria that were cross-linked with the reactive
form of a fluorescent dye (Flamma® Fluors 552: NHS), which reacts readily with amine-
modified oligonucleotides or amino groups of proteins on the bacterial surface [36,37]. The
bacteria incubated with the dye initially emitted strong red fluorescent signals when excited
with a 550 nm laser light, which were visible under a fluorescence microscope (Figure 2A,
0 h). These bacteria were diluted in fresh LB medium (1/50) and grown with vigorous
aeration (Figure 2B). Fluorescent signals from the bacterial cultures were detected at the
indicated times and cell number was also estimated by determining optical density (A600).
As the bacteria divided, the fraction of red fluorescent bacteria decreased, disappearing
after approximately 2 h (four generations assuming g = 30 min) (Figure 2A,B). BALB/c
mice bearing CT26 xenografts were injected with the fluorescent bacteria, and samples of
the RES and tumor tissues were collected at the indicated times for the measurement of
bacterial numbers and fluorescent signals using a fluorescence microscope (Figure 2C,D).
Red fluorescent bacteria were observed in the RES even at 72 h after the injection, whereas
they were rarely detected in tumor tissues after 12 h, indicating that the bacteria in the
tumor tissue divided and diluted out the fluorescent dye (Figure 2E). In this experiment,
the same tissue samples were stained for F4/80+ macrophages, and the results showed
that most of the bacteria in the RES were associated with macrophages, whereas those
in the tumor were not (Figure S3). Lastly, the activity of the exponential phase promoter
rrnB P1 in ∆ppGpp S. Gallinarum was measured in vitro (Figure S2B) and in vivo by qPCR
analysis (Figure 2F). The activity of rrnB P1 in the tumor increased up to 72 h, whereas that
in RES decreased over time. Taken together, these results suggest that the S. Gallinarum
accumulating in tumor tissues proliferated, whereas those in the RES were cleared by
phagocytic macrophages.
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Figure 2. Fate of ∆ppGpp S. Gallinarum injected into tumor-bearing mice. (A) Images of ∆ppGpp
S. Gallinarum cross-linked with a red fluorescent dye (Flamma® Fluors 552 NHS ester) grown in LB
medium for the indicated amounts of time. Bacteria stained with a fluorescent antibody are shown
in green and DAPI-stained nuclei are shown in blue. Scale bar = 5 µm for 1000×magnification. (B)
The red fluorescent bacteria were grown in LB with vigorous aeration. At the indicated time points,
samples were collected to measure cell mass (A600) and red fluorescent signals using a fluorometer at
an excitation wavelength of 550 nm and an emission wavelength of 610 nm. A.U. = red fluorescent
signal/A600. (C) ∆ppGpp S. Gallinarum was intravenously injected into CT26 tumor-bearing mice
(n = 4/group, 1 × 108 CFU/mouse) when tumor size reached 130–150 mm3. Bacterial loads from
isolated tumors, livers, and spleens were determined at the indicated times after the injection (related
to data shown in Figure S3). (D) The fluorescent bacteria were intravenously injected into mice
grafted with CT26 cancer cells (n = 5, 1 × 108 CFU/mouse). The Salmonella in tumors, spleens, and
livers at the indicated time points were observed under a confocal microscope. Bacteria cross-linked
with Flamma® Fluors 552 NHS ester are shown in red, bacteria stained with a fluorescent antibody are
shown in green, and DAPI-stained nuclei are shown in blue. Yellow arrows indicate merged red and
green bacterial signals. Scale bar = 10 µm for 800× magnification. (E) The fractions of red fluorescent
bacteria (indicated by arrows) among green bacteria (total number) in each organ and tumor tissue
at 12 h postinjection are shown in a graph (fraction of red fluorescent bacteria = red/green × 100,
%). Results are expressed as the mean ± SD from five sections, unpaired Student’s t-tests, p < 0.0001.
(F) ∆ppGpp S. Gallinarum carrying prrnBp1-gfpOVA (SMP4001) was administered to CT26-grafted
mice (n = 5/group) via the tail vein, and gfpOVA expression from the rrnB P1 promoter in the bacteria
in tumors, livers, and spleens at the indicated time points was determined by quantitative real-time
PCR. The gfpOVA Ct values were calculated relative to S. Gallinarum rpoB Ct values in triplicate.
All data are expressed as the mean ± SD. Significant differences are shown as p < 0.05 (unpaired
Student’s t-tests; ns: not significant).
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3.3. Expression of an Immunotoxin under the Control of the Ribosomal RNA Promoter (rrnB P1)

To determine whether the rrnB P1 promoter could drive the expression of cytotoxic
anticancer proteins, the rrnB P1 promoter sequence was cloned in place of the araBAD
promoter in pBAD24 [38], which was fused to the open reading frame of the immunotoxin
TP [25,27]. This immunotoxin (TP) comprising TGFα and a modified Pseudomonas exotoxin
A (PE38) derived from Pseudomonas aeruginosa was developed for the treatment of EGFR-
expressing malignant tumors such as brain tumors [39–41]. PE38 acts by inactivating
protein synthesis in mammalian cells [42,43]. PE38, which lacks an intrinsic cell-binding
domain, binds to EGFR-expressing cancer cells via the TGFα moiety in the recombinant
toxin. The TP protein is cytotoxic to EGFR-expressing tumor cells in vitro and in xenograft
mouse models [25,44]. In this study, we used the ribosomal RNA promoter rrnB P1 to
express TP constitutively. The psp secretion signal peptide composed of 32 amino acids [25]
was fused in-frame to the N’ end of TGFα-PE38 in the plasmid named prrnBP1-psp-TP. In
addition, the plasmid contained the glmS gene to ensure the maintenance of the plasmid by
a balanced-lethal host vector system in GlmS- mutant bacteria [27]. This mutant undergoes
lysis when grown in the absence of N-acetyl-D-glucosamine (GlcNac) unless complemented
by a plasmid carrying the glmS gene. The ∆ppGpp strain of S. Gallinarum carrying the
mutation in glmS was transformed with prrnBP1-psp-TP (SMP4003), grown in LB broth,
and harvested at the indicated times to quantify the expression of TP. The bacterial cells
and supernatant were separated and subjected to western blotting to detect TP expression
(Figure 3A). Under the control of the rrnB P1 promoter, TP was expressed at high levels in
the pellet in a constitutive manner, whereas it was detected in the supernatant at later time
points, indicating that TP was secreted via the psp signal after a certain time. Next, we
investigated the cytotoxic effect of the immunotoxin TP secreted from SMP4003 on cancer
cell lines overexpressing EGFR, i.e., CT26 mouse colon carcinoma and 4T1 murine breast
cancer cells (Figure S4) [25,45]. The bacteria were grown in LB medium and harvested
when the culture entered the stationary phase. The cultures were centrifuged, and the
supernatants were collected and concentrated. The CT26 and 4T1 cancer cell lines were
treated with PBS or concentrated bacterial supernatant (1 µg protein). Approximately
70% of CT26 cells and 60% of 4T1 cells were killed after treatment with the supernatant
of SMP4003 for 24 h. The supernatant from ∆ppGpp S. Gallinarum only (SG4023) was
included as a control and showed a moderate effect. These data indicate that TP released
from SMP4003 is cytotoxic to these cancer cells.

The expression and secretion of TP from tumor targeted ∆ppGpp S. Gallinarum
carrying the prrnBP1-psp-TP (SMP4003) plasmid were evaluated in BALB/c mice grafted
with mouse colon cancer CT26 cells (Figure 3B). At the indicated days after tail vein injection
of the bacteria (1 × 108 CFU), the grafted tumors were isolated and homogenized, and
the supernatant was separated by centrifugation and filtered through 0.2 µm pores. The
filtrate was analyzed for TP protein (43.3 kDa) expression by western blotting. TP was
detected constantly throughout the course of the experiment from 1 to 5 dpi, suggesting
that the protein was expressed constitutively from the rrnB P1 promoter and released from
bacteria through the psp signal peptide. Next, we evaluated the antitumor effects of the
immunotoxin on CT26 and mouse breast cancer 4T1 cells implanted into BALB/c mice
(Figure 4). All mice received an intravenous injection of (i) PBS, (ii) ∆ppGpp S. Gallinarum
(SG4023) alone, or (iii) SG4030 carrying prrnBP1-psp-TP (SMP4003). Administration of
SG4023 bacteria alone inhibited tumor growth for up to approximately 10 days compared
with that in the PBS-treated group in both tumor models. Expression of the immunotoxin
by the rrnB P1 promoter decreased tumor growth further. Average tumor size changes are
shown in Figure 4A,D and the representative pictures are appeared in Figure 4B,E. The
tumor sizes of individual mouse were also checked (Figure S5A,C). Negative effects on
the health of mice were rarely observed, and there was no significant difference in the
body weight of mice between the groups (Figure S5B,D). The mice treated with ∆ppGpp
S. Gallinarum expressing the immunotoxin survived 10–15 days longer than the mice
treated with PBS or ∆ppGpp S. Gallinarum alone (Figure 4C,F). Taken together, the results
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suggest that TP expressed from the constitutive rrnB P1 promoter in ∆ppGpp S. Gallinarum
effectively suppressed tumor growth without any additional manipulation and without
causing side effects.
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Figure 3. Expression and secretion of TGFα-PE38 (TP) from ∆ppGpp S. Gallinarum. (A) Expression of
TP in vitro. ∆ppGpp S. Gallinarum carrying prrnBP1-psp-TP (SMP4003) were cultured in LB media,
and samples were taken at the indicated time points. Bacterial samples were centrifuged to divide
into supernatant and pellets. The pellets were sonicated. Aliquots containing 20 ng total protein
were loaded onto 10% SDS-PAGE gels to detect TP (43.3 kDa) by western blotting using an antibody
against Pseudomonas exotoxin A. The efficiency of bacterial lysis in the pellet was determined using
GroEL (58.3 kDa) as a cytosolic protein control. The first lane contains SG4023 without the plasmid.
Data represent the results of three independent replicates. Uncropped membranes are shown in
panels A, B, and C in Figure S7. (B) Expression of TP in vivo. The above bacteria were injected into
CT26 tumor-bearing mice via the tail vein (1 × 108 CFU/mouse). On the indicated days, tumors were
excised and homogenized, lysates were centrifuged and filtered, and supernatants were collected.
The presence of TP was determined by western blotting. β-actin was used as the loading control
(42 kDa). Representative data are the results of two independent replicates. Uncropped membranes
are shown in panels D and E in Figure S7.
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Figure 4. Antitumor effect of ∆ppGpp S. Gallinarum carrying prrnBP1-psp-TP in BALB/c mice
grafted with CT26 colon carcinoma and 4T1 murine breast cancer cells. BALB/c mice were subcu-
taneously implanted with 1 × 106 CT26 colon carcinoma cells (n = 5 per group, (A–C)) or 1 × 106

4T1 murine breast carcinoma cells (n = 6 per group, (D–F)) on the high flank. Mice were treated
with PBS (black line), ∆ppGpp S. Gallinarum (SG4023, green line), or S. Gallinarum transformed
with the therapeutic plasmid prrnBP1-psp-TP (SMP4003, red line) by intravenous injection at a dose
of 1 × 108 CFU/mouse when tumor volumes reached 90–120 mm3. Average tumor sizes in each
group of mice grafted with CT26 (A) or 4T1 (D) were recorded every 2 days after treatment with the
engineered bacteria until the volumes reached > 1500 mm3 (two-way ANOVA with Tukey’s multiple
comparisons test, p < 0.0001). Representative images of CT26 carcinoma (B) or 4T1 carcinoma (E) in
the above mice. The survival of CT26 tumor-bearing mice (C) or 4T1 tumor-bearing mice (F) treated
as described above was determined using Kaplan–Meier curves (logrank Mantel–Cox test, p < 0.005
and p < 0.05 for (C,F), related to data shown in Figure S5.

4. Discussion

In this study, we determined the fate of attenuated noninvasive ∆ppGpp S. Gallinarum
and the common laboratory strain of E. coli MG1655 after intravenous injection into tumor-
bearing mice (108 CFU). Approximately 10% of the injected bacteria were detected initially
in the RES, whereas approximately 0.01% were in tumor tissues. The bacteria in the tumor
tissue proliferated vigorously to up to 109 CFU/g tissue, whereas those in the RES died
off. (Figures 1 and 2). The proliferation of bacteria in tumor tissues can be attributed
to the unique immunosuppressive and biochemical environment of the tumor [46]. The
rrnB P1 promoter in proliferating bacteria in tumor tissues was active, whereas that in the
dying bacteria in the RES was not. The rrnB P1 promoter controls an operon that includes
rrsB (16S rRNA), gltT (tRNA-glu), rrlB (23S rRNA), and rrfB (5S rRNA), which encode the
three major rRNA building blocks of ribosomes [32]. In rapidly dividing bacteria, a large
fraction of cellular energy and matter is devoted to the synthesis of ribosomes, accounting
for 47% of the cell mass in E. coli when grown fast with a generation time of <30 min [47].
Because the rate of ribosome synthesis is determined solely by the availability of rRNA,
the decrease observed suggests that bacteria in the RES ceased to grow and thus did not
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need ribosomes for de novo protein synthesis. It is likely that these bacteria were processed
by phagocytic leukocytes, i.e., polymorphonuclear leukocytes (PMNs or neutrophils) and
mononuclear phagocytes (monocytes, macrophages, and dendritic cells), providing a front
line of defense against bacterial infection [48]. In this study, we showed that most of
the bacteria in the RES were associated with phagocytic macrophages (Figure S3). These
innate immune cells promote bacterial clearance through phagocytosis, generation of
reactive oxygen and nitrogen species, extracellular trap formation, and production of
proinflammatory cytokines [48]. The results presented in this study suggest that the
confined expression of therapeutic payloads using a controllable system could be replaced
by a constitutive expression system (Figures 3 and 4). Metabolically inert bacteria that
died out in macrophages detected in the RES discontinued protein synthesis, and leakage
of therapeutic cargo into the circulation would thus be impossible. Several inducible
promoter systems have been developed for the controlled expression of therapeutic cargo,
including an E. coli promoter (pBAD) inducible with L-arabinose [20,49,50] and a tet
promoter inducible with tetracycline [24,49]. Any transgene under these promoters is
expressed upon the concurrent delivery of the inducer, although the expression is transient:
the expression of cargo protein (TP) by pBAD lasted only 1 day after administration of
L-arabinose into the peritoneal cavity (Figure S6). In this case, daily administration of
L-arabinose would be required to prolong the expression. Another approach would be
to use hypoxia-responsive promoters that are activated in tumor-colonizing bacteria [51].
Nevertheless, if the purpose of the controlled expression is to prevent toxic substances from
harming healthy organs such as the liver and spleen, which are responsible for 60% and
30% of the immunological removal of bacteria from the circulation, respectively [52], such
practice is no longer needed. Administration of S. Gallinarum constitutively expressing
cytolysin A, a potent pore-forming hemolytic protein of S. enterica serovar Typhi [20], into
tumor-bearing mice had no adverse effect on the animals. When an extension of anti-cancer
cargo expression is needed, a multiple bacteria injection could be an option. In bacterial
cancer therapy, the bacteria detected in the RES should be considered inert. In this study, we
used the exponential phase promoter rrnB P1 to express TP in S. Gallinarum proliferating
in tumor tissues exclusively, which conferred considerable antitumor effects without any
systemic toxicity.

5. Conclusions

This study demonstrated that bacteria that reside in tumor tissues actively proliferate,
whereas those in the RES die off after injection into tumor-bearing mice. A cytotoxic
anticancer protein gene fused to a constitutive promoter was expressed only in the bacteria
residing in the tumor tissue, resulting in tumor suppression.
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