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Abstract: Increasing evidence confirms that tumor microenvironment (TME) can influence tumor
progression and treatment, but TME is still understudied in adrenocortical carcinoma (ACC). In this
study, we first scored TME using the xCell algorithm, then defined genes associated with TME, and
then used consensus unsupervised clustering analysis to construct TME-related subtypes. Meanwhile,
weighted gene co-expression network analysis was used to identify modules correlated with TME-
related subtypes. Ultimately, the LASSO-Cox approach was used to establish a TME-related signature.
The results showed that TME-related scores in ACC may not correlate with clinical features but do
promote a better overall survival. Patients were classified into two TME-related subtypes. Subtype 2
had more immune signaling features, higher expression of immune checkpoints and MHC molecules,
no CTNNB1 mutations, higher infiltration of macrophages and endothelial cells, lower tumor immune
dysfunction and exclusion scores, and higher immunophenoscore, suggesting that subtype 2 may
be more sensitive to immunotherapy. 231 modular genes highly relevant to TME-related subtypes
were identified, and a 7-gene TME-related signature that independently predicted patient prognosis
was established. Our study revealed an integrated role of TME in ACC and helped to identify
those patients who really responded to immunotherapy, while providing new strategies on risk
management and prognosis prediction.

Keywords: adrenocortical carcinoma; tumor microenvironment; immunotherapy; subtype;
bioinformatics; risk stratification; prognosis prediction

1. Introduction

Adrenocortical carcinoma (ACC) originates from the adrenal cortex and is a highly in-
vasive tumor of the endocrine system with an annual incidence of approximately 0.5–2 cases
per million people. ACC can occur at any age, has a peak incidence in the 40 s and 50 s,
and a higher rate of diagnosis in women than in men [1,2]. The primary treatments avail-
able for ACC are surgical resection, mitotane therapy, chemotherapy, radiotherapy, and
immunotherapy [3–7]. Most patients have difficulty achieving a complete cure due to
the adverse effects of ACC, such as high post-operative recurrence rates, low response to
drug treatments, and toxic side effects of the drugs [8–10]. Although the incidence of the
disease is low, patient survival is poor, with an overall survival (OS) rate of less than 15%
at 5 years [11]. Age, tumor stage, tumor grade, and cortisol secretion have been reported to
be the main factors affecting patient prognosis [12–15]. Although these disease markers
can help us to predict patient prognosis to some extent, there is still a need for more and
more accurate biomarkers used in predicting patient survival and treatment outcome.
With the rapid development of multi-omics in tumors, gene markers, mutations in genes,
and involved pathways were closely related to the biological functions of ACC and had
the promise to become its potential therapeutic targets [16]. Kamilaris et al. found that
overexpression of IGF2, mutations in TP53, ZNRF3, CTNNB1, and 11p15, and abnormal
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alterations in WNT/β-catenin and p53 signaling pathways contributed to the development
of ACC [17]. Meanwhile, the rational development of targeted predictive models for ge-
netic markers, the establishment of risk stratification for treatment, the development of
therapeutic agents targeting pathways, and the conduct of immunotherapy trials are the
main tasks at hand [18].

The tumor microenvironment (TME) is a complex multicellular environment in which
the tumor is located, primarily composed of immune cells, stromal cells, an extracellular
matrix, secreted small molecules, and blood and lymphatic vascular networks, and is highly
heterogeneous and dynamic [19]. The development of TME is dedicated to tumor progres-
sion; its main components play an important role [20]. These include tumor-associated
macrophages, myeloid-derived suppressor cells, regulatory T cells, extracellular matrix,
and tumor vasculature [21–26]. Immune cells (CD8+ T cells and mast cells) and vascular en-
dothelial cells can promote or inhibit ACC progression through multiple pathways [27–30].
For example, high infiltration of CD8+ T cells were observed in younger and stage I patients,
and were associated with a better prognosis [27]. A high abundance of tumor mast cells
promoted both better OS and progression-free survival, enhancing the accumulation of
CD8+ T cells and CD4+ T cells [28]. Endothelial cell contraction, migration, and prolifera-
tion are key factors for the occurrence of angiogenesis, that promoted tumor development
to malignancy [29,30]. In fact, TME does not only affect tumor growth, but is equally
important for immunotherapy. Studies have demonstrated that the heterogeneity of the
TME affected the response of patients to immunotherapy, and some studies have found
that TME-related subtypes helped to select patients who were responsive to immunother-
apy [31–36]. However, there are still no studies on the relationship between TME-related
subtypes and response to immunotherapy in ACC.

In summary, we used the xCell algorithm to quantify the microenvironment of ACC,
starting with the TME-related score, and fully considered the role of TME-related subtypes
in the immunotherapy of ACC. Finally, we established a novel TME-related signature
that could achieve the risk classification and prognosis prediction of ACC, providing the
scientific basis on clinical treatment for ACC in the future.

2. Materials and Methods
2.1. Data Collection and Pre-Processing

We downloaded transcriptomic data and clinical information of ACC from The Can-
cer Genome Atlas (TCGA) (https://xenabrowser.net/, accessed on 1 November 2022)
website. This tool was used to determine gene expression profiles through the Illu-
mina platform. In this study, FPKM values were converted to transcript per million
(TPM), and gene expression was estimated primarilyin log2(TPM + 1). We obtained
the“Homo_sapiens.GRCh38.108.chr.gtf.gz” file from the Ensembl (http://Asia.ensembl.
org/, accessed on 2 November 2022) database for gene annotation. For the clinical data in
the TCGA-ACC dataset, samples with complete gene expression and OS information were
enrolled in this study. Based on this condition, we obtained a total of 79 subjects from the
TCGA-ACC dataset. The primarily clinical indicators included age, gender, T stage, N stage,
M stage, and tumor stage. In addition, GSE10927 and GSE33371 were downloaded from the
GEO (http://www.ncbi.nlm.nih.gov/geo/, accessed on 3 November 2022) database and
the original expression matrix in “CEL” format was background corrected and normalized
using the Robust Multichip Average algorithm [37]. Clinical information was downloaded
using the “GEOquery” package [38]; a total of 47 subjects were included from the GSE10927
and GSE33371 datasets according to the filtering criteria, including age, gender, Weiss
grade, and tumor stage. In this study, we used the TCGA-ACC dataset as the training
set and the GSE10927 and GSE33371 datasets as the external validation set to validate the
predictive ability and risk stratification of TME-related signature. The detailed flow chart
was shown in Figure 1.

https://xenabrowser.net/
http://Asia.ensembl.org/
http://Asia.ensembl.org/
http://www.ncbi.nlm.nih.gov/geo/
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Figure 1. The flow chart of the study.

2.2. Quantifying the Tumor Microenvironment

The xCell algorithm was based on scoring and specifically transforming the 489 reli-
able gene sets of 64 cells using the principles of the ssGSEA algorithm [39]. We used the
xCell algorithm to obtain 64 cells from 79 samples, as well as markers that could synthesize
the corresponding characteristics of these cells: immune score, stromal score, and microen-
vironment score (estimate score). The immune score and stromal score reflected the overall
profile of immune cells and stromal cells, respectively, while the microenvironment score,
that assumed a negative correlation with tumor purity, was numerically equal to the sum
of immune score and stromal score and could be used as a measure of TME.

2.3. Identification of TME-Related Genes

First, we used the “surv_cutpoint” function to determine the optimal cutoff values for
the immune score, stromal score, and microenvironment score. Next, differential expressed
analysis was performed between high- and low-score groups using the “edgeR” package (a
differential expression analysis method based on count data [40]). Finally, we identified
TME-related genes by intersecting up-regulated and down-regulated genes in the immune,
stromal and, microenvironment groups.
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2.4. Construction of TME-Related Subtypes

Based on the normalized expression of TME-related genes, ACC patients were clas-
sified into different TME-related subtypes through consensus unsupervised clustering
analysis using the “ConsensusClusterPlus” package [41]. The seed number (123456) and
the maximum number of clusters (k = 7) were established first, and the similarity was
measured by Pearson method using hierarchical clustering. The clustering was completed
by repeated sampling 1000 times with a resampling ratio of 80%. In this study, the optimal
number of clusters was determined primarily based on the Proportion of Ambiguous
Clustering (PAC) value, and the optimal k was determined when the PAC value was
minimal [42].

2.5. GSVA Analysis of the KEGG and Hallmark Pathways among Different Subtypes

The Gene Set Variation Analysis (GSVA) algorithm is a commonly used method that
can evaluate the enrichment score (ES) of a sample in a specific gene set [43]. In this study,
186 KEGG and 50 Hallmark pathways were downloaded from the Molecular Signatures
Database (https://www.gsea-msigdb.org/, accessed on 7 November 2022), and the ES of
these pathways in ACC were calculated using the GSVA algorithm. The “limma” package
was used to screen the differential pathways among different subtypes, and the screening
criterion was that the corrected p-value was less than 0.05 [44].

2.6. TME-Related Characteristics among Different TME-Related Subtypes

Based on the EPIC method, we calculated the abundance of B cells, cancer associated
fibroblast (CAF) cells, CD4+ T cells, CD8+ T cells, endothelial cells, macrophage cells, and
natural killer (NK) cells [45]. To ensure the stability of the results, we performed the same
analysis using the xCell algorithm.

2.7. Somatic Mutation Analysis

Mutation data from ACC were downloaded using the “TCGAbiolinks” and “maftools”
packages [46,47]. In this study, the exome length was defined as 40 mb. We used an estimate
of the total number of somatic mutations divided by exome length to measure the TMB [48].

2.8. Immunotherapy Response among Different TME-Related Subtypes

The Tumor Immune Dysfunction and Exclusion (TIDE) and the immunophenoscore
(IPS) algorithms were used to assess the ability of ACC patients to respond to immune
checkpoint inhibitors (ICIs) [49,50]. Patients with high TIDE scores were generally con-
sidered to be more prone to immune escape and less amenable to ICIs, whereas tumor
patients with low TIDE scores were more responsive and amenable to ICIs. The TIDE
involved two main components: T cell dysfunction and exclusion. The IPS algorithm
was composed of major histocompatibility complex (MHC) molecules, effector cells (EC),
immune checkpoints (CP), and immunosuppressive cells (SC).

2.9. WGCNA Analysis

The median absolute deviation (MAD) value was used as a criterion to filter genes, and
the genes with the top 5000 MAD values were subjected to Weighted Gene Co-Expression
Network Analysis (WGCNA) [51]; the “goodSamplesGenes” function was used to check
whether there were low-quality samples and genes. In this study, the optimal power could
be estimated by the “pickSoftThreshold” function. The number of modules and categories
were determined using the dynamic tree cut approach. The first component in each
feature module was extracted using principal component analysis. The first component
of each module could fully reflect the expression level of all genes in that module, and
the correlation analysis of the first component of the characteristic gene module with the
TME-related subtype was performed to identify the module with the highest correlation
with the TME-related subtypes as the key module. These genes in the key module were
regarded as TME-related subtype genes.

https://www.gsea-msigdb.org/
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2.10. GO Enrichment and KEGG Signaling Pathway

We performed Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analyses on TME-related subtype genes. The GO enrichment
included three aspects: molecular function (MF), biological process (BP), and cellular com-
ponents (CC). We used the “clusterprofiler” package to implement the above process, and
the screening criteria was p-value less than 0.05 after Benjamini–Hochberg correction [52].

2.11. LASSO-Cox Analysis to Construct and Validate a TME-Related Signature

Combining TME-related genes and TME-related subtype genes, we defined their
intersected genes as candidate genes, and they were used for the construction of TME-
related risk score. First, the candidate TME-related genes were subjected to univariate Cox
analysis using the “survival” package, and genes with p < 0.05 were tagged as prognostic
genes for ACC. These prognostic TME-related genes were then included in the least absolute
shrinkage and selection operator (LASSO) regression analysis for further gene screening
and risk score construction using the “glmnet” package; the lamda values were calculated
using 10-fold cross-validation. Here, the lamda value with the smallest partial likelihood
residuals was selected, and the genes with non-zero coefficients were retained as candidates
for model construction. The risk score of ACC patients was calculated using the expression
of linear regression. After obtaining the TME-related risk scores of patients in TCGA-ACC,
GSE33371, and GSE10927 datasets, ACC patients were classified into high- and low-risk
groups according to the median value of the risk score. The “timeROC” package was
used to predict the area under the receiver operating characteristic curve (ROC) of ACC
patients at years 1, 3, and 5. To test whether the risk score was independent of other
clinical indicators used to predict OS, the clinical characteristics of patients were included
in the TCGA-ACC, GSE33371, and GSE10927 datasets for univariate and multivariate
Cox analyses, respectively, and variables with prognostic significance after univariate Cox
regression were included in the multivariate Cox regression.

3. Results
3.1. TME and OS in ACC

Using the “surv_cutpoint” function, the cutoff values of immune score, stromal score,
and microenvironment score were calculated as 0.028, 0.015, and 0.049, respectively. Based
on the cutoff value, high-immune group (N = 32), low-immune group (N = 47), high-stromal
group (N = 59), low-stromal group (N = 20), high-microenvironment group (N = 47), and
low-microenvironment group (N = 32) were determined. High-stromal, high-immune, and
high-microenvironment groups were associated with a better OS (Figure 2A–C).
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high- and low-stromal scores. (B) KM curves for patients with high- and low-immune scores. (C) KM
curves for patients with high- and low-microenvironment scores.
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3.2. TME and Clinical Features of ACC

We found that age was not statistically correlated with TME-related scores (Figure S1).
Similarly, gender, T stage, M stage, and N stage were not statistically associated with
TME-related scores according to the Wilcoxon test (Figure S2A–L). Patients’ immune and
stromal scores were also not statistically different in the tumor stage group (Figure S2M,N),
but microenvironment score showed a statistical significance (Figure S2O).

3.3. Identification of TME-Related Genes

2977 differentially expressed genes (DEGs), including 2026 up-regulated genes and
951 down-regulated genes, were obtained between the high- and low-immune groups
(Table S1). In the stromal group, 2337 DEGs, including 1323 up-regulated and 1014 down-
regulated genes, were screened (Table S2). For the microenvironment group, 2965 DEGs
were identified, including 1998 up-regulated and 967 down-regulated genes (Table S3).
The Venn diagram showed 730 up-regulated genes and 259 down-regulated genes at the
intersection of the immune, stromal, and microenvironment groups (Figure 3). Thus,
989 TME-related genes were defined in this study.
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Figure 3. The determination of TME-related genes. (A) Venn diagram showing the number of
DEGs that were up-regulated in the immune, stromal and, microenvironment groups. (B) Venn
diagram showing the number of DEGs that were down-regulated in the immune, stromal, and
microenvironment groups.

3.4. Classification of TME-Related Subtypes

Based on the principle of PAC, we compared the magnitudes of cumulative distri-
bution function (CDF) (0.1), CDF (0.9), and PAC for different k values. In Figure S3, the
curve at k = 2 had a flatter change when the consistency index changed from 0.1 to 0.9.
Meanwhile, the minimum PAC value appeared when k = 2, indicating that the optimal
number of clusters is 2. Similarly, as k increased, the clustering effect became more unstable,
with more ambiguous parts appearing, resulting in the inability to clearly delineate the
different subtypes (Figure 4). Therefore, we classified the 79 subjects into two TME-related
subtypes: subtype 1 (N = 47) and subtype 2 (N = 32). KM survival analysis showed that
subtype 2 had a higher OS than subtype 1 (Figure 5).
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3.5. Identification of Key Signaling Pathways between two TME-Related Subtypes

Based on the ES of 186 KEGG and 50 Hallmark pathways, a total of 102 differen-
tial KEGG pathways (Table S4) and 26 differential Hallmark pathways between subtype
1 and subtype 2 were identified (Table S5). Among the top 20 KEGG pathways, sub-
type 2 exhibited higher ES compared to subtype 1. These pathways mainly included the
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chemokine signaling pathway, NOD-like receptor signaling pathway, Toll-like receptor sig-
naling pathway, Graft-versus-host disease, and Allograft rejection (Figure 6A). Among the
26 differential Hallmark pathways, subtype 1 was significantly enriched in nine signaling
pathways, including MYC targets v1 and v2, G2M checkpoint, cholesterol homeostasis, and
E2F targets, while subtype 2 was involved in 17 signaling pathways, primarily including
Complement, Allograft rejection, Interferon gamma response, IL-2-STAT5 Signaling, and
IL-6/JAK/STAT3 signalling (Figure 6B).
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3.6. TME-Related Subtypes and Tumor Infiltration Cells

Using the EPIC algorithm, we evaluated the infiltrating levels of seven important
cells. Our evaluation found the highest ratio to be CD4+ T cells and the lowest proportion
to be NK cells (Figure 7A). Subtype 2 had higher levels of B cells, endothelial cells, and
macrophage when compared to subtype 1 (Figure 7B). We also calculated the ratio of these
seven cells using the xCell algorithm. The results showed that subtype 2 had a higher
infiltrating levels of fibroblasts, CD8+ T cells, endothelial cells, and macrophages when
compared to subtype 1 (Figure 7C). Subtype 2 had higher TME-related scores than subtype 1
(Figure 7D–F).
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3.7. TME-Related Subtypes and Somatic Mutation

The mutational waterfall plot showed that the top 20 high mutated genes were TP53
(16%), CTNNB1 (15%), MUC16 (15%), TTN (11%), HMCN1 (9%), PKHD1 (9%), CNTNAP5
(8%), MEN1 (8%), MUC4 (8%), PRKAR1A (8%), ANK2 (6%), ASXL3 (6%), DST (6%), FAT4
(6%), NF1 (6%), STAB1 (6%), SVEP1 (6%), TMEM247 (6%), HIVEP1 (5%), and KMT2B
(5%) (Figure S4A). To investigate whether the mutation of these genes affected the OS, we
compared the OS of patients with mutated genes to those without mutated genes. The
results showed that only mutation in DST (p = 0.002), HIVEP (p = 0.028), ASXL3 (p = 0.001),
PKHD1 (p = 0.012), TP53 (p = 0.003), and CTNNB1 (p = 0.049) was associated with OS,
resulting in a worse prognosis (Figure S4B–G). As for the mutational waterfall plot of
subtype 1 and 2, we found a higher rate of CTNNB1 mutations in patients with subtype
compared to those with subtype 2, using the corrected chi-square test (Figure 8A,B). By
calculating the TMB of ACC patients, the median TMB was found to be 0.58/MB for
overall ACC patients, 0.73/MB for patients with subtype 1, and 0.40/MB for patients with
subtype 2 (Figure 9A–C). By comparing the TMB between subtype 1 and 2, it was shown
that patients with subtype 1 had a higher TMB (Figure 9D). We classified TMB into high-
and low-TMB groups according to median value of TMB. Patients in the high TMB group
had a worse OS than those in the low TMB group (Figure 9E).
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3.8. TME-Related Subtypes and Immunotherapy

In this study, we compared the expressions of six important MHC molecules and eight
immune checkpoints (ICs) between subtypes 1 and 2. The results showed that they were all
highly expressed in patients with subtype 2 (Figures 10 and 11). Therefore, to understand
whether TME-related subtypes affected the response to ICIs, the normalized TIDE scores
and IPS of ACC patients were obtained using the TIDE and IPS algorithms. It was found
that the normalized TIDE scores of subtype 2 were lower than those of subtype 1 and the
IPS of subtype 2 were higher than those of subtype 1 (Figure 12), indicating that patients
with subtype 2 may be more sensitive to ICIs than patients with subtype 1.
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Figure 9. TMB profile and TME-related subtypes. (A) The distribution of TMB of TCGA-ACC patients.
(B) The distribution of TMB of subtype 1. (C) The distribution of TMB of subtype 2. (D) Comparison
of the differences in TMB between two subtypes. (E) KM curves of OS for high- and low-TMB groups.
Data in (D) was analyzed by Wilcoxon test; *** p < 0.001.
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3.9. Identification of a Module Highly Correlated with TME-Related Subtypes

First, no abnormal samples and genes were found using the “goodSamplesGenes”
function. The hierarchical clustering tree was drawn for 79 samples and no obvious outlier
samples were found (Figure S5). As such, 5000 high MAD genes and 79 ACC subjects
were retained for subsequent WGCNA analysis. The best soft threshold (β = 13) was
obtained using the “pickSoftThreshold” function (Figure 13). Based on the determined
optimal power, the 1-TOM matrix was obtained, hierarchical clustering was performed,
and different modules were classified using the dynamic tree cut method, from which a
total of 15 modules were obtained. The red module was found to be the most correlated
with the TME-related subtypes (Figure 14), so 271 genes in this module were extracted for
subsequent analysis (Table S6). We defined these genes as TME-related subtype genes.
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3.10. Biologically Functional Analyses of TME-Related Subtype Genes

To understand the biological functions of TME-related subtype genes, the most signifi-
cant functions and signaling pathways were visualized by bubble plots (Figures 15 and 16).
In the BP, the five most significant functions were response to interferon-gamma, cellular
response to interferon-gamma, leukocyte cell-cell adhesion, leukocyte chemotaxis, and
regulation of mononuclear cell proliferation. In the CC, the five most prominent functions
included MHC protein complex, MHC class II protein complex, integral component of
lumenal side of endoplasmic reticulum membrane, lumenal side of endoplasmic reticulum
membrane, and endocytic vesicle membrane. In terms of MF, the five most representative
functions consisted of immune receptor activity, MHC class II receptor activity, peptide
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antigen binding, amide binding, and peptide binding. KEGG analysis showed that a total
of 52 differential pathways were identified, of which the 10 most significant pathways were
Staphylococcus aureus infection, Rheumatoid arthritis, Phagosome, Leishmaniasis, Viral
myocarditis, Allograft rejection, Complement and coagulation cascades, Graft-versus-host
disease, Type I diabetes mellitus, and Autoimmune thyroid disease.
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3.11. Construction and External Validation of a TME-Related Signature

A total of 103 candidate TME-related genes were obtained by combining TME-related
genes with TME-related subtype genes (Figure S7). Univariate Cox analysis of these genes
revealed that 11 genes were associated with OS. Next, these prognostic genes were included
in the LASSO regression analysis for the construction of a TME-related signature. The
results showed that when the partial likelihood residuals were minimal, seven genes with
non-zero coefficients were obtained and used to calculate a risk score (Figure 17A,B). In
this study, the TME-related risk score was calculated as follows: 0.57572687 × Expres-
sion(RGS1) − 0.71891011 × Expression(CX3CR1) − 0.13089450 × Expression(CYTL1) −
0.15899458 × Expression(GBP2) − 0.03429512 × Expression(SLC40A1) − 0.04349504 ×
Expression(SLC9A9) − 0.02742250 × Expression(TFEB). In the TCGA-ACC dataset, the
OS of high-risk patients was significantly lower than that of low-risk patients, with time-
ROC curves showing AUC values of 0.91, 0.88, and 0.86 at years 1, 3, and 5, respectively
(Figure 18). In the GSE10927 dataset, high-risk patients had a worse OS and the AUC values
of years 1, 3, and 5 were 0.87, 0.77, and 0.77, respectively (Figure 19A,B). In the GSE33371
dataset, high-risk patients had an OS disadvantage and the AUC of 1, 3, and 5 years
was 0.86, 0.75, and 0.75, respectively (Figure 19C,D). These results suggested that this
TME-related signature had a better risk stratification ability and higher predictive power.
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OS for patients in the high- and low-risk groups. (B)Time-ROC curve to predict the OS at year 1, 3,
and 5.
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for patients in the high- and low-risk groups in GSE10927. (B)Time-ROC curve to predict the OS at
year 1, 3, and 5 in GSE10927. (C) KM curves of OS for patients in the high- and low-risk groups in
GSE33371. (D)Time-ROC curve to predict the OS at year 1, 3, and 5 in GSE33371.

3.12. TME-Related Signature Was an Independent Prognostic Indicator

In the TCGA-ACC dataset, univariate Cox analysis showed that risk score, M stage, T
stage, and tumor stage were significantly associated with OS (Table 1). Then, after including
these significant variables from univariate Cox analysis into the multivariate Cox analysis,
only risk score was found to be remarkably associated with OS, while the other variables
were not statistically significant factors (Table 1). In both external datasets, we found
that only risk score was a significant variable affecting OS (Table 2). Thus, these findings
supported that this TME-related signature could be used as an independent prognostic
indicator for ACC patients.

Table 1. The results of univariate and multivariate Cox analyses in TCGA-ACC dataset.

Variable
Univariate Analysis Multivariate Analysis

HR p Value HR p Value

Risk score 4.10 (2.36–7.13) <0.001 3.06 (1.73–5.40) <0.001
Age 1.01 (0.99–1.04) 0.379

Gender (Male vs. Female) 1.00 (0.47–2.14) 0.999
M stage (M1 vs. M0) 6.15 (2.71–13.96) <0.001 1.12 (0.42–3.0) 0.813
N stage (N1 vs. N0) 2.04 (0.77–5.40) 0.152

T stage (T3-T4 vs. T1-T2) 10.29 (3.98–26.61) <0.001 5.79 (0.71–47.40) 0.102
Stage (III-IV vs. I-II) 6.48 (2.71–15.50) <0.001 0.75 (0.09–6.20) 0.790
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Table 2. The results of univariate Cox analyses in two external datasets.

Variable
GSE33371 GSE10927

HR p Value HR p Value

Risk score 1.91 (1.16–3.13) 0.011 1.95 (1.19–3.20) 0.008
Age 1.01 (0.96–1.06) 0.775 1.01 (0.96–1.06) 0.639

Gender (Male vs. Female) 1.36 (0.47–3.95) 0.574 1.47 (0.51–4.24) 0.475
Weiss score (Low vs. High) 0.32 (0.09–1.15) 0.082 0.35 (0.10–1.24) 0.104

Stage (III–IV vs. I–II) 2.56 (0.92–7.10) 0.071 2.56 (0.96–6.83) 0.060

4. Discussion

Tumor development is closely related to the interaction between tumor cells and TME,
and immune and stromal cells in the TME can promote or inhibit tumor growth. Therefore,
it is important to understand the role of TME to inhibit tumorigenesis and metastasis.

In this study, we used the xCell algorithm to digitally quantify the TME, helping us
understand the comprehensive impact of TME on tumors. We scored the immune and
stromal microenvironment and identified the genes associated with them. In our study,
all three TME-related scores were associated with the OS of ACC patients, indicating that
TME-related characteristics were an influential factor in the prognosis of ACC patients. At
the same time, none of the TME-related scores were statistically associated with most of
the clinical features, suggesting that the clinical features of ACC patients did not affect the
overall level of TME, further emphasizing the need to reveal TME at the molecular level.
Using differential expressed analysis, we defined a total of 989 genes associated with TME.

In order to investigate whether TME-related subtypes had predictive potential in
terms of immunotherapy. We first classified ACC into two TME-related subtypes based on
TME-related genes using consensus unsupervised clustering analysis and defined them as
subtype 1 and 2, respectively. KM survival analysis revealed that subtype 2 had a better
OS than subtype 1, indicating that the potential ability of TME-related subtypes in the risk
stratification was noticed.

In terms of signaling pathways, subtype 2 was closely associated with most immune-
related pathways, including chemokine signaling pathway, NOD-like receptor signaling
pathway, TOLL-like receptor signaling activity, Allograft rejection, Complement, interferon-
gamma, IL2/STAT5, and IL-6/JAK/STAT3 signaling pathways. Chemokine expression was
associated with T-cell inflammation in tumors [53]. CXCR4 and CXCR7 have been shown
to be most abundant in ACC, yet they were not associated with prognosis in patients with
ACC [54]. There were some NOD-like receptors involved in the formation of inflammatory
vesicles, such asNLRP3, which was the most typical NOD-like receptor for inflammatory
vesicle formation [55,56]. TLRs could mediate adaptive immunity, affecting T and B cell
responses [57]. A pan-cancer analysis identified TLR4 and TLR5 as prognostic genes in
ACC [58]. Also, immune-mediated upregulation of TLR4 signaling may become a novel
strategy for immunotherapy of ACC [59]. The effect of alloantigens on innate immunity was
associated with the allograft rejection pathway, while pro-inflammatory cytokines activated
by innate immune-stimulated T cell expansion also occurred in this process [60,61]. In
addition, the pathway was associated with the development of low-risk ACC patients [62].
Complement influenced the type and extent of the immune response by cooperating with
other cellular defense pathways [63]. Interferon-gamma-induced signaling occurred in
many types of immune cells, such as type I helper T cells, cytotoxic T cells (CTLs), and NK
cells, while interferon-γ-dependent immunotherapy acted primarily through the anti-tumor
mechanism [64]. Lower tumor purity may lead to overexpression of IL2/STAT5 signaling,
while tumor purity has been shown to have a negative correlation with immune and stromal
scores [65,66], suggesting that subtype 2 has more immune and stromal features relative to
subtype 1;this is consistent with our results. The IL6-JAK-STAT3 signaling pathway could
induce PD-1 and PD-L1 expression and promote anti-tumor immune effects [67]. Therefore,
in our study, subtype 2 expressed more PDCD1 and CD274 than subtype 1, which may
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be related to the involvement of IL-6/JAK/STAT3 signaling pathway. In contrast, for
subtype 1, MYC target v1 and v2, G2/M checkpoint, cholesterol homeostasis, and E2F
target were the primary associated signals. A high ES of MYC target v1 andv2 pathways
was found to be associated with cell proliferation in ER-positive/HER2-negative breast
tumors, leading to a worse outcome [68]. G2/M checkpoint was a common signal in the cell
cycle and was an important source for tumor survival [69]. Also, dysregulation of G2/M
transition may affect the pathogenesis of ACC [70]. Cholesterol balance was essential for
proper cell and system function [71]. It was found that mitotane affected the expression of
genes involved in the homeostatic process of cholesterol, that in turn affected the prognosis
of patients [72]. Enhanced E2F activity could promote the resistance to chemotherapy;
some genes in this family may be involved in the progression of ACC, and E2Fs have been
shown to be promising therapeutic targets for ACC [73,74]. Thus, the results suggested
that the development of subtype 1 may be related to cell cycle activity, whereas the activity
of subtype 2 may be more related to immune-related signals.

By comparing the tumor infiltrating cells of different TME-related subtypes, we
found that endothelial cells and macrophages were significantly expressed in patients
with subtype 2. Endothelial cells were able to produce more IFN-β, which was shown to
inhibit ACC cell growth [75,76]; this may explain why there were more endothelial cells in
patients with subtype 2. Macrophages played an important role in the immune microenvi-
ronment, with polarized pro-inflammatory M1 macrophages inhibiting tumor growth and
anti-inflammatory M2 macrophages exerting a pro-tumor role [77]. M2 macrophages were
the predominant macrophages in ACC, and lower infiltrating levels of M1 macrophages
were found in cortisol-secreting ACC [78]. Recently, Guan et al. found that ACC1 had a
higher level of macrophage infiltration compared to ACC2 and ACC3, and the OS of ACC1
was the highest among the three subtypes [79]. This finding was similar to the results of
the present study. Mutations in tumor suppressor genes have emerged as one of the major
causes of ACC pathogenesis [80]. TP53 and CTNNB1 had a highly mutated rate in overall
ACC, while mutations in these two genes were associated with a poorer OS in patients. Mu-
tations in TP53 were most prevalent in children with ACC and decreased over time, but the
mutation carried a risk of familial inherited mutations [81,82]. CTNNB1 mutation activated
the β-catenin pathway, and the presence of β-catenin nuclear staining caused by activation
of the Wnt/β-catenin signaling pathway led to reduced OS and disease-free survival in
ACC [83,84], supporting that CTNNB1 mutation was associated with a poor prognosis in
this study. Most importantly, CTNNB1 mutation was not found in subtype 2. CTNNB1 mu-
tation was found to be enriched in tumors with non-T-cell inflammation, and the activated
Wnt/β-catenin signaling pathway was associated with immunosuppression [85]. Besides,
a recent study on the immunophenotype of ACC showed that the low-immune group
exhibited higher CTNNB1 mutations when compared to the high-immune group [86].
These findings suggested that subtype 2 may have a more distinct immune profile.

Immunotherapy is an emerging anti-tumor treatment that allows the immune system
to be manipulated to recognize and attack cancer cells [87]. ICIs, as part of immunotherapy,
achieve the process of anti-tumor immunity primarily by disrupting negative immunomod-
ulatory checkpoints and releasing pre-existing anti-tumor immune responses [88]. A higher
TMB could predict the efficacy of ICIs, primarily because high TMB released more neoanti-
gens and increased the chance of being recognized by T cells [89]. However, a recent
ACC-based study on the relationship between TMB and ICIs pointed out that there may
be no difference in the tumor immune microenvironment between high- and low-TMB
groups, and that TMB did not affect the activity of immune-related pathways and predict
the response to ICIs [90]. Combined with our findings, although there was a significant
TMB difference between subtypes 1 and 2, its role in the prediction of ICIs was not well
represented, indicating that TME-related subtypes may not predict ICIs response through
TMB. In addition to TMB, ICIs and MHC molecules can also be used as biomarkers of
ICIs to predict patients’ response to ICIs. MHC molecules primarily include MHC-I and
MHC-II; killing tumor cells by CD8+ T cells required the effective presentation of tumor
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antigens by human leukocyte antigen class I (HLA-I) molecules [91]. Expression of MHC-II
molecules was one of the key factors in the response to ICIs and may be associated with
the recognition of tumor-specific antigens by helper CD4+ T cells during ICIs and the
promotion of tumor inhibition [92]. More MHC molecules were observed in subtype 2,
suggesting that subtype 2 may be associated with the promotion of immune response.

Although subtype 2 expressed more ICIs relative to subtype 1, the applicability of ICIs
may not be completely uniform due to tumor differences. For example, overexpression
of PD-L1 molecules could promote immune escape by suppressing CTLs function, while
PD-L1 expression was also accompanied with IFN-γ production by tumor infiltrating T
cells [93]. Therefore, overexpression of PD-L1 levels may not be a robust predictor of
ICI response [94]. Likewise, PD-1 expression may not be a good diagnostic indicator in
all patients treated with ICIs [95]. Therefore, a single ICs to determine whether TME-
related subtypes had some application value in immunotherapy remains limited. To further
confirm whether TME-related subtypes were predictive of response to immunotherapy, we
used more widely used immunotherapy prediction algorithms: TIDE and IPS. Although
there were several algorithms that could be used to predict response to immunotherapy,
these two algorithms were somewhat more comprehensive in their application when
compared with others. First, the IPS algorithm considered both the expression of immune-
related molecules and the marker genes of immune cells. The TIDE algorithm was not
limited to the expression of a few key genes, but systematically considered the prognostic
impact of the interaction of all the genes and CTLs on patients. From our prediction results,
patients with subtype 2 had lower TIDE scores and higher IPS scores, indicating that
subtype 2 was more advantageous for immunotherapy.

Effective risk stratification and survival prediction were important for the precise
management of ACC. Although there were many clinical indicators that could identify
risk and effectively predict survival in patients with ACC, there was still a need to develop
other biomarkers for the purpose of rationalizing appropriate interventions for different
risk groups. We classified ACC into two different subtypes based on the expression of
TME-related genes and initially determined that these two subtypes were distinct in terms
of immune response. To further identify candidate TME-related genes, we used the TME-
related subtype as the main feature and identified modules significantly associated with
TME-related subtypes using the WGCNA method. Ultimately, we obtained key modules
containing 271 genes, and we found that they were enriched in functions, primarily includ-
ing response to interferon gamma, MHC protein complexes, and immune receptor activity.
The signaling pathways primarily included complement and coagulation cascade and
Allograft rejection. These results were consistent with the differential pathways associated
with subtype 2, indicating that these genes in the key module were not only correlated in
expression with TME-related subtypes but also had some similarity in biological functions,
further suggesting that these genes could be valuable as TME-related subtype genes. There-
fore, we intersected these genes and TME-related genes as candidate TME-related genes.
Based on these candidate TME-related genes, we established a TME-related signature for
ACC using univariate Cox and LASSO regression analyses.

Some of the genes in the model may influence tumor progression by cell death. For
example, GBP2 activated caspase-4, that triggered cell death and inhibited tumor cell
proliferation [96,97], and SLC40A1, that acted as a negative regulator of ferroptosis. How-
ever, ACC showed a high sensitivity to induced ferroptosis [98,99], so SLC40A1 may
influence ACC progression by regulating ferroptosis. In contrast, TFEB regulatedcellu-
lar autophagy by controlling gene expression; autophagy has been shown to promote or
inhibit ACC [100,101]. In addition to the genes involved in the programmed cell death
process, other genes also influenced the prognosis of ACC patients through corresponding
pathways. CX3CR1 has some ability to distinguish between survival and death states
in ACC, and its low expression was associated with a higher OS [102]. CYTL1 has been
reported to inhibit STAT3 phosphorylation, and a decrease in STAT3 phosphorylation
expression was accompanied by an increase in anti-angiogenic effects, thereby inhibiting
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tumor progression [103–105]. A pan-cancer study found that RGS1 was associated with
prognosis in multiple tumors, with its high expression leading to the development of a
poorer prognosis in ACC, as well as a facilitative effect on T cell exhaustion [106]. Through
internal and external validation of the TME-related signature, we found that this signature
has an excellent risk identification and survival prediction ability, and remained prognostic
even when integrated with other clinical indicators, indicating that our established risk
score had an independent predictive value in the existing datasets.

In the present study, we conducted a more in-depth analysis, primarily focusing on the
fact that we not only discussed the impact of TME-related characteristics on ACC but also
constructed two TME-related subtypes of ACC and revealed their potential in immunother-
apy from different perspectives. Thus, the final constructed TME-related signature differed
from previous similar signatures because we fully considered the biological significance
brought by TME-related subtypes. However, there were still several shortcomings in
this study. First, although we estimated the TME-related scores of ACC using the xCell
algorithm, further estimation of TME by means of single-cell sequencing technology is
still required. Second, although we initially determined that TME-related subtypes could
be used as a predictive indicator for immunotherapy in this study, further validation in
combination with a real immunotherapy cohort is needed in the future. Finally, more
samples with high heterogeneity need to be included for further training and validation
in future studies though the TME-related signature we constructed had a high predictive
potential in the prognosis of ACC.

5. Conclusions

In this study, we quantified the TME of ACC using a bioinformatics approach. This
helped to explain the overall effect of TME on patient prognosis and revealed the potential
application of TME-related subtypes in immunotherapy. The established TME-related
signature was beneficial for risk intervention and prognosis prediction, to a certain extent.
We believe that our study can provide valuable strategies for future clinical treatment
of ACC.
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