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Abstract: Foods contain dietary fibers which can be classified into soluble and insoluble forms.
The nutritional composition of fast foods is considered unhealthy because it negatively affects the
production of short-chain fatty acids (SCFAs). Dietary fiber is resistant to digestive enzymes in
the gut, which modulates the anaerobic intestinal microbiota (AIM) and fabricates SCFAs. Acetate,
butyrate, and propionate are dominant in the gut and are generated via Wood–Ljungdahl and
acrylate pathways. In pancreatic dysfunction, the release of insulin/glucagon is impaired, leading
to hyperglycemia. SCFAs enhance insulin sensitivity or secretion, beta-cell function, leptin release,
mitochondrial function, and intestinal gluconeogenesis in human organs, which positively affects
type 2 diabetes (T2D). Research models have shown that SCFAs either enhance the release of peptide
YY (PYY) and glucagon-like peptide-1 (GLP-1) from L-cells (entero-endocrine), or promotes the
release of leptin hormone in adipose tissues through G-protein receptors GPR-41 and GPR-43. Dietary
fiber is a component that influences the production of SCFAs by AIM, which may have beneficial
effects on T2D. This review focuses on the effectiveness of dietary fiber in producing SCFAs in the
colon by the AIM as well as the health-promoting effects on T2D.

Keywords: dietary fibers; intestinal microbiota; short-chain fatty acids; fermentation; type 2 diabetes

1. Introduction

The gut microbiota (GM) is a complicated and dynamic ecosystem that interacts
with the host, maintaining a mutualistic relationship. The microbes can influence nu-
merous physiological mechanisms, including those involved in glucose regulation, lipid
metabolism, pathogen resistance, and micronutrient production [1]. Thus, modulating
GM might be a reasonable approach to preventing inflammatory and metabolic diseases.
For example, previous studies employing animal models showed that modulating GM
had salutary effects on obesity, insulin sensitivity, and type 2 diabetes (T2D) [2,3]. How-
ever, no evidence was found that specific microbial communities were directly linked to
these diseases, while some evidence suggested that gut microbial activity is beneficially
associated with T2D [4]. In addition, the composition of GM is influenced by internal and
external factors. Genetics plays a major role in elucidating the gut microbial composition,
and several potential strategies have been employed to induce positive changes in gut
microbial communities via fermentative activity [5]. The GM is an essential storehouse
for human health; 60 bacterial phyla have been identified in the human gastrointestinal
tract (GIT) (including Firmicutes, Bacteroides, Actinobacteria, Fusobacteria, Proteobacteria,
Verrucomicrobia, Cyanobacteria, and Spirochaetes) [6].

Dietary fiber is an essential component of food composed of a complex polymer of
phenylpropanoid units [7,8]. It is mainly classified into four subgroups: resistant starches,
lignins, resistant oligosaccharides (galacto-oligosaccharides, fructo-oligosaccharides, etc.),
and non-starchy polysaccharides (cellulose, hemicellulose, and pectin) [9]. Soluble fiber is
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resistant to gastrointestinal digestive enzymes and is utilized by the anaerobic intestinal
microbiota (AIM) to produce short-chain fatty acids (SCFAs), whereas insoluble fiber
is not degraded or utilized by the human GIT [9,10]. Regular consumption of soluble
dietary fiber may modulate the intestinal microbiota, positively affecting T2D [11–14].
Legumes are considered to have an excess amount of fibers including resistant starch
(RS) [15,16]. The recommended amount of dietary fiber by the World Health Organization,
Food and Agriculture Organization (WHO/FAO), and European Food Safety Authority
(EFSA) is 25 g/day, depending on the laxation of healthy individuals [17,18]. Intervention
with dietary fiber in the AIM has numerous benefits for human health, such as energy
consumption, AIM integrity, and regulation of immune functions; arabinoxylan has shown
beneficial effects in T2D, linked to AIM amendment and metabolites produced during
fermentation [19]. Types of water-soluble/insoluble dietary fiber are shown in Figure 1.
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SCFAs are a sub-class of fatty acids composed of carbon atoms (six or fewer), ac-
etate (C2), propionate (C3), butyrate (C4), pentanoic acid (C5), and hexanoic acid (C6) [20].
Among them, the focus is primarily on acetate, propionate, and butyrate due to their
excess production in GIT [21]. These fatty acids are generated from dietary fiber through
fermentation via the AIM in the mammalian colon and have shown beneficial effects on
metabolic activity [22]. The consumption of excess amounts of starchy foods and avoidance
of physical exercise leads to the disruption of energy balance and generates intricate symp-
toms, collectively called metabolic syndrome; hypertension, obesity, glycemic imbalance,
and T2D are typical manifestations of metabolic syndrome [23].

The higher intake of dietary fibers affects T2D, non-digestible oligosaccharides are fer-
mented by gut microbial communities, producing SCFAs, which may positively contribute
to different organs of the body [24]. Several systematic reviews have previously focused on
fibers, lifestyle interventions, probiotics, and fecal microbial transplantation, and its effects
on T2D [25,26]. This review focuses on the effectiveness of fiber in producing SCFAs in the
colon by the AIM as well as the health-promoting effects in T2D, and the negative effects of
fast-food consumption on T2D have also been addressed. This review provides a reference
for subsequent research.

2. Fibers
2.1. Dietary Fiber

Dietary fiber, comprising endogenous non-digestible carbohydrates and lignins, is an
essential component of plants [23]. The types of fiber differ in their anaerobic fermentabil-
ity, viscosity, chemical structure, and solubility in water [27]. Such fiber consists of the
polymers of carbohydrates, combining monomeric units (three or more), which are not hy-
drolyzed/absorbed in the human gut when exposed to digestive enzymes [1]. Dietary fiber
is classified into two categories, soluble and insoluble. Soluble dietary fiber is preferable
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because it is metabolized by the AIM, producing SCFAs [28]. Firmicutes and Actinobacteria
species are considered to especially respond to dietary fiber [1,29].

The endogenous components of plant-based foods have been well studied for the
last few decades, in which dietary fibers positively affect the human host. Meta-analysis
showed that the consumption of galacto-oligosaccharides and fructans may enhance the
biodiversity of Lactobacillus and Bifidobacterium species in the gut [30]. Dietary fiber directly
influences the production of SCFAs in the human gut (lumen) [11,31]. An increase in dietary
fiber increases the production of SCFAs and vice versa. Low intake of dietary fiber can
also affect the production of amino acids and mucins, which reduces energy production
for metabolic activity [1,29]. Previous studies have shown that high fiber intake leads
to higher production of SCFAs (acetate, propionate, and butyrate) and vice versa [31].
In a pilot study on obese volunteers investigating rice bran/cooked navy beans (rich in
dietary fiber), the results showed that the number of SCFAs (acetate and butyrate) was
increased while the Firmicutes to Bacteroidetes proportion was decreased [31,32]. Previous
studies investigated whether dietary fiber from whole grains and/or vegetables/fruits
affects inflammatory markers and the composition of GM. Whole grain showed a signif-
icant decrease in lipopolysaccharide (LPS) and tumor necrosis factor α (TNF-α), while
vegetables/fruits showed substantial changes in interleukin-6 (IL-6) [33,34].

2.2. Prebiotic Inulin

Inulin belongs to a class of dietary fiber called fructans, which are produced in
plants [35,36]. Being prebiotic, the components of fructans are effectively modulated
in the AIM (with Bifidobacterium spp. dominating) and positively respond in T2D patients
via the production of SCFAs (acetic and propionic acids) in the ileum of the GIT [37]. Inulin-
type fructans (ITFs) are systemically beneficial, promoting AIM growth and producing
H2S, CO2, and organic acids. Fructans also have beneficial effects on metabolic syndrome,
including T2D [38]. ITFs modulate GM and increase the production of SCFAs (acetic and
propionic acids) [38], which improves the level of hemoglobin Alc by accelerating glucagon-
like peptide-1 (GLP-1) production, resulting in the reduction of harmful compounds such
as H2S and indole [39]. Moreover, ITFs may also regulate inflammation associated with
LPS, IL-6, TNF-α, and interferon-γ [40,41].

2.3. Resistant Starch

Starches are complex polysaccharides in the form of grains stored in roots, seeds,
and fruits [42,43]. These polysaccharides are present in the human diet in maize, cas-
sava, potatoes, rice, and wheat [44,45]. Regarding digestibility, starches are classified into
three classes: resistant starch (RS), slowly digestible starch (SDS), and rapidly digestible
starch (RDS) [46,47]. RS is the fraction of starch that is indigestible by gut digestive en-
zymes, fermented by the AIM, and known to produce SCFAs [48–50]. The term “resistant
starch” was first used by Englyst in the 1980s [51], and the efficiency of resistant starch
with regard to prebiotics and lipid/glucose metabolism was studied concerning the gut
environment [52–58]. As a component of functional foods, an indigestible portion of RS is
categorized as dietary fiber. RS-1, RS-2, RS-3, RS-4, and RS-5 are sub-types of RS, among
which RS-1 is substantially inaccessible, i.e., it has intact cell walls (encapsulated) that
prevent access by digestive enzymes [59]. RS-2 comprises starch granules with crystalline
polymers (B- or C-); this type of starch lacks water channels, and due to the condensed
surface, it provides fewer sites for digestive enzymes [52]. RS-3 contains retrograded starch,
which is normally found in cooked food (plant-based), and the retrograde/double helix
structure of RS-3 starch molecules prevents attachment to digestive enzymes [60]. The
functional group RS-4 acts by restraining the attachment of digestive enzymes [61]. The
configuration of amylose-lipid complexes in RS-5 prevents it from fitting into the binding
pockets of digestive enzymes [62]. Foods containing high RS content are significantly
beneficial for human health because the fermentation of RS in the colon produces SCFAs by
AIM, and the quantity of acetic, butyric, and propionic acids is higher than the quantity of
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iso-butyric, valerian, and iso-valeric acids [63]. Previous studies showed numerous effects
of SCFAs on human health, including reduced cholesterol and triglyceride levels in blood
and providing a significant amount of energy to colonocytes, which balance the status of
the colonic epithelial lining [64–67]. In addition, SCFAs are beneficial in terms of glucose
reduction and insulin secretion, and show positive effects on T2D [64,68–71].

3. Dietary Fiber, Inflammatory Markers, and T2D

T2D is among the major diseases associated with a low level of inflammatory pro-
cesses, characterized by amendments in the secretion of cytokines [72]. The amount of
inflammatory markers (IL-6, TNF-α, and LPS) in T2D is increased, which is associated
with dysfunction in insulin resistance and β-cell activity, and the amount of LPS in diabetic
patients is twice as high as that in healthy individuals [73]. A high-fat diet is associated
with metabolic endotoxemia caused by serum LPS, resulting in obesity and insulin resis-
tance [74], and high serum LPS enhances TNF-α and inhibits insulin signals [75]. An excess
amount of ANK-α indirectly inhibits insulin signaling by serine-307 phosphorylation in the
substrate of the insulin receptor [76]. According to scientific reports, the composition of the
diet can positively affect the inflammatory process; Lactobacillus spp. and Bifidobacterium
spp., which are stimulated by dietary fiber, show anti-inflammatory properties [77]. Dietary
fiber at 40 g/day can reduce the level of TNF-α [78].

4. Effects of Fructose on SCFAs and T2D

Sugar is an important source of energy in our daily diet, and there is increasing
evidence that high sugar intake causes a number of major diet-related health problems,
such as T2D and obesity [79,80]. Dietary factors influence blood glucose homeostasis in
T2D; blood glucose levels rise when fructose is converted into glucose in the liver. This
conversion takes time, so a small portion of fructose is converted into glucose, resulting in a
lower increase in blood glucose levels [81]; therefore, the glycemic index of fructose is only
23 [82]. In addition to contributing to blood glucose homeostasis, fructose has also been
shown to improve glycemic control at moderate levels [83,84]. The health effects of fructose
are closely related to the consumption amount. Ultimately, it was determined that a high-
fructose diet and a certain gut microbiota profile may be associated with the inflammation
of the liver, pancreas, and colon. With low or inadequate fructose intake, no adverse effects
were found on body weight, fasting blood glucose, histology, gut microbiota, or colonic
SCFA levels [85–87]. Some evidence showed that fructose causes insulin resistance in the
liver, which can negatively impact blood glucose homeostasis [88].

5. Effects of Lipids on SCFAs and T2D

A lipid molecule is mostly made up of repeating units named fatty acids. There are
two types of fatty acids, saturated and unsaturated. Humans get most of their energy
from fatty acids, which are the main components of triacylglycerols found in oils and
fats [89,90]. Long-term consumption of a high-fat diet affects gut microbiota composition
in animal models as well as in humans, which directly impacts SCFA production and host
health [91]. High-fat diets containing medium-chain fatty acids, monounsaturated fatty
acids, and polyunsaturated fatty acids, low-fat diets containing long-chain fatty acids,
and diets with high Bacteroidetes or Firmicutes ratios were associated with increased
SCFA production [92].

6. Short-Chain Fatty Acids (SCFAs)

SCFAs are organic acids produced in the human gut, where the AIM resides [70].
Quantitatively, these fatty acids are measured in millimoles, and they are predominately
represented by acetate, butyrate, and propionate [93]. These three SCFAs are discussed in
the current review. The dietary carbon flow is based on SCFAs [94], and their production
is fairly well understood and characterized [95,96]. The ratio and concentration of SCFAs
depend on the microbial composition and the substrate (dietary fiber) provided to the
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GM [97]. The molar ratio of acetate, propionate, and butyrate is 3:1:1. SCFAs constitute
90–95% of the colon, whereas formic acid is present in a smaller proportion [93]. As a result
of antibiotic treatment depleting the microbiota, mice were found to produce lower amounts
of SCFAs, compared to mice that did not receive antibiotics [98]. A diet rich in prebiotics
may be particularly effective at increasing SCFA production in diabetes [99]. According
to previous studies, individuals with T2D have lower proportions of microbiota species
producing butyrate [99,100]. Some of the beneficial properties of SCFAs that positively
affect human health are shown in Table 1.

Table 1. Important health benefits of short-chain fatty acids in modulating gut microbiota.

SCFA Chemical
Formula

Molar Mass
(g/mol) Precursor Producers Effects on

Human Health References

Acetate CH3COOH 60.05 Pyruvate

Streptococcus,
Bifidobacterium,

prevotella, species,
Blautia

hydrogentrophica, and
Akkermansia
muciniphilia

Inhibits Escherichia coli
O157:H7 infections

Participates in
cholesterol synthesis

[29]

Propionate CH3CH2COOH 74.08 Phosphoenol
pyruvate

Akkermansia
muciniphilia,

Eubacterium halli,
Phascolarctobacterium

succcinatutens and
Clostridium,

Ruminococcus species

Reduces cholesterol in
the liver

Enhances lipid
metabolism

[29,101]

Butyrate CH3(CH2)2COOH 88.11 Deoxyhexose
ACA

Roseburia intestinalis,
Faecalibacterium

prausnitizii,
Eubacterium rectale,

Coprococcus eutactus,
and Clostridium

symbiosum

Enhances MUC2-gene
expression and

produces an excess
amount of mucin

Acts as a source of
energy (70%)
for intestinal

epithelial cells
Is efficient against

tumor cells and
boosts apoptosis

[29,101–103]

6.1. The Contribution of Gut Microbiota Producing SCFAs

Dietary fibers are resistant to gut digestive enzymes, which contribute to the produc-
tion of SCFAs during colonic fermentation [104]. Acetate, propionate, and butyrate are
dominant SCFAs in the gut [77]. These fatty acids are composed of 1–6 carbon atoms and
are naturally saturated [29]. Present-day research has shown a significant role for AIM,
and the metabolites produced during dietary fiber fermentation positively contribute to
T2D [105]. Gut intestinal microbiota, including Clostridiales spp. SS3/4, Roseburia inulin-
ivorans, Roseburia intestinalis, Faecalibacterium prausnitzii, and Eubacterium rectale, produce
butyrate, which has a protective role in T2D, even though these species are decreased in di-
abetes [106]. In addition, oral administration of Clostridium butyricum in obese diabetic rats
was found to modulate gut microbiota to produce butyrate, leading to reduced proportions
of Bacteroides and Firmicutes spp. [107].

In diet-induced diabetes, chitosan and antibiotics targeting Gram-negative intestinal
microbes may be considered antidiabetic agents [108,109]. Cross-feeding GM metabolizes
lactate into acetate, propionate, and butyrate in the gut fermentation process, in which
propionate and butyrate are produced in limited quantities owing to selected GM, while ac-
etate is a regular product in the gut [94]. Propionate is produced during the fermentation of
propiogenic substrate (fucose/rhamnose) by Akkermansia municiphilla, whereas butyrate is
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produced through RS fermentation by Eubacterium hallii, Eubacterium rectale, Faecalibacterium
prausnitzii, and Ruminococcus bromii in the gut; moreover, butyrogenic bacteria ferment
pyruvate, lactate, and acetate into butyrate [93]. Acetate, propionate, and butyrate are the
energy sources for the human body. Butyrate is directly utilized in the liver, heart, brain,
and colon; propionate is used for gluconeogenesis in the liver, and acetate is used as fuel in
peripheral tissues [110].

The responsiveness of free fatty acid receptors (FFAR-2 and -3) is proportional to the
length of the carbon chain. For example, acetate and propionate are more responsive to
FFAR-2, whereas butyrate and propionate are more responsive to FFAR-3 [111]. Medium
(FFAR-1) and long-chain (FFAR-4) fatty acids were found to positively respond to inflam-
mation and insulin secretion [112]. FFAR-1 enhances specific pancreatic β-cell activity,
while in T2D, this activity is downregulated, resulting in FFAR-1 inhibition and insulin
resistance [113]. FFAR-4 boosts these fatty acids (unsaturated) to stimulate glucagon-like
peptide-1 (GLP-1), secreting insulin from β-cells [114]. Propionate and butyrate may
positively regulate obesity and T2D when administered orally [115–117].

6.2. Production of SCFAs via Anaerobic Bacterial Pathways and the Role of Akkermansia
Muciniphila in T2D

The non-digestible carbohydrates are hydrolyzed by the AIM into monosaccharides
and oligosaccharides during anaerobic fermentation in the colon [118]. For the metaboliza-
tion of monosaccharides into phosphoenolpyruvate (PEP), the Embden–Meyerhof–Parnas
pathway (sugars containing 6-c) and the pentose phosphate pathway (sugars containing 5-c)
are utilized [95]. Eventually, organic acids/alcohols are formed during PEP fermentation.
Nicotinamide adenine dinucleotide (NAD) + hydrogen (H) (NADH) is produced during
the reaction of an acidic protein, glyceraldehyde-3-phosphate dehydrogenase (GAPDH).
Three pathways contribute to the disposal of excess reducing equivalents, as presented
in Figure 2A. First is the traditional fermentation pathway, in which lactate/ethanol is
produced from the reduction of pyruvate. Second, pyruvate is reduced to acetyl-CoA (ACA)
and NADH to NAD+ [119]. The second pathway produces excess amounts of H2 molecules
by using two major routes, pyruvate (exergonic) and NADH (endergonic) via ferredoxin ox-
idoreductase and hydrogenase, respectively. Despite depleting/consuming H2 molecules,
the AIM is a primary participant in the fermentation process when H2 pressure in the
large intestine (lumen) is low [120]. Third, the fundamental electron transport chain (ETC)
proceeds with anaerobes, starting with PEP carboxylation and the reduction of oxaloac-
etate into fumarate [121]. The electrons are accepted by fumarate from NADH; NADH
dehydrogenase and fumarate reductase constituted an ordinary electron transfer chain
(OETC) [121,122]. NADH-dehydrogenase contributes to the transport of protons across the
cell membrane, resulting in the chemiosmotic synthesis of ATP. Succinate (produced by
fumarate reductase) is transformed into methylmalonate once the preferential load of CO2
is reduced. PEP can also be recycled from oxaloacetate through the carboxylation process.

SCFAs are the end product of the fermentation pathways. Pyruvate is transformed
into ACA, releasing H2 and CO2 molecules. Hydrolysis of ACA leads to the formation
of acetate, or it can also be produced by the Wood–Ljungdahl pathway utilizing CO2,
wherein CO2 is reduced to CO coupled with CoASH and a methyl group and converted
to ACA [123,124]. Propionate is formed either by utilizing PEP via OETC or by reducing
lactate to propionate via the acrylate pathway [95]. These pathways accommodate supple-
mentary NADH associated with lactate fermentation (Figure 2B). The condensation of ACA
(2 molecules) results in the formation of butyrate, which is subsequently reduced to butyryl
CoA (Figure 2C). ACA is produced from lactate, and then lactate is utilized by gut bacteria
to produce butyrate [125]. Two pathways are involved in the formation of butyrate: the
traditional pathway uses phosphotransbutyrylase and butyrate kinase to convert butyryl
CoA into butyrate, accompanying ATP formation, and in the alternative pathway, butyryl
CoA is converted to butyrate via butyryl-CoA: acetate CoA transferase [126,127]. The
exogenic utilization of acetate to form butyrate and ACA involves cross-feeding among
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acetate and butyrate-producing bacteria [128,129]; the human GM prefers the alternative
over the traditional pathway [126].
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equivalents. (A) Reduction of pyruvate into lactate, thereby reducing NADH, pyruvate; ferredoxin
oxidoreductase and hydrogenase/NADH; ferredoxin oxidoreductase and hydrogenase dispose of
reducing equivalents into molecular hydrogen and NADH is reduced via electron transport chain.
(B) Acetate is formed directly from acetyl CoA through the Wood–Ljungdahl pathway. Propionate
is formed from PEP via succinate decarboxylation pathway or acrylate pathway while reducing
propionate. (C) Butyrate is shaped by condensing acetyl CoA (two molecules) in the presence of
butyrate kinase or by employing exogenously derived acetate through butyryl-CoA: acetate-CoA
transferase. Abbreviations: NADH; nicotinamide adenine dinucleotide (NAD) + hydrogen (H): ACA;
acetyl coenzyme A: H; Hydrogen: CO2; carbon dioxide: CH3; methyl radical: CH4; methane.

The symbiotic association between GM and the human body is significant in SCFA
production [130]. The primary metabolites (H2 molecules) produced to get acetate must be
utilized by secondary fermenters to reduce the burden of these molecules and accelerate
the oxidation of NADH via primary fermenters [131]. The human body provides the CO2
molecules required in the OETC, and an average of 0.7 kg/day of CO2 is produced by the
human organism [132]. By exchanging SCFA anions, some of that production is secreted
into the gut (lumen) as HCO3, which is likely a significant pH-regulating mechanism, since
protons in the gut (lumen) generated during the formation of SCFAs are neutralized by
bicarbonate to produce CO2 [131]. Subsequently, much is known about the biochemistry of
SCFA production from carbohydrates via the AIM. However, further study is still needed
to determine whether SCFAs, as the significant output of indigestible carbohydrates via the
AIM, have beneficial effects in T2D.
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Akkermansia muciniphila is the only representative Gram-negative Verrucomicrobia in-
habiting human intestinal mucosa [133]. In the studies by Derrien, gene sequence analysis
revealed that multiple genes are associated with mucin encoding, and a single chromo-
some containing 2176 genes with 55.8% GC content was found in the MucT type strain of
A. muciniphila (ATCC BAA-835 1/4 CIP107961T) [134,135]. This immobile, oval-shaped
microorganism is purely anaerobic and contains chemical organotrophic material that can
endure low levels of oxygen. The enzymes produced by A. muciniphila were responsible for
the breakdown of mucin, and the mucin in the mucosal layer of the epithelium was used as
a source of carbon and nitrogen. In order to release the sulfate, A. muciniphila splits these
compounds into acetic and propionic compounds [136,137]. According to an analysis of its
16SrRNA signature, A. muciniphila makes up 3 to 5% of the gut microbiome even in healthy
adults, but the amount depends on several factors. Age has been closely associated with
stability in humans. This species begins to colonize at a young age and ranges from 5.0 to
8.8 log cells/g in a year, which is comparable to the adult stage, although it decreases with
age [138,139]. The combined effects of an excess amount of A. muciniphila supplementation
can positively affect metabolic disorders including T2D, and early vancomycin therapy
may help control the progression of autoimmune diabetes by early colonization of the
intestinal tract with A. muciniphila [140,141].

6.3. Effects of SCFAs on T2D

SCFAs are metabolites of gut microbe fermentation that result from indigestible di-
etary fiber and may have a beneficial role in T2D [142]. Compared to normal animals,
diabetic rodents that consumed a high-fat diet with streptozotocin showed lower levels of
acetate, propionate, and butyrate [143,144]. It was found that T2D patients had lower fecal
butyrate and propionate concentrations, as well as acetate concentrations, than healthy
subjects [145]. Improved insulin secretion/sensitivity, reduced fat accumulation, intestinal
gluconeogenesis (IGN) triggering, and inflammation are the mechanisms by which SCFAs
can positively affect T2D (Figure 3) [70,146]. A study using homeostatic model assessment
of insulin resistance (HOMA-IR) observed an adverse correlation between blood insulin
levels and total SCFAs, including acetate and propionate [147]. In vitro and in vivo studies
showed that propionate can enhance the release of glucose-stimulated insulin, sustain
β-cell mass by decreasing trans-differentiation in α-cells, obstruct apoptosis, and assist in
proliferation [70,148]. Moreover, it was shown in mouse models that butyrate improved
insulin sensitivity [116,149]. These mechanisms support energy consumption and boost
mitochondrial functions [116].

Propionate- or butyrate-induced IGN affects glucose homeostasis, the cAMP-dependent
pathway, and the gut–brain neural circuit [150]. Acetate enhances the suppression of li-
pogenesis in the liver and decreases lipid aggregation in adipose tissues, while glucose
transporter-4 genes and myoglobin are enhanced in the abdominal muscles of diabetic
rats [23]. The peroxisome proliferator-activated receptor-α (PPAR-α) gene was upregulated
in the presence of acetate, which may suppress body fat aggregation [151–153]. Further-
more, SCFA supplementation reduces hepatic steatosis and body weight [154]. In vitro
and in vivo models showed that SCFAs either enhance the release of peptide YY (PYY)
and GLP-1 from L-cells (entero-endocrine), or promote the release of leptin hormone sati-
ation in adipose tissues through G-protein receptors (GPR-41 and/or GPR-43) [155–158].
SCFAs promote lipid oxidation and energy consumption and were found to increase fast-
ing fat oxidation and PYY concentration during colonic infusion in obese subjects [159].
Butyrate may weaken inflammation generated by the interaction of macrophages and
adipocytes by decreasing lipolysis and obstructing inflammatory signals [160]. These fatty
acids showed beneficial effects on T2D by reducing the production of TNK-α, IL-6, and
monocyte chemoattractant protein-1 (MCP-1); nuclear factor kappa-B (NF-κB) activity was
also constrained. Propionate had a positive influence on T2D, participating in the down-
regulation of inflammatory chemokines and cytokines, such as CC chemokine ligand-5
(CCL-5) and TNF-α [161].
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Figure 3. Gut microbiota ferments dietary fiber and produces short-chain fatty acids (SCFAs) acetate,
propionate, and butyrate. These SCFAs may facilitate the production/release of GLP-1 and PYY from
enteroendocrine (L-cells) and activate adipose tissue to release leptin hormone. These fatty acids also
enhance insulin sensitivity and mitochondrial functions in muscle cells, promote pancreatic functions,
including insulin secretion and beta cell activity, and promote intestinal gluconeogenesis. In the
liver, lipid accumulation, and glucose production are reduced. Arrows pointing upwards indicate
an increase, and arrows pointing downwards indicate a decrease. Abbreviations: PYY; peptide
YY: GLP-1; glucagon-like peptide-1: GPR-41; G-protein receptors-41: GPR-43; G-protein receptors-43.

7. Fast Foods

Fast foods are a commercial term used to describe foods sold in restaurants and stores
that contain frozen, pre-cooked, or pre-heated ingredients and are sold as takeout [162].
Fast-food consumption is associated with higher energy, fat, sodium, and sugar intake,
along with a lower intake of fruits, vegetables, and fibers [163]. Fast foods also tend to
have higher energy density and lower nutritional quality compared to home-cooked meals
and recommended diets [164,165]. China is one of the most populous countries, and the
consumption of fast food is increasing day by day. As a result of the rapid growth of the
fast-food industry and fast-food consumption in China, public health concerns have arisen
about adverse health effects, such as obesity [166,167].

7.1. Effects of Fast Foods on Gut Microbiota and SCFAs

Fast foods contain low dietary fiber and high fats, which negatively influence the
gut microbiota. The composition of gut microbiota is also affected by the quantity and
quality of dietary fats [168]. In addition, fast foods are one of the main sources of toxic
heavy metals in humans, especially children [169]. The non-essential metals chromium
(Cr), cadmium (Cd), nickel (Ni), and lead (Pb) are toxic when they bioaccumulate in
tissues and cause inflammation and other effects [170]. In mice that were fed high-fat,
low-fiber diets, Bacteroides were less likely to develop and Firmicutes and Proteobacteria
were more likely to develop [171]. The gut microbiota plays a very important role in food
absorption and mild inflammation, contributing to the development of obesity and diabetes
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mellitus. Several metabolic pathways are influenced by gut microbiota metabolites (SCFAs),
including insulin signaling, incretin production, and inflammation [172–174]. In general,
fast-food products tend to contain large amounts of manufactured trans-fatty acids, and in
people with diabetes, particularly those who eat a diet with high trans-fatty acids, more
pro-inflammatory molecules are produced [175–177].

Cooking or heat treatment can significantly change the composition and structure
of food; in fact, the physicochemical properties of food can be altered by heat, which can
degrade antimicrobial compounds [178]. The heating process leads to the production of
new compounds, some of which has prebiotic properties and affects the composition of
gut bacteria. For instance, a relative decrease in bacterial groups such as Lactobacillus,
Bifidobacterium, Akkermansia, Parasutterella, Barnesiella Dorea, Oscillibacter, and Alistipes was
observed in animals fed with melanoidin-enriched malt [174,179]. Thus, the amount of
fiber is affected by the consumption of fast food, and the number of gut microbes decreases,
leading to a decrease in SCFAs.

7.2. Effect of Fast Foods on Diabetes

The term “junk food” refers to a variety of processed foods, fast foods, and ready-
made snacks. Fast foods, which are heavily processed, have an adverse effect on health.
Eating fast food and eating out are major risk factors in terms of poor diet quality, higher
calories, fat intake, and lower dietary micronutrient density [180]. Currently, there are
no government policies controlling fast-food pricing or advertising in some countries,
leading to the opening of new global chains. Eating fast food twice a week has been
shown to increase the risk of insulin resistance and T2D [181]. Obesity, abdominal fat
gain, lipid and lipoprotein disorders, impaired insulin, glucose homeostasis, systemic
inflammation, as well as oxidative stress, have been associated with frequent fast-food
consumption [182]. A positive correlation between fast-food restaurants and the prevalence
of diabetes was found in all counties except those with high poverty or middle minority
populations [183]. A previous study showed that consuming excess calories shortens the
lifespan, while moderate calorie restriction slows the aging process and protects the body
and brain from age-related damage [184]. T2D is strongly associated with overweight and
obesity. Animal studies have shown that nitrosamines in fast food are toxic to beta cells
and increase the risk of T2D [185]. A previous study found that primiparous women who
ate more fast food before pregnancy had an increased risk of developing diabetes during
pregnancy and giving birth to a child with low birth weight [186]. Several chronic metabolic
disorders may develop due to the consumption of fast foods, including hyperglycemia,
glycosuria, hyperlipemia, negative nitrogen balance, and sometimes ketonemia, and junk
food consumption causes over 90% of T2D cases [187].

8. Conclusions and Future Perspectives

Promoting health and preventing disease rely on maintaining a balance between the
intestinal microbiome, genetic factors, environmental factors, and dietary conditions that
affect substrate availability. Intestinal bacteria produce SCFAs as metabolites, and their
concentration depends on the composition and the population size of these microorganisms.
In addition to their effects on digestion, many studies have investigated how SCFAs
produced by intestinal microbiomes affect organs and tissues elsewhere in the body. In
addition, regular consumption of fast food negatively affects the production of SCFAs, and
GM survival is responsible for SCFA production. Dietary fiber, as an essential component
of foods, can be classified into soluble and insoluble forms. Soluble dietary fiber is resistant
to gut-digesting enzymes and fermented by the AIM, resulting in the production of SCFAs
(acetate, propionate, and butyrate).

In this review, the effectiveness of dietary fiber in producing SCFAs in the colon by
the AIM as well as its health-promoting effects on T2D patients were discussed. Several
pathways lead to the production of acetate, propionate, and butyrate, including the Wood–
Ljungdahl pathway, the succinate decarboxylation pathway, and the acrylate pathway. Both
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in vitro and in vivo studies have demonstrated that SCFAs increase the release of PYY and
GLP-1 from L-cells and promote leptin hormone satiation in adipose tissue via G-protein
receptors such as GPR (41 and 43). SCFAs have been shown to have beneficial effects on
T2D by reducing the production of TNK-α, IL-6, MCP-1, and NF-κB; and propionate has
a positive impact on T2D through the downregulation of inflammatory chemokines and
cytokines such as CCL-5 and TNF-α. These combined effects lead to a positive influence on
T2D. In the future, the effectiveness of GM intervention in T2D will be verified by clinical
trials, and the advantages will be explored. There is an urgent need for research in this area
for human populations.
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173. Sroka-Oleksiak, A.; Młodzińska, A.; Bulanda, M.; Salamon, D.; Major, P.; Stanek, M.; Gosiewski, T. Metagenomic analysis of
duodenal microbiota reveals a potential biomarker of dysbiosis in the course of obesity and type 2 diabetes: A pilot study. J. Clin.
Med. 2020, 9, 369. [CrossRef] [PubMed]

174. Nova, E.; Gómez-Martinez, S.; González-Soltero, R. The influence of dietary factors on the gut microbiota. Microorganisms 2022,
10, 1368. [CrossRef] [PubMed]

175. Vaughan, A.; Frazer, Z.A.; Hansbro, P.M.; Yang, I.A. COPD and the gut-lung axis: The therapeutic potential of fibre. J. Thorac. Dis.
2019, 11, S2173. [CrossRef] [PubMed]

176. Wood, L.G.; Garg, M.L.; Gibson, P.G. A high-fat challenge increases airway inflammation and impairs bronchodilator recovery in
asthma. J. Allergy Clin. Immunol. 2011, 127, 1133–1140. [CrossRef]

177. Bohlouli, J.; Moravejolahkami, A.R.; Ganjali Dashti, M.; Balouch Zehi, Z.; Hojjati Kermani, M.A.; Borzoo-Isfahani, M.; Bahreini-
Esfahani, N. COVID-19 and fast foods consumption: A review. Int. J. Food Prop. 2021, 24, 203–209. [CrossRef]

178. Carmody, R.N.; Bisanz, J.E.; Bowen, B.P.; Maurice, C.F.; Lyalina, S.; Louie, K.B.; Treen, D.; Chadaideh, K.S.; Maini Rekdal, V.; Bess,
E.N. Cooking shapes the structure and function of the gut microbiome. Nat. Microbiol. 2019, 4, 2052–2063. [CrossRef]

179. Aljahdali, N.; Gadonna-Widehem, P.; Anton, P.M.; Carbonero, F. Gut microbiota modulation by dietary barley malt melanoidins.
Nutrients 2020, 12, 241. [CrossRef]

180. Lee, K.W.; Song, W.O.; Cho, M.S. Dietary quality differs by consumption of meals prepared at home vs. outside in Korean adults.
Nutr. Res. Pract. 2016, 10, 294–304. [CrossRef]

181. Mohiuddin, A.K. Fast food addiction: A major public health issue. J. Nutr. Food Process. 2020, 3, 1. [CrossRef]
182. Bahadoran, Z.; Mirmiran, P.; Azizi, F. Fast food pattern and cardiometabolic disorders: A review of current studies. Health Promot.

Perspect. 2015, 5, 231. [CrossRef] [PubMed]
183. Haynes-Maslow, L.; Leone, L.A. Examining the relationship between the food environment and adult diabetes prevalence by

county economic and racial composition: An ecological study. BMC Public Health 2017, 17, 648. [CrossRef] [PubMed]
184. Fuhrman, J. The hidden dangers of fast and processed food. Am. J. Lifestyle Med. 2018, 12, 375–381. [CrossRef] [PubMed]
185. Beigrezaei, S.; Ghiasvand, R.; Feizi, A.; Iraj, B. Relationship between dietary patterns and incidence of type 2 diabetes. Int. J. Prev.

Med. 2019, 10, 122.
186. Wen, L.M.; Simpson, J.M.; Rissel, C.; Baur, L.A. Maternal “junk food” diet during pregnancy as a predictor of high birthweight:

Findings from the healthy beginnings trial. Birth 2013, 40, 46–51. [CrossRef]
187. Bodicoat, D.H.; Carter, P.; Comber, A.; Edwardson, C.; Gray, L.J.; Hill, S.; Webb, D.; Yates, T.; Davies, M.J.; Khunti, K. Is the

number of fast-food outlets in the neighbourhood related to screen-detected type 2 diabetes mellitus and associated risk factors?
Public Health Nutr. 2015, 18, 1698–1705. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1108/NFS-07-2019-0203
http://doi.org/10.1038/ismej.2012.27
http://doi.org/10.37358/RC.18.8.6512
http://doi.org/10.3390/jcm9020369
http://www.ncbi.nlm.nih.gov/pubmed/32013181
http://doi.org/10.3390/microorganisms10071368
http://www.ncbi.nlm.nih.gov/pubmed/35889087
http://doi.org/10.21037/jtd.2019.10.40
http://www.ncbi.nlm.nih.gov/pubmed/31737344
http://doi.org/10.1016/j.jaci.2011.01.036
http://doi.org/10.1080/10942912.2021.1873364
http://doi.org/10.1038/s41564-019-0569-4
http://doi.org/10.3390/nu12010241
http://doi.org/10.4162/nrp.2016.10.3.294
http://doi.org/10.33552/ABEB.2019.03.000569
http://doi.org/10.15171/hpp.2015.028
http://www.ncbi.nlm.nih.gov/pubmed/26933642
http://doi.org/10.1186/s12889-017-4658-0
http://www.ncbi.nlm.nih.gov/pubmed/28793887
http://doi.org/10.1177/1559827618766483
http://www.ncbi.nlm.nih.gov/pubmed/30283262
http://doi.org/10.1111/birt.12028
http://doi.org/10.1017/S1368980014002316

	Introduction 
	Fibers 
	Dietary Fiber 
	Prebiotic Inulin 
	Resistant Starch 

	Dietary Fiber, Inflammatory Markers, and T2D 
	Effects of Fructose on SCFAs and T2D 
	Effects of Lipids on SCFAs and T2D 
	Short-Chain Fatty Acids (SCFAs) 
	The Contribution of Gut Microbiota Producing SCFAs 
	Production of SCFAs via Anaerobic Bacterial Pathways and the Role of Akkermansia Muciniphila in T2D 
	Effects of SCFAs on T2D 

	Fast Foods 
	Effects of Fast Foods on Gut Microbiota and SCFAs 
	Effect of Fast Foods on Diabetes 

	Conclusions and Future Perspectives 
	References

