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Abstract: Personalized point-of-care testing (POCT) devices, such as wearable sensors, enable quick
access to health monitoring without the use of complex instruments. Wearable sensors are gaining
popularity owing to their ability to offer regular and continuous monitoring of physiological data
by dynamic, non-invasive assessments of biomarkers in biofluids such as tear, sweat, interstitial
fluid and saliva. Current advancements have concentrated on the development of optical and
electrochemical wearable sensors as well as advances in non-invasive measurements of biomarkers
such as metabolites, hormones and microbes. For enhanced wearability and ease of operation,
microfluidic sampling, multiple sensing, and portable systems have been incorporated with materials
that are flexible. Although wearable sensors show promise and improved dependability, they still
require more knowledge about interaction between the target sample concentrations in blood and
non-invasive biofluids. In this review, we have described the importance of wearable sensors for
POCT, their design and types of these devices. Following which, we emphasize on the current
breakthroughs in the application of wearable sensors in the realm of wearable integrated POCT
devices. Lastly, we discuss the present obstacles and forthcoming potentials including the use of
Internet of Things (IoT) for offering self-healthcare using wearable POCT.

Keywords: point-of-care testing; wearable sensors; internet of things; optical; electrochemical sensors

1. Introduction

Regular and real-time monitoring is required for improved care of individuals suf-
fering from chronic illnesses such as cardiovascular disease, diabetes and neurological
disorders. Chronic diseases, according to the World Health Organization (WHO), account
for three-quarters (75%) of all deaths worldwide and impose significant economic bur-
dens [1–4]. POCT, a quickly progressing area in clinical testing, is evolving as a current
diagnostic procedure for examination, testing and other medical applications [5–8]. The
era of POCT began in 1962 with the development of a new, rapid method for measuring
blood glucose levels, and it was further progressed in 1977 with the advent of a rapid
pregnancy test [9,10]. POCT in clinics or hospitals gained attention in the early 1990s
with compact, portable devices capable of assessing several electrolytes of patients in
emergency rooms. With the focus of healthcare changing toward disease prevention and
early detection, as well as chronic condition monitoring, there is an increasing demand for
painless, patient-centred sensor technology [11–16]. Portable devices have proven useful in
diagnosis and monitoring of various health conditions, including commercialized blood
glucose monitoring. Wearable sensors (WS) with continuous monitoring capacity, on the
other hand, have progressed from monitoring of generic physiological biomarkers (e.g.,
pressure and temperature) to much more specific purposes such as diabetes management
and other diseases. The advancement of flexible, elastic and electronic technology has also
allowed a wide range of wearable devices for clinical diagnostic and monitoring in the
individual medical field. Although not all WS for POCT have to be flexible or stretchable,
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those having increased deformability and conformality offer good options for developing
a revolutionary next-generation WS for POCT [17]. Moreover, the incorporation of syn-
thetic biology into wearables may broaden the possibilities for non-invasive surveillance
of physiological statuses and exposure to infections or poisons [18]. WHO’s REASSURED
framework during technology development includes strategies for the manufacture of
a perfect POCT device. REASSURED includes real time connectivity, ease of specimen,
affordability, sensitivity, specificity, user friendly, rapid and robust, equipment free and
deliverable to end users [19–21]. Modern WS can take high-quality measures on par with
controlled medical devices. As a result, the line among customer and clinical wearable
gadgets is becoming less.

First-generation WS, such as shoes, watches or headsets, were primarily aimed on
biophysical measuring, such as tracking an individual’s physical activity, heart rate or
temperature of body [22,23]. By the widespread adoption of first-generation wearables,
attention has gradually shifted to the development of a non-invasive or minimally invasive
biochemical and multifunctional monitoring device, which is the subsequent stage towards
personalised health care [24]. The features of wearable systems have been altered in past
years, with scientists shifting their focus away from monitoring physical exercise activity
and toward tackling important challenges in healthcare applications such as diabetes treat-
ment and surveillance systems of the elderly. To achieve these objectives, researchers have
made significant investments in the fabrication of wearable systems that are sensing devices
which integrate a biological recognition aspect into the operation of a sensor [25]. The
constantly growing rate of a new disclosed proof-of-concept research demonstrates the pos-
sible utility of WS. Several commercially available hand-worn sensors for tracking physical
activity, such as Apple Watch and Fitbit, have now become progressively more popular over
the general population. A number of constant glucose tracking devices have also entered
the shops (for example, Medtronic’s Guardian Real-Time and Abbott’s FreeStyle Libre).
One especially appealing category of mobile health sensors is bioaffinity sensors, which use
a ’bio recognition’ component for high affinity of the target sample [26,27]. The inclusion
of bioaffinity components with increasing selectivity and sensitivity for the identification
of disease targets will expand the WS landscape and the effect of digital health. Although
several of these technologies are in clinical trials, successful commercialization has proved
elusive. Significant efforts are being made to commercialise non-invasive sensors. These
products, however, still need large-scale evaluations, device regulatory approvals and last
marketing strategies.

Further, Internet of Things (IoT) is a potential approach for providing regular, accurate,
and holistic monitoring, reducing human labour and support in medical decision making.
IoT is a novel idea which permits healthcare tracking using wearable devices. It is a system
of physical items that have embedded techniques for the detection and interaction with
the environment, and for providing autonomous communication. WS are a prominent IoT
application field that has received a lot of consideration in the previous decade, owing to
the fact of inexpensive fitness applications in the market sector. Hence, this review offers
a summary of the importance of WS and the various types of wearable gadgets that are
currently being employed in the biomedical field (from 2018 to 2022). It also emphasizes
their effectiveness in monitoring various biomolecules, as well as the applications of
healthcare wearable devices for diagnostic purposes. Furthermore, existing constraints and
limitations of wearables in the realm of healthcare, as well as their future prospects and the
use of IoTs, are also discussed.

2. Wearable Point-of-Care Testing for Self-Health Care

Rapid advancements in sensor technology have resulted in the creation of high-
performance WS for use in self-health monitoring. This expansion of WS can be attributed
to a diversity of factors, such as the accessibility and ergonomics provided by advances
in miniaturised electronics, the expansion of smartphones and smart devices, an increas-
ing customer desire for awareness campaigns and the unmet need for doctors to obtain
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medical quality data from their patients on a continuous basis [28]. Despite this early
accomplishment, there is still a strong desire to acquire even more metabolic data from the
human body. WS are an outstanding alternative for medical applications because of their
advantageous characteristics. They are designed, manufactured, and used in self-health
care systems to aid in diagnosis of various diseases. Specific parameters, such as heart rate,
pressure or temperature, can be tracked and evaluated depending on the type of sensor.
Wearables provide a novel arena for monitoring of health and testing in which persons
require no expertise and can monitor and evaluate their health condition intermittently
or continuously on routine [29,30]. Wearable sensors can be physical, where the sensor
measures the electrophysiological activity [31] (electrocardiograms, electromyograms or
electroencephalograms) and physiological conditions (heart rate, temperature [32] and
movement [33,34]) or biochemical, which is used to monitor body fluids by non-invasive
or slightly invasive sample collection from body parts such as skin, saliva, mouth, etc.,
that will ultimately help in determining the state of health of the person. For continuous
monitoring without any data transfer, a reader element is incorporated on the on-body
gadget. The sensing component is usually colorimetric in wearable devices based on a
biochemical sensor that uses optical transduction of a signal [35]. The change in colour
is taken with the help of a photographic camera and transferred to a data reader, where
the analysis is performed by software, that calibrates and displays the results. Scheme 1
represents the overall view of the wearable sensors (sampling, types) and their applications.
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Scheme 1. An overview of design, types and applications of wearable sensors.

3. Design of Wearable Sensors

Different approaches have been made for the fabrication of WS. However, a fully
integrated wearable device is still not commercially available. The ideal features of wearable
POCT devices include high specificity, sensitivity, repeatability and stability, with the
capability to identify multiple analytes at the same time, low cost, easy to operate and
non-invasive/minimally invasive [36,37]. Hence, during the fabrication process of a WS,
different parameters have to be considered, such as the method of sample collection, sensing
approaches, signal processing and power supply.

3.1. Sampling Methods

The method of collecting a sample plays a vital part in the analysis of WS for POCT
for self-use. The sampling method must be simple and easy, optimal storage conditions
and its transport, no contamination and reduced intervals between sampling. The samples
for these sensors include sweat, saliva, interstitial fluid (ISF), blood or wound fluids.

3.1.1. Sweat

Sweat samples are collected by sensors using absorption pads or microfluidic channels
which can directly transport the sample to the sensing area where the sensor is already
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attached to the absorption pads [38,39]. However, this method cannot efficiently capture
enough sample and the flow of sample for analysis, and chances of contamination are
also high. A recent study has demonstrated the fabrication of a stretchable microfluidic
platform that can collect and store the sweat in micro reservoirs, which were designed
with capillary bursting valves which open at different pressures [40]. For the enhancement
of the efficiency of sampling and sensing, a multimodal sweat-based device for glucose
monitoring combined with feedback transdermal delivery of drug has been developed. The
device works on a real time correction that is based on the measurement of temperature, pH
and humidity to promote precision of sensing. Further, the feedback drug delivery contains
temperature-responsive, nanoparticle-incorporated, hyaluronic acid hydrogel microneedles
that allows for the controlled and accurate release of a drug in diabetic patients [41].

3.1.2. Interstitial Fluid (ISF)

ISF is also an ideal biofluid for WS as they exhibit high correlation of analyte concen-
tration with blood. The fluid can be extracted non-invasively by reverse iontophoresis
device [42–44] or by minimally invasive microneedles that precisely disrupts the outer
layer of skin with minimal pain [45].

3.1.3. Blood

Blood is usually collected by pricking the tips of finger and then testing on the device.
Recently, microneedles can be integrated with sensors for the regular monitoring of the
analytes such as blood [46]. Microneedle patches can also be used for the sampling of blood
from patients. A recent study has fabricated a one touch activated paper-based sensor with
microneedle that could extract blood and produce a colorimetric detection of glucose and
cholesterol concentration [47].

3.2. Sensor Materials

The basic requirement for the fabrication of wearable sensors includes stretchable,
mechanically flexible, biodegradable and should adapt with the movement of human body.
Poly (vinyl alcohol), poly(dimethylsiloxane) (PDMS), Ecoflex, polyurethane (PU), poly
(ethylene terephthalate) (PET), polyester etc are some of the materials that are commonly
used as sensor materials [17,18]. Similarly, several nanomaterials (organic, inorganic or
hybrid) are also widely used as sensing materials [8]. Further, based on the type of sensor,
the property of the material used also varies. For example, in case of sensors implanted in
the body, biocompatible and biodegradable materials are used.

3.3. Sensing Approaches

Wearable devices for sensing applications in sweat, blood, ISF etc have been designed
by means of signal transduction methods such as electrochemical and optical signal. Col-
orimetry is the well-studied optical transduction approach in WS because of its minimal
price, simplicity, and automated operation. Usually, in this type of sensors conventional
dyes are combined with enzyme, ion indicators, or mesoporous resin beads on the surface
of polymer or filter paper to create a layer for sensing [48]. The generation of novel nanoma-
terials with outstanding electrical and optical properties, capable to detecto all metabolic
analytes (e.g., glucose, lactose) with high sensitivity and better stability are required for
the fabrication of colorimetric wearables [49]. Further, wearable optical sensors which
utilize fluorescence or SPR for the optical transduction method demonstrated to promote
the sensitivity and specificity of the analytes [49]. Another possibility for wearable bio-
chemical sensing is electrochemical method. Electrochemical enzymatic wearables are the
most frequent used as they have unique benefits in compactness, excellent selectivity, and
label-free direct monitoring. Yet, some limitations of enzymatic WS include less stability,
limited sensitivity, weakness to variations in environmental parameters such as temper-
ature, humidity and pH, and difficult manufacturing methods [50,51]. Similarly, many
nonenzymatic electrochemical sensors for metabolites and electrolytes have recently been
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created, utilizing working electrodes made up of nanostructured materials and exhibiting
remarkable sensitivity, along with limit of detection of 0.5 nM [52,53]. Recently, wearable
biochemical sensors utilise radio frequency (RF) sensing devices, which works on change
in RF resonance with target concentration. Because of its simple structure, reduced price,
battery-free, and smartphone-communicable properties, this technique has potential for
use in WS for POCT [54]. An RF based indium oxide and Pt nanoparticles sensor exhibited
high responsiveness and selectivity for ethanol vapour sensing for detection of alcohol at a
concentration of 200 ppm [55]. Table 1 indicated the list of analytes, its concentration and
sensing component used.

Table 1. The sensing ranges of different analytes in biofluids and the recognition/sensing component
used for the analysis.

Sl. No. Analyte Biofluid Concentration
Range

Sensing/Recognition
Element Reference

1 Glucose Interstitial
fluid 36–50 µM Non-enzymatic sensor [56]

2 Glucose Interstitial
fluid 1.0-00 µM Iontophoretic sensor [43]

3 Lactate Saliva 0.1–1.0 mM Enzymatic sensor [57]

4 Lactate Sweat 1.5–100 mM Colorimetric
enzymatic sensor [58]

5 Uric acid Saliva 100–250 µM Electrochemical
enzymatic sensor [59]

6 Glucose Tear 0–50 mM Optical sensor [60]

7 Cl¯, Zn2+ Sweat 5.0–100 mM,
1.0–20 µM Fluorescent sensor [61]

8 pH Wound
fluid 6.5 to 8.5 pH Optical sensor [62]

9 Ca2+, pH
sweat,

urine, and
tears

1.0–0.5 mM,
4.0–7.0 pH Electrochemical sensor [63]

3.4. Signal Processing Unit and Power Supply

Sensor signals must be correctly obtained and transferred to a device for processing,
analysis, and display externally. For these purposes, electronic circuit boards have been
established. Still, at the wearable-system level, processing, evaluation, data processing, and
display of signals must be smoothly linked. Signal processing circuitry is often on the basis
of integrated-circuit chips that is available in the market, but all of those components of chip
are stiff, preventing the seamless incorporation at the wearable-system level. Further, the
creation of self-driven sensors is critical for the progress of POCT systems because it allows
for power saving in a fully integrated wearables or in the building of an independent POCT
device without external power supply. Biofuel cells (BFC) have the potential to be self-
driven since it can be feasibly engineered to function as self-power-driven electrochemical
sensors by presenting a signal proportionate to the amount of target biomolecule in the
sample [64,65]. The initial WS based on self-driven concept was developed by incorporating
a BFC on a glucose biosensor device inside a contact lens for detecting the level of glucose
in tears [66]. Further, the integration of biofuel cell with near field communication (NFC)
enabled platform is one of the emerging means to operate a fully integrated WS [67,68]. A
wireless sweat glucose sensor that operates battery free was developed on a microfluidic
platform with NFC electronic module. The system was attached on the skin for the regular
tracking of the concentration of glucose and lactate [69]. Similarly, a wireless, battery free,
microfluidic based sweat sensor was also developed (Figure 1). Many strategies have been
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developed for the incorporation of multiple elements in a WS system. The issue remains in
developing wearables with the needed sensitivity, selectivity, dependability, operational
automation, and regular continuous evaluation. Similarly, combining all of these elements
into a tiny and wearable form is a significant difficulty.
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Figure 1. A microfluidic based wireless battery free sweat sensor (A). Freestanding-mode TENG
(FTENG) wearable sweat sensor system (FWS3) for real time sweat biosensing; (B,C). Images of
the sensor worn on side torso of human; (D). Flow chart of flexible printed circuit board based
FTENG with a grating slider and an interdigital stator; (E). Microfluidic-based sweat analysis patch
interfacing with the flexible circuitry; (F). Working process of the sensor; (G). Flexible biosensor array
comprising a pH sensor and a Na+ sensor patterned on a flexible PET substrate and their calibration
plots. (Reprinted from [34] which is an open access article distributed under the Creative Commons
Attribution License).

4. Types of Wearable Sensors

Based on a variety of aspects, including the design and utility, materials utilised,
signal transduction method, nature of analyte or signal etc., WS were grouped into many
types [70]. WSs can be categorised as wearable bands (watches and gloves), wearable
textiles (t-shirts, socks, and shoes), wearable gear (spectacles and helmets), and sensory
systems for tracking, based on their design and utility. The WS performance and wear
resistance can be improved, and its usefulness can be increased, if the suitable material
is available. WSs can be divided into three types based on the materials: biodegradable
flexible sensors (rice-papers, nanofibers, fibroin), wearable biocompatible sensors (cellulose,
chitin, alginate) and self-healing flexible sensors (hydrogel) [71]. WSs are widely divided
into biophysical, biochemical, and multiplexed sensors based on the signal. Mechanical
(strain, pressure, vibration, and tactile), thermal (fever), and electrophysiological (ECG,
EEG, EMG and EOG), biophysical biosensors are additional subcategories of biophysical
biosensors. Health-related signals such as glucose, cortisol, pH, cytokines, gas (alcohol
gas sensors), hormone, nutrients, and others are picked up by biochemical sensors [72].
Biological inputs such as bacteria, cells, hormones, tissues, enzymes, chemical receptors,
and other analytes that comprise antibodies, nucleic acids, and immunological agents can
be detected by using either biochemical or multiplexed WS. Wearable sensors (worn on the
head, neck, chest, legs, feet, arms, and fingers) are made possible by the range of transduc-
ing mechanisms that are currently accessible. A crucial element in transforming various
biosensing technologies into wearable gadgets is the design of transducing mechanism.
The recent advancements in colorimetric, electric, electrochemical, mechanical, and optical
sensors, and the subcategories of WS are briefly described in this section [73].
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4.1. Wearable Colorimetric Sensors

A wearable colorimetric sensing platform that included sensor patches with bromocre-
sol green pH indicator dye in a closed headspace over the skin was studied. When basic
volatile nitrogen molecules such as ammonia and amines are released from skin, the sensor
spots’ colour changes [74]. The glucose oxidase (GOD)-peroxidase-o-dianisidine reagents
were developed as a microfluidic chip-based wearable colorimetric sensor for detecting
the glucose amount in sweat. It was discovered that the colour shift brought on by the
enzymatic oxidation of o-dianisidine. The obtained linear range for sweat glucose was
0.1–0.5 mM with a detection limit of 0.03 mM [75] Another colorimetry based WSs for the
detection of uric acid (UA) was fabricated by embedding poly (vinyl alcohol) microneedles
that contained the uricase enzyme and catalyzed the oxidation of uric acid to produce
H2O2. Polypyrrole nanoparticles (PPy NPs) with peroxidase-like activity encapsulated in
the display layer generated the reaction response between H2O2 and 3,3′,5,5′- tetramethyl-
benzidine, that resulted in change in the colour accompanied with the amount of H2O2
formed by the uric acid oxidation [76].

4.2. Wearable Mechanical Sensors

High-performance wearables need strong, stretchable fibres. Fibrous materials with
increased mechanical strength and tensile property are difficult to make. Ultra-robust
(17.6 MPa) and extensible (700%) conducting microfibers are produced and used to make
fibrous mechanical systems. The mechanical sensor is sensitive to strains with excellent
resolution and a wide detection range (0.0075% to 400%). Low-frequency vibrations be-
tween 0 and 40 Hz cover most bodily tremors [77]. For the purpose of detecting mechanical
deformation, wearable auxetic materials based on ionogel and metal-organic frameworks
were created using 3D printing. In order to track different human body movements, the
resulting auxetic sensor displayed excellent sensitivity through a change in resistance
following mechanical deformation with skins [78]. A quick-resilient, hysteresis-free, vinyl
hybrid silica nanoparticle (VSNPs), polyacrylamide (PAAm), and alginate double-network
hydrogel-based strain sensor was created by dynamically cross-linking the PAAm network
to preserve the hydrogel’s integrity. Further, the addition of VSNPs increases mechanical
strength and serves as a stress buffer to release the energy. The hydrogel-based sensor’s
as-prepared characteristics include strain sensitivity (also known as gauge factor) of 1.73
(up to 100% strain), a response time of 0.16 s, a very low electrical hysteresis of 2.43%, and
a low LOD of 0.4% [79] Additionally. IMU (Inertial measuring unit) sensor devices are
also nowadays widely used to determine and evaluate the exact force of body, angular rate
and direction of the body. An IMU sensor includes a combination of three types of sensors
such as Accelerometer, Gyroscope, and Magnetometer [80]. IMU are attached on different
segment of the human body and measure the local motion information and hence are used
for full-body motion tracking. IMU sensors integrated wrist bands often combines machine
learning algorithms to analyse drinking events with 83% accuracy [81].

4.3. Wearable Electrochemical Sensors

Wearable electrochemical sensors provide a lot of potential for continuous, non-
invasive, regular monitoring of analytes and full health evaluation. The monitoring of
phenylalanine (PHE) using a wearable wristband electrochemical sensor has been described.
To eliminate interferences in biofluids, the suggested electrochemical sensor is built over
the screen-printed electrode (SPE) modified with a membrane made of Nafion. In order to
derivatize PHE in-situ into an electroactive product and enable its electrochemical oxidation
at the surface of SPE under alkaline circumstances, the membrane additionally contains
sodium 1,2-naphthoquinone-4-sulphonate [82]. Flexible reference electrode, pH response
electrode, and K+ selective electrode that made up the sensor were made by printing an
aqueous suspension of β-CD (cyclodextrin) functionalized graphene (β-CD/RGO) on a
conductive substrate using an electronic printer [83]. For constant tracking of the level
of glucose in sweat with great sensitivity, a wearable electrochemical sweat sensor based
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on a Ni-Co MOF nanosheet covered Au/polydimethylsiloxane (PDMS) film has been
developed [84]. Similarly, in another work, an intrinsically flexible, air-permeable, and
body-conforming miniature liquid metal-based flexible electrochemical sensing device
on fabric allowed the millimolar-level detection of glucose in sweat [85]. A sensor was
developed in another study to detect a trace amount of numerous metabolites and nutrients,
such as essential amino acids and vitamins, in sweat both during physical activity and at
rest. It is made of graphene electrodes which can be repeatedly renewed in-situ. It is also
functionalized with metabolite-specific antibody with molecularly imprinted polymers and
redox-active reporter nanomaterials [86].

4.4. Wearable Optical Sensors

Li2ZnSiO4:Mn2+ is incorporated into stretchable elastomer-based optical fibres to
create a wearable optical temperature sensor. This material can offer thermal-sensitive
emissions at dual wavelengths for steady and constant ratiometric temperature monitoring
that has better accuracy and repeatability [87]. A sensitive non-enzymatic fluorescence
sensor for glucose detection can be made using printed circuit board substrates made of
vertically aligned ZnO nanotubes (NTs). The sensor’s performance is determined by the
quenching of photoluminescence (PL) in ZnO NTs treated with varied quantities of glucose.
The sensor’s sensitivity is 3.5% mM−1 (percentage change of the PL peak intensity per
mM), and its lower limit of detection (LOD) is 70 µM [88].

5. Application of Wearable Sensors for Self-Health Care
5.1. Temporary Tattoos Integrated with Sensor

Temporary tattoos possess certain mechanical properties alike to body skin and may
be effortlessly utilised for the real time connection in spite of repetitive mechanical twist,
making them ideal for WS and POCT devices [89]. Wang’s group, in 2013 created the
first tattoo-based biosensor, which was amperometric and was made by screen printing
directly on the working, reference and counter electrode into a tattoo and attaching it to
the skin [90]. The device was successfully tested in humans for constant monitoring of
lactate in sweat during cycling. Similarly, a tattoo-based sensing system was fabricated for
glucose monitoring at rest state. This was the first wearable tattoo sensor that combined
reverse iontophoretic method for the collection of glucose in the ISF and an enzyme based
amperometric biosensor (Figure 2) [43]. Conventional screen printing and solid contact
ion selective electrode method was used for the fabrication of a tattoo that can monitor
the epidermal pH level from human perspiration real time during an active physical
activity [91]. Similar method was also used for the development of a skin worn sensor
that could detect ammonia in sweat within a range of 10−4 M to 0.1 M, well within the
physiological levels [92]. Tattoo-based wearable devices hold great potential for non-
invasive measurement of analyte molecules such as glucose, lactate, ammonium, pH,
alcohol, and salt) and may constitute the next generation of body-comfortable, wearable
POCT devices. These technologies, however, exhibits certain limits. The limit of detection
of tattoo-based sensors, for example, is greater than tens of mM, that is greater than the
minute (mM-nM) levels of various biomolecules in human body fluids. The majority of
tattoo-based sensors rely on enzyme-catalysed processes that are effortlessly influenced
by temperature, humidity, and pH [93]. As a result, this parameter correction must be
counted when calibrating analyte levels in bodily fluids. Furthermore, developing a tattoo
with multi-sensing capabilities at the same time remains a significant difficulty. More work
should be put into developing flexible electronic boards, such as signal readout and data
analysing systems, as well as an interfacing technique for developing tattoo sensor devices
which provide continuous, on-body analyte measurements [94].
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Figure 2. A tattoo based electrochemical sensor for glucose sensing. (A). The iontophoretic-sensor
displaying the tattoo-based paper with Ag/AgCl and Prussian blue electrodes, insulating layer and
hydrogel layer; (B). Image of the tattoo for glucose sensing; (C). Diagram representing the different
processes involved in each stage of sensing. (Reprinted from [43] which is an open access article
distributed under the Creative Commons Attribution License).

5.2. Accessories Integrated with Sensor

Recently, wearable accessories in the kind of watches, spectacles, mouth guards, and
contact lenses, are intended to analyse perspiration, ISF, tears, and saliva. These accessories
are incorporated with the ability for signal detection and data processing elements (such as
potentiostats, microcontrollers, and bluetooth wireless communication modules) to regu-
late operation of system, translate analogue signals to digital signals, analyse digitalised
information, and transfer data to off-body system for regular, on-body tracking. Field effect
transistor based wearable smart watch-based sensor was developed for the detection corti-
sol in sweat and saliva samples (Figure 3) [95]. Tierney et al. fabricated the first biochemical
sensor-incorporated with accessory, Glucowatches, which can continuously track acute and
long-term diabetes. It included a disposable sensor, a CPU, memory for storage of data,
and a liquid-crystal display. The microprocessor’s electronic circuitry regulated a reverse
iontophoresis current to induce the interstitial fluid and the amperometric biosensor to
detect glucose. The Glucowatches were capable of measuring and displaying levels of
glucose every minute for 12 hours with precision and accuracy similar to finger prick blood
glucose tests [42]. Similarly, first ever fully integrated eyeglasses capable of monitoring
sweat electrolyte and metabolites was developed in 2017 [96]. The device has been fabri-
cated by integration of an amperometric lactate sensor and a potentiometric potassium ion
selective electrode at the nose bridge pads of eyeglasses. Wearable sensor for detection of
salivary metabolite were fabricated by the incorporation of a printed enzymatic electrode
into a mouthguard [97]. The mouthguard enzymatic sensor on the basis of an immobilised
lactate oxidase and a less potential detection of the peroxide product, demonstrates good
stability, sensitivity, and selectivity. Further, a sensor integrated contact lens has also been
demonstrated for the in situ evaluation of glucose and lactose in tear [98–102]. However,
the use of these contact lenses may hinder the field of vision. Researchers have now focused
on the development of actual ocular contact lens to overcome this limitation. Kim et al.
group demonstrated the reliable and safe operation of an ocular contact lens in an in vivo
test using a live rabbit and bovine eyeball, respectively [103]. More researches are yet
to be performed before commercialisation of these accessories. Furthermore, creating a
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fully integrated sensor device system on contact lenses capable of multiplexing for regular
measurement of body analytes still persists as a significant problem.
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Figure 3. Wearable aptamer field effect transistor (FET) sensor for cortisol monitoring in sweat.
(A). The control of level of cortisol in response to stress and circadian rhythm by hypothalamus-
pituitary-adrenal axis; (B). Salivary and sweat glands excrete a portion of cortisol that is not bound to
blood plasma proteins; (C). Analysis of saliva and sweat samples by the FET sensor; (D). Fabrication
of the FET sensor with In2O3 semiconductor channels on a polyimide substrate; (E). Depiction of
the components of the aptamer FET sensor smartwatch; (F). Summary of the FET sensor signal
acquisition and data processing via source measurement unit (SMU) and microcontroller unit (MCU),
display, and transmission (IDS-source-drain current; VGS-gate voltage) (Reprinted from [95] which is
an open access article distributed under the Creative Commons Attribution License).

5.3. Wound Dressings Integrated with Sensor

Wound healing monitoring is another key application of WS systems. Wearable
sensors can monitor biological factors such as pH [104,105], temperature [106], bacterial
metabolites, and sweat biomarkers (Figure 4) [107–109] in wound fluids. Further, these
measurements can advise the patients about the healing process of wounds and properly
evaluate the wound condition [110,111].
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Figure 4. Design, characterisation and fabrication of wearable SERS sensor for detection of sweat
biomarkers (a). Scheme representing the design and idea of wearable SERS sensor on skin;
(b). Image of the gold nanomesh fabricated. Inset depicts the optical microscopy image of the
gold nanomesh (50X); (c). Scheme representing the development procedure of nanomesh by elec-
trospinning and further treatment process of the gold nanomesh; SEM micrograph of the (d). PVA
fiber nanomesh; (e). Gold coated PVA fiber nanomesh; (f). Gold nanomesh after eliminating the PVA
fibers. (Reprinted from [109] which is an open access article distributed under the Creative Commons
Attribution License).

Several WS inserted in bandages/wound dressings are used to monitor analyte lev-
els in wound fluid in real time [112]. Smart bandages with inkjet printed sensors were
developed to detect variations in pH, external pressure and irregular bleeding at wound
site. Further, smart bandage sensors were combined with microneedle biosensors for the
screening of skin melanoma. This sensor was capable to identify the incidence of can-
cer biomarker tyrosinase enzyme (TYR) [113]. The tyrosinase levels dosed into the pig
skin were precisely detected equally by bandage and microneedle sensors. The creation
of completely integrated bandage and microneedle TYR sensors represents a potential
breakthrough for melanoma screening. In addition, studies have also focused on the
development of bandages capable of wound dressings and drug delivery at wound site.
GelDerm is one such multifunctional dressing fabricated by Mirani group, in 2017 for the
colorimetric detection of change in pH during bacterial infection and sustained release of
antibiotics at the wound site [114]. Similarly, wound dressing made by incorporating a
composite fibre including a core layer acting as a microheater and a hydrogel layer of cells
were fabricated for the controlled release of antibiotics at wound release at wound site and
vascular endothelial factor (VEGF) for promoting angiogenesis. The bandage efficiency was
confirmed to improve the diabetic wound healing in murine model [115]. The smart wound
bandages can hold various medications into fabrics by means of textile methods. Textile
method include sensing devices that are structurally or mechanically incorporated into a
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textile enabling them to detect a variety of stimulants. Another sign for wound indication
is the presence of uric acid. As a result, certain uric acid sensors based on smart bandages
have been developed. The wearable potentiostat and the omniphobic paper based smart
bandages demonstrated to wirelessly convey the condition of wound to the user or medical
staff while concurrently quantifying pH and uric acid present at the injury site [116]. A
polydimethylsiloxane-based temperature sensor and ultraviolet LEDs provided regular
monitoring of wound-temperature and enabled the release of antibiotics from the hydrogel
layer via UV irradiation (Figure 5).
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Figure 5. The design and the working of the smart device for wound dressings (a). The device
consists of polydimethylsiloxane surrounded electronic layer and an antibacterial hydrogel to monitor
the temperature and four UV LEDs that emit UV light to release the antibiotic from hydrogel;
(b). Illustration of the working of the device during wound monitoring and treatment. (i). Infection is
monitored by change in wound temperature; (ii). Any change is intervened by turning of UV LEDs;
(iii). Antibiotics are then released onto the wound area. (Reprinted from [117] which is an open access
article distributed under the Creative Commons Attribution License).

In another approach, uricase enzyme paired with catalytic Prussian blue transducer,
facilitated the chronoamperometric identification of the presence of uric acid at wound site
with high sensitivity [118]. Table 2 represented the list of some of the WS system for POCT
and Table 3 represents some of the commercially available portable sensing devices.
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Table 2. List of some of the wearable sensor system for POCT of different biomolecules.

Sl No. Form Factor/Name Sample Analyte Reference

1 A Flash Glucose
Monitoring System Interstitial fluid Glucose [119]

2 Wrist band Sweat Glucose, lactate,
Na+, K+ [120]

3 Wrist band Sweat and urine Cu, Pb, and Hg ions [121]

4 Skin patch Interstitial fluid Glucose [122]

5 Microfluidic patch Sweat Glucose, lactate,
pH, Cl− [123]

6 Microneedle patch Interstitial fluid Alcohol [124]

7 Stretchable nanofiber
patch Sweat Glucose [125]

8 Temporary tattoo Sweat,
Interstitial fluid Glucose and Alcohol [126]

9 Flexible patch Sweat Ammonia, Lactate [127]

10 Contact lens Tear Glucose [128]

11 Bandage Wound fluid pH, uric acid [129]

12 Bandage Wound fluid pH [130]

13 Wound dressing Wound fluid Uric acid [131]

14 Wound dressing Wound fluid pH [132]

Table 3. List of some of the commercially available wearable sensors.

Wearable Device Company Name Analyte/ Signal Description

VitalPatch®

Biosensor
Vital connect

ECGheart rate variability,
R-R interval, respiratory
rate, body temperature,
skin temperature, fall
detection, activity and

posture

Wireless
Battery operated

Worn on torso
100% specificity 93.8%

sensitivity

1AX Biosensor LifeSignals
2-channel ECG,

respiration rate, heart
rate and temperature

Wireless
Li-MnO2 battery

28 g in weight

FreeStyle Libre
sensor Abbott ISF-Glucose

Continuous glucose
monitoring (CGM)

system consisting of a
handheld reader, and a
disposable sensor worn

on arm

Rightest GM 300 Bionime Blood-Glucose Electrochemical sensor,
95% sensitivity

One Touch Ultra
Link LifeScan Blood-Glucose Glucose oxidase

biosensor

6. Challenges and Future Outlooks for Mobile and Wearable POCT Systems

Recent advancements in flexible electronics hold potential for healthcare monitoring.
Much progress has been made in the integration of wearable technology, communication
and data analysis technologies in order to achieve the objective of remote monitoring
persons in their homes and communities [133]. Internet of Things (IoT) is a new and
revolutionary topic that is gaining popularity and potential in practically every domain.



Diagnostics 2023, 13, 916 14 of 20

Future generations of wearable IoT offer to alter the healthcare sector by seamlessly tracking
individuals for tailored health and fitness data vital parameters, biological and physical
activity, habits and other essential measurements that affects day-to-day life [134,135]. An
IoT gateway has been built as a transitional bridge between the physical layer (sensor
nodes) and the server to permit effective end-to-end communications amongst the user
and the clinic for real-time monitoring. All IoT-based health systems contain a sensor layer
that is involved in data collection from users by monitoring vital signs and other required
signals and converting it to information that can be analysed and evaluated. Despite recent
significant advances in this field, significant obstacles remain for self-driven wearables
application in the biomedical field. More advances in selectivity, sensitivity, repeatability
and stability of sensors, along with its mechanical durability are widely desired for regular
multimodal sensing, particularly for human activity surveillances and monitoring of well-
being. However, certain obstacles still exist, such as effective energy harvesting, human–
device interaction and refining the measurement value and range. The integration of
various powering sources, sensors, processing and testing in a non-controlled human
context is critical for creating trust in these systems’ diagnostic capabilities and potential to
modify outcomes [136,137]. Remote surveillance of elder persons and those taking clinical
therapies will quickly necessitate the development of commercial prototypes to cover prices
and discover ways of compensating for the technology and its management. Moreover,
a large-scale human experiment of integrated self-driven WS is required to demonstrate
their usefulness in practical applications. Interdisciplinary cooperation in the domains of
material science, engineering, medicine and chemistry will be required to realise the full
possibility of self-driven wearable sensing devices. Large-scale multimodal data obtained
from cohort studies, combined with modern data mining technologies, could pave the
way for a plethora of tailored healthcare applications [137,138]. In addition, IoT is a rising
business in the technology sector, and with such a surge in usage and prospective utilisation
comes a slew of security concerns. Several issues in cloud databases can degrade the IoT
experience, resulting in instability and loss of trust among IoT users [139,140]. Further,
developing a robust evidence foundation for the usefulness of these device systems, as
well as resolving cost and compensation issues, will be critical to ensuring that WS devices
live up to their potential of increasing the value of care for elder persons and people with
chronic diseases.

7. Conclusions

Wearable sensors with novel structural designs paired with functional micro/
nanomaterials enable the continuous tracking of a medical status at both physiological
and biochemical levels. Wearable sensors are promising and have the potential to revolu-
tionise therapies and diagnosis by altering the method of data collection, processing and
analysis. Possible applications are numerous and are predicted to expand significantly
as they get integrated into everyday wearables. WS integrated with nano-diagnostic sys-
tems have been effectively utilised for the identification of samples varying from different
biomolecules such as proteins, hormones and nucleic acids) to infectious disease-causing
microbes. However, more studies on the in-depth investigation of the compositions of
diverse biofluids is required for identifying previously unknown biomarkers. Further, most
analyte concentrations are not the same in biofluids as they are in blood, hence, establishing
a good correlation between the composition of biofluids and blood chemistry is important
for any future commercial applications. Moreover, the sample collection methods, sens-
ing approaches, power source and data transmission methods must be upgraded for the
fabrication of convenient wearable devices. Therefore, a better understanding of these
fundamental components and analysis methods in the WS sector will soon help in the
progress of the healthcare field.
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