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Abstract: Advanced glycation end products (AGEs) contribute significantly to vascular dysfunction
(VD) in diabetes. Decreased nitric oxide (NO) is a hallmark in VD. In endothelial cells, NO is produced
by endothelial NO synthase (eNOS) from L-arginine. Arginase competes with NOS for L-arginine
to produce urea and ornithine, limiting NO production. Arginase upregulation was reported in
hyperglycemia; however, AGEs’ role in arginase regulation is unknown. Here, we investigated the
effects of methylglyoxal-modified albumin (MGA) on arginase activity and protein expression in
mouse aortic endothelial cells (MAEC) and on vascular function in mice aortas. Exposure of MAEC
to MGA increased arginase activity, which was abrogated by MEK/ERK1/2 inhibitor, p38 MAPK
inhibitor, and ABH (arginase inhibitor). Immunodetection of arginase revealed MGA-induced protein
expression for arginase I. In aortic rings, MGA pretreatment impaired acetylcholine (ACh)-induced
vasorelaxation, which was reversed by ABH. Intracellular NO detection by DAF-2DA revealed
blunted ACh-induced NO production with MGA treatment that was reversed by ABH. In conclusion,
AGEs increase arginase activity probably through the ERK1/2/p38 MAPK pathway due to increased
arginase I expression. Furthermore, AGEs impair vascular function that can be reversed by arginase
inhibition. Therefore, AGEs may be pivotal in arginase deleterious effects in diabetic VD, providing a
novel therapeutic target.

Keywords: advanced glycation end products; arginase; endothelial cells; diabetes; vascular dysfunction;
nitric oxide

1. Introduction

Vascular dysfunction (VD) contributes to several diabetic complications and its patho-
physiology is intricately linked to oxidative stress and inflammation. Advanced glycation
end products (AGE) and arginase enzyme have been shown separately to play roles in
VD; however, the relationship between these two factors in diabetic VD is not yet clear.
Arginase is well demonstrated as an important enzyme in urea cycle, detoxifying ammo-
nia by hydrolyzing L-arginine to ornithine and urea. There are two identified isoforms
encoded by different genes, arginase I and II; however, they share similar mechanisms
and metabolites [1,2]. Arginase is constitutively expressed in human endothelial cells in
both isoforms, where arginase I is located in the cytosol, and arginase II in mitochondria of
human endothelial cells [3,4]. In addition to its role in the urea cycle, arginase produces
ornithine required for polyamines and L-proline synthesis involved in cell proliferation,
differentiation, and repair [5]. There is a growing body of evidence indicating that consti-
tutive levels of arginase activity in endothelium limit NO synthesis and NO-dependent
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vasodilatory function [6–8]. Arginase was shown to be induced by various stimuli such as
oxidative stress, oxidized lipoproteins, tumor necrosis factor (TNFα), and hypoxia [9–14].

Upregulation of arginase was also demonstrated in cells exposed to high glucose and
in diabetic animal models. High glucose increased arginase activity and limited NO pro-
duction in bovine coronary endothelial cells in a Rho-kinase-dependent pathway, in which
siRNA knockdown of arginase I prevented high-glucose-induced changes [15]. Arginase
upregulation was shown to be mediated by reactive oxygen species (ROS) and the PKC/Rho
A pathway [9]. Interestingly, both arginase and endothelial nitric oxide synthase (eNOS)
contributed to high-glucose-induced superoxide production, due to uncoupling of eNOS
associated with diminished availability of L-arginine [9,16]. The functional impairment
associated with increased arginase expression and activity in diabetes was demonstrated in
isolated vascular preparations and under in vivo conditions [17]. Both mRNA expression
and activity of arginase were increased in aorta and liver of a streptozotocin-induced dia-
betic rat model [15]. Impaired endothelium-dependent vasorelaxation of coronary arteries
from rats with type 1 diabetes was normalized by arginase inhibition [15]. Moreover, aortic
and retinal endothelial dysfunction in streptozotocin-induced type 1 diabetes was linked to
increased arginase expression [18,19]. The role of arginase for vascular dysfunction in vivo
was investigated in type 2 diabetic rats, in which arginase inhibition improved myocardial
microvascular dysfunction by increased NO availability [20]. Additionally, arginase has
been identified as a key player in skeletal muscle arteriolar endothelial dysfunction in a
diabetic rat model, where inhibition of arginase restored flow-induced vasodilation [21].
Arginase upregulation and vasodilation impairment were reported in cavernous tissue of
diabetic rats linked to extracellular signal–regulated kinase (ERK1/2) [22]. Clinical studies
on diabetic patients supported earlier findings on animal studies indicating a significant role
for arginase in endothelial dysfunction. Plasma arginase activity was elevated in patients
with type 2 diabetes mellitus in comparison with healthy subjects and correlated posi-
tively with fasting plasma glucose levels and glycosylated hemoglobin HbA1c levels [23].
Furthermore, arginase levels in plasma were associated with markers of oxidative stress
and HbA1c [23]. Functionally, coronary arterioles obtained from patients with diabetes
displayed reduced endothelium-dependent relaxation in vitro and increased expression of
arginase I in endothelial cells [24]. The endothelium-dependent vasodilatation of coronary
arterioles was enhanced by arginase inhibition [24]. In addition, an in vivo study demon-
strated that arginase inhibition markedly improves endothelium-dependent vasodilatation
in the forearm of patients with type 2 diabetes and coronary artery disease, while it does
not affect endothelial function in healthy controls [25].

On the other hand, AGEs, the products of non-enzymatic glycation and oxidation
of proteins and lipids that accumulate in diabetes, together with their signal transduc-
tion receptor (RAGE), are linked to both the etiology and pathological consequences of
types 1 and 2 diabetes [26,27]. AGEs form to an accelerated degree in hyperglycemia
and accumulate in the blood vessel wall, directly modifying proteins by the formation
of cross-links primarily in the basement membrane and the extracellular matrix [26,27].
Furthermore, circulating AGEs interact with endothelial RAGEs to transduce multiple sig-
naling pathways, which lead to perturbation of cellular functions [27]. RAGE is a member
of the immunoglobulin superfamily that binds to multiple ligands such as AGEs, HMGB-
1, S100 proteins, or amyloid beta peptide [28–30]. Engagement of RAGE to its agonists
activates several pathways that result in activating NADPH oxidases, ROS production,
ERK, P38 MAP-kinase, JAK/STAT pathway, phospho-inisitol-3 kinases, and NfκB pathway,
which culminate in the upregulation of RAGE and other profibrotic and proinflammatory
target genes [27].

Clinically, the levels of serum AGEs in patients with type 2 diabetes are inversely
related to the degree of endothelium-dependent and endothelium-independent vasodila-
tion [31]. Several mechanisms by which AGEs affect NO bioavailability were suggested
in the literature and mostly relate to eNOS. AGEs may reduce the stability of eNOS or
impair NO production via RAGE-induced deactivation of the eNOS enzyme [32,33]. To
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our knowledge, it is still not clear if AGEs directly affect arginase activity, arginase ex-
pression, or NO bioavailability in endothelial cells. Given that AGEs via RAGE induce
ROS formation and ERK1/2 activation, which are also signaling pathways implicated in
arginase stimulation in diabetic vasculature, as shown previously, we sought to investigate
the effect of AGE (MGA) on arginase activity and expression. We hypothesized that AGEs
may upregulate arginase enzymes, leading to a reduction in the availability of arginine and
NO, thus causing deleterious effects on vascular function.

2. Materials and Methods
2.1. Cell Culture and Treatments

In all cell experiments, mouse aortic endothelial cells (MAECs) were utilized. Prolif-
erating MAECs were purchased from Cell Applications, San Diego, CA, USA. Cells were
cultured in Endothelial Growth Medium (Cell Applications, San Diego, CA, USA) and
maintained in a humidified atmosphere at 37 ◦C and 5% CO2. Cells were adapted to grow
in M199 supplemented with 50 µM L-arginine (Invitrogen, Carlsbad, CA, USA) for 72 h
before the experiment to match the normal plasma L-arginine concentration (40 to 100 µM).
In addition, 10% FBS (Catalog # SH30396, hyClone, GE Healthcare Life Sciences South
Logan, UT, USA), 1% penicillin/streptomycin, and 1% L-glutamine were added to cell
growth medium. Cells used for experiments are from 3 to 9 passage numbers. When cells
reached 80% confluency, they were serum-starved overnight in M199 supplemented with
50 µM L-arginine, 1% L-glutamine, 1% penicillin/streptomycin, and 0.2% FBS. Glycated
albumin (MGA) was prepared as described and characterized previously [34,35]. Briefly,
500 µM methylglyoxal (Sigma, Catalog #M0252, St. Louis, MO, USA) was incubated with
100 µM BSA (Sigma) dissolved in phosphate-buffered saline (PBS) for 24 h, then washed
on 10 kDa filters (Macrosep® Advance Device, Pall Life Sciences, MI, USA) to remove
excess methylglyoxal, reconstituted with M199 serum-free media, and passed through a
0.2 µm filter [34,35]. In subsets of cells, the inhibitors for arginase, namely boronic acids
2(S)-amino-6-boronohexanoic acid (ABH) (1 mM, ChemCruz, Catalog #221197, Dallas,
TX, USA), p38 MAPK, SB-202190 (10 µM) (EMD biosciences, Catalog #S7076, San Diego,
CA, USA), and mitogen-activated protein kinase kinase MEK/ERK1/2, PD98059 (EMD
biosciences, Catalog #P215, San Diego, CA, USA) (10 µM), were used and added 2 h before
the addition of MGA (100 µM) (Sigma-Aldrich, St. Louis, MO, USA) for 24 h; inhibitor
concentrations and durations were as previously described [36]. Independent experiments
(3–5) were carried out from different passages.

2.2. Arginase Activity

Arginase activity was measured using a colorimetric determination of urea production
from L-arginine as described previously [37]. Cells were lysed in Tris buffer (50 mM Tris-
HCI, 0.1 mM EDTA and EGTA, pH 7.5) containing protease inhibitors (Catalog # P8340,
Sigma, St. Louis, MO, USA). These mixtures were subjected to three freeze–thaw cycles and
then centrifuged for 10 min at 20,000× g. The supernatants were used for arginase activity
assay. In brief, 25 µL of supernatant was heated with MnCl2 (10 mM) for 10 m at 56 ◦C to
activate arginase. The mixture was then incubated with 50 µL L-arginine (0.5 M, pH 9.7) for
one hour at 37 ◦C to hydrolyze the L-arginine. The hydrolysis reaction was stopped with
acid and the mixture was then heated at 100 ◦C with 25 µL of α-isonitrosopropiophenone
(9% α-ISPF in EtOH) for 45 min. The samples were kept in the dark at room temperature
for 10 min; then, absorbance was measured at 540 nm.

2.3. Immunodetection of Arginase

Cells were lysed in RIPA buffer (#ab156034, Abcam, Boston, MA, USA) having protease
and phosphatase inhibitors (Catalog #P5726 and P0044, Sigma, St. Louis, MO, USA). Cell
lysates were centrifuged for 10 min at 20,000× g, and supernatants were collected for
Western blotting analysis. Protein estimation was conducted in supernatants using a
protein assay kit (Bio Rad, Hercules, CA, USA). Equal amounts of protein were loaded,
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separated by electrophoresis using 10% SDS-PAGE gels, and transferred into nitrocellulose
membranes. The blots were blocked using 5% bovine serum albumin (Sigma, St. Louis, MO,
USA), incubated with their respective primary and secondary antibodies, anti-arginase
1 (Santa Cruz, Catalog #166920, 1:1000, Dallas, TX, USA), anti-arginase-2 (Santa Cruz,
Catalog #393496, 1:1000, Dallas, TX, USA), anti-GAPDH (Catalog #abx005569, 1:10,000,
abbexa, Cambridge, UK), followed by the respective secondary antibodies. Signals were
detected using chemiluminescence (PierceTM ECL Western, Thermophisher, IL, USA) and
the ChemiDoc MP imaging system (Bio-Rad, Hercules, CA, USA). To quantify the resultant
blots, individual band intensities were measured (arbitrary units) and ratios of protein to
GAPDH were calculated per sample using NIH ImageJ softwareversion 1.53.

2.4. Histochemical Detection of Intracellular NO

For the detection of intracellular NO, endothelial cells (1.2 × 105 cells) were plated on
a non-coated cover slide (18 × 18 mm) and starved for 24 h prior to treatment; cells were
treated with either bovine serum albumin (100 µM) or MGA (100 µM) for 24 h. For cells with
inhibition conditions, inhibitors L-NAME (Abcam, Catalog #120136, 1 mM, UK) or ABH
(1 mM) were added 30 min before the addition of incubation media (DAF-2DA, Catalog
#ab145283, 5 µM, for 40 min, Abcam, in serum-free media) according to the manufacturer’s
instructions and as previously described [38]. To promote NO generation by NOS, subsets
of cells were treated with acetylcholine (1 µM, Sigma) and L-arginine (1 mM, Sigma) to
intensify the signal during the 40 min incubation. Then, cells were washed with PBS
twice and fixed in 2% paraformaldehyde for 3 min at 0 ◦C, and mounted on a slide with
mounting media as reported previously [39]. Cells were directly observed under an inverted
fluorescence microscope (AxioObserver.Z1; Zeiss, Jena, Germany). The quantification of
fluorescence intensity of representative images from 3 independent experiments was carried
out using NIH ImageJ software version 1.53.

2.5. Animals

Vascular function experiments were performed on aortas obtained from C57BL/6J
wild-type mice aged 10 months. Protocols were approved by the Institutional Animal
Care and Use Committee of the Medical College of Georgia (Animal Welfare Assurance
no. D16-00197).

2.6. Vascular Function

Vascular function was assessed as described previously [40]. Following deep anesthe-
sia, tissues were harvested, and mouse aortas were rapidly excised and placed immediately
in ice-cold Krebs–Henseleit buffer (NaCl, 118 mM; NaHCO3, 25 mM; glucose, 5.6 mM; KCl,
4.7 mM; KH2PO4, 1.2 mM; MgSO4 7H2O, 1.17 mM and CaCl2 2H2O, 2.5 mM), cleaned, and
cut into 2–3 mm segments. Thereafter, aortic rings were placed in M199 serum-free media
supplied with 50 µM L-arginine with or without the addition of MGA and the arginase
inhibitor (ABH, 1 mM) for 24 h at 37 ◦C in culture chambers. Aortic rings (3–4 for each con-
dition) were mounted in an oxygenated wire myograph chamber (Danish Myo Technology,
Ann Arbor, MI, USA). Tissues were allowed to equilibrate at a resting tension of 5 mN for
1 h with buffer changes. Following phenylephrine (1 µM) precontraction, relaxation curves
were performed using progressive doses of acetylcholine (ACh, endothelium-dependent va-
sodilator) or sodium nitroprusside (SNP, endothelium-independent vasodilator). Changes
in tension were measured by a force transducer. A 1 h equilibration was performed between
subsequent relaxation curves. Vasorelaxation responses were calculated as the percentage
of phenylephrine-induced contraction.

2.7. Statistical Analysis

Data are given as mean ± SEM. For multiple comparisons, statistical analysis was
performed by one-way analysis of variance (ANOVA) with the Tukey post test. For single
comparisons, statistical differences were determined by the Student T test. Differences
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in concentration–response curves were determined using two-way repeated measures
ANOVA. Independent experiments were performed 3–6 times. All statistical analyses
were performed with GraphPad Prism version 8.01 (San Diego, CA, USA). Results were
considered significant when p < 0.05.

3. Results
3.1. Arginase Activity

Treatment of endothelial cells (MAEC) with (100 µM, 24 h) MGA increased arginase
activity by 64% compared to the control BSA-treated cells (p < 0.001), as shown in Figure 1.
This increase was abrogated when cells were pretreated with the inhibitor of p38 MAPK,
SB-202190 (10 µM), or the inhibitor of MEK/ERK1/2, PD98059 (10 µM), or the inhibitor of
arginase, ABH (1 mM); n = 5 independent experiments.
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Figure 1. Elevation of arginase activity by exposure of MAEC to MGA (100 µM, 24 h) that was
abrogated by pretreatment of cells with SB (10 µM), PD (10 µM), and ABH (1 mM). * p < 0.01 control
vs. MGA, # p ≤ 0.0001 MGA vs. MGA + SB or PD, € p < 0.001 MGA vs. MGA + ABH. Values are
expressed as means ± SE from 5 independent experiments carried out in triplicates.

3.2. Arginase Expression

MGA treatment (100 µM, 24 h) increased arginase I immunodetected protein expres-
sion by 41.6% (p < 0.05, n = 5) compared to control BSA conditions, as shown in Figure 2A;
however, arginase II expression was not altered, as demonstrated in Figure 2B. These
findings indicate that arginase I is the isoform that mainly contributed to the increased
arginase activity shown in this study.

3.3. Histochemical Detection of Intracellular NO

Intracellular NO generation was assessed in MAECs utilizing the DAF-2DA marker.
Subsets of cells were treated with BSA as a control (100 µM, 24 h) (Figure 3A); the addition
of ACh (1 µM) to BSA-treated cells induced an increase in the DAF-2DA fluorescence,
reflecting NO generation (Figure 3B) compared with no ACh in Figure 3A. Pretreatment
with L-NAME (1 mM) reduced ACh-induced NO production (Figure 3C), while ACh-
induced NO production increased with pretreatment with the arginase inhibitor ABH
(1 mM) (Figure 3D). Another subset of cells were pretreated with MGA (100 µM, 24 h),
which demonstrated nearly undetectable fluorescence without ACh stimulation (Figure 3E);
NO production increased slightly after the addition of ACh in MGA-treated cells (Figure 3F),
whereas the L-NAME inhibitor blunted NO production in ACh-stimulated, MGA-treated
cells (Figure 3G). Interestingly, pretreatment with the ABH inhibitor rescued NO produc-
tion to close to the control ACh-stimulated cells (Figure 3H). A quantification of DAF
fluorescence intensity in the different treatment conditions is depicted in Figure 3I). It is
noteworthy that ABH restoration of ACh-induced NO production, indicated by increased
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fluorescence intensity in BSA treatment, was reversed by L-NAME inhibition to a level less
than when ABH was not used, while eNOS was inhibited by L-NAME, confirming that this
effect of ABH is rather due to the inhibition of arginase enzyme and not the stimulation of
eNOS (Figure 3I).
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DAF-2DA (5 µM, 40 min). All cells were pretreated with either BSA (100 µM, 24 h) in (A–D), or MGA
(100 µM, 24 h) in (E–H). Panels of different cells treatments are as follows: (A) BSA without ACh
induction, (B) BSA with ACh induction, (C) BSA with ACh induction and pretreated with L-NAME,
(D) BSA with ACh induction and pretreated with ABH, (E) MGA without ACh induction, (F) MGA
with ACh induction, (G) MGA with ACh induction and pretreated with L-NAME, (H) MGA with
ACh induction and pretreated with ABH. Bar: 20 µm. Fluorescence reflects NO production, which
was more intense in cells induced with acetylcholine than in cells without acetylcholine. MGA-treated
cells had lower fluorescence, indicating lower NO production even with acetylcholine induction (F);
however, when pretreated with ABH (H), fluorescence induced by ACh was intensified and NO was
restored to a level higher than ACh-induced, MG-treated cells (F). L-NAME inhibitor abolished ACh-
induced fluorescence, reflecting inhibition of eNOS activity and NO production. A quantification
of DAF fluorescence intensity in the different treatment conditions is demonstrated in (I). Values
are expressed as percentage of BSA (control); analyzed images were obtained from 3 independent
experiments. * p < 0.05. ACh, acetylcholine (1 µM); L-NAME, N (G)-nitro-L-arginine methyl ester
(1 µM); ABH, boronic acids 2(S)-amino-6-boronohexanoic acid (1 mM).

3.4. Vascular Function

To determine the effect of MGA on endothelial function in vivo, we performed vas-
cular studies using aortas isolated from C57BL/6J healthy mice. We examined vasore-
laxation responses to the endothelium-dependent vasodilator ACh and the endothelium-
independent vasodilator SNP (Figure 4). Pretreatment of isolated aortas with MGA (100 µM,
24 h) induced an impairment of vasorelaxation response to ACh (maximum relaxation
of 39.7 ± 5.7% vs. 90.7 ± 1.7% in control condition, p < 0.05, n = 3–5 independent experi-
ments), as shown in Figure 4A. ABH largely prevented MGA-impaired vasorelaxation with
a maximum relaxation of 80.4 ± 5.3%, p < 0.05, n = 3–5 independent experiments. Thus,
blocking arginase activity reversed MGA-induced impairment. Aortic relaxation responses
to SNP were not different between control, MGA-treated rings or ABH- and MGA-treated
rings, as demonstrated in Figure 4B. ABH pretreatment of control rings (BSA) did not affect
vasorelaxation responses to either ACh or SNP (data not shown).
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Figure 4. Dose-response relaxation curves for (A) endothelium-dependent vasorelaxant acetylcholine
(ACh) in phenylephrine (1 µM)-preconstricted aortas from mice; (B) endothelium-independent
vasorelaxant sodium nitroprusside (SNP) in phenylephrine (1 µM)-preconstricted aortas from mice.
Dashed black line indicates responses in control conditions (BSA, 100 µM, 24 h); solid red line
indicates responses in MGA-pretreated aortas (100 µM, 24 h); solid blue line indicates responses in
MGA-treated aortas pretreated with ABH (1 mM, 24 h). n = 3 in each group; * p < 0.05 MGA vs.
control or MGA + ABH.
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4. Discussion

This study demonstrates for the first time that advanced glycated end products rep-
resented by methylglyoxal-modified albumin stimulates arginase enzyme activity in an
ERK1/2 MEKK and p38 MAPK-dependent pathway, as summarized in Figure 5. Increased
activity is mainly due to increased arginase I expression, as shown in our study. Our
findings support previous reports showing that constitutive levels of arginase activity
in endothelial cells limit NO synthesis and NO-dependent vasodilatory function [6–8].
In hyperglycemic conditions, both AGEs and arginase have been individually linked to
various diabetic complications, including vascular dysfunction; however, in the literature,
there is a lack of studies investigating if there is a direct influence of AGEs on arginase
regulation. Previously, AGE-modified albumin was shown to have suppressive effects on
NOS-3 activity and expression in HUVECs, an effect that if combined with upregulation of
arginase, would aggravate limited NO bioavailability and VD [41].
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Figure 5. A schematic diagram of AGE/RAGE interaction with arginase enzyme and its effects
on endothelial cells and vascular function. Acetylcholine (ACh) stimulates eNOS to produce NO,
which is released from endothelial cells to smooth muscle cells, inducing vasorelaxation. Circulating
AGE binding to RAGE activates NADPH oxidase, producing ROS, and stimulates ERK1/2 and P38
MAPK, which induce activity/expression of arginase I enzyme. Upregulation of arginase I limits both
arginine and NO production by eNOS. Limited arginine leads to uncoupling of eNOS, which further
limits NO production and produces superoxide (O2

.) that reacts with NO, generating peroxinitrite
(ONOO-) and further reducing NO. Arginase activation produces urea and L-ornithine that is used
to produce L-proline and polyamines involved in collagen formation and proliferation, respectively.
Arginase II is expressed in mitochondria and may be regulated by AGE by a different mechanism not
involving its expression. Abbreviations: AGE: advanced glycation end products, RAGE: receptor for
advanced glycation end products, ROS: reactive oxygen species, ABH: arginase inhibitor, L-NAME:
eNOS inhibitor. Some components of the figure were drawn by using pictures from Servier Medical
Art. Servier Medical Art by Servier is licensed under a Creative Commons Attribution 3.0 Unported
License (https://creativecommons.org/licenses/by/3.0/) (accessed on 3 November 2022).

Intracellular detection of NO in cultured endothelial cells in our study showed that
MGA-induced increased activity and expression of arginase was accompanied by a re-
duction in NO bioavailability. Furthermore, we show that MGA treatment of aortic rings

https://creativecommons.org/licenses/by/3.0/
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impaired endothelial-dependent vasodilation in response to ACh, which was reversed by
the arginase inhibition (ABH) without affecting SNP-induced (endothelial-independent) va-
sorelaxation, suggesting a role for endothelial arginase enzyme in MGA-induced vascular
impairment. In accordance with these findings, aortic rings treated with AGE demon-
strated blunted endothelial-dependent vasorelaxation. These findings were consistent with
a previous report by Watson’s group in which AGE treatment of rat aortic rings impaired
endothelial-dependent vasodilation that was blocked by inhibition arginase, NADPH oxi-
dase, and superoxide [42]. We showed no alteration of endothelial-independent relaxation;
however, they showed increased endothelial independent vasodilation by AGE [42]. Fur-
thermore, they reported increased arginase and NADPH oxidase mRNA expression with
MGA treatment, which may not be necessarily predictive for protein expression. On the
contrary, our study showed an increase in both activity and protein expression of arginase
enzyme upon MGA treatment. Similar to our findings, coronary arteries obtained from
diabetic patients had increased protein levels of arginase I and showed a better vasodilation
response to ACh in the presence of the arginase inhibitor [24]. Moreover, we provide
evidence of reduced NO production using the intracellular marker DAF-2DA, whereas
arginase inhibition with ABH restored ACh-induced NO production in cultured endothelial
cells treated with MGA, which explains our vascular function findings.

In concordance with our findings that arginase I expression was preferentially in-
creased by AGEs, arginase knockout mice models suggested that arginase I is crucial in
diabetes-induced vascular dysfunction. One study showed that streptozotocin-induced
diabetic knockout mice lacking the arginase II with partial deletion of arginase I exhib-
ited better endothelial-dependent vasodilation and less arginase activity compared with
diabetic wild-type and knockout mice lacking the AII isoform alone [18].

A growing body of evidence indicates that AGE receptor (RAGE) engagement by its
ligands including AGE stimulate NADPH oxidase, reactive oxygen species (ROS) produc-
tion, ERK1/2, P38 MAP-kinase, NFκB activation, and gene transcription, culminating in
microvasculature alterations manifested in diabetes [43–45]. Arginase expression/activity
has been extensively shown to be stimulated by a wide range of stimuli involving oxida-
tive stress when administered to cultured endothelial cells, including high glucose [15],
oxidized low-density lipoprotein (LDL) [12], H2O2 [5,46,47], peroxynitrite [9], and en-
dotoxins [10]. Additionally, in vivo studies revealed that conditions well known to be
associated with elevated oxidative stress have elevated endothelial arginase expression,
such as ischemia–reperfusion [48] and ageing [49].

Moreover, AGEs via RAGE receptors as well as arginase-induced eNOS uncoupling
may lead to ROS formation, including superoxide (O2-) ion, which further combines with
NO to form the potent oxidant peroxynitrite, limiting NO bioavailability and aggravat-
ing the oxidative injury to endothelial cells [50]. Taken together, AGE-induced arginase
upregulation might result from AGE-stimulated ROS formation and might contribute to
AGE-induced ROS loop at the same time.

Arginase activation was linked to protein kinase C (PKC), Rho-associated protein
kinase (ROCK), and the mitogen-activated protein kinase (MAPK) pathways [9,51,52]. Post-
translational modifications such as S-nitrosylation of arginase I via inducible NOS2 have
been identified in age-related endothelial dysfunction [53]. In addition, the physiologic
modulation of the glutathione/glutathione disulfide ratio has been suggested to play a
role in the control of arginase I activity in pathological conditions of increased oxidative
stress [13].

Although we show no changes in protein expression of arginase II, it may contribute
to increased arginase activity by other activating mechanisms. Pandey et al. demonstrated
a mechanism for rapid arginase II increased activity via translocation from mitochondria
to cytoplasm in response to oxidized LDL interaction with LOX1 receptor causing NO
dysregulation and vascular dysfunction [54]. AGEs were reported to bind the LOX1
receptor, presenting a compelling mechanism for arginase II contribution to increased
arginase activity that requires further investigation [55,56].
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In concordance to the previous evidence that hyperglycemia-induced dysregulation of
NO and increased generation of ROS as well as endothelial dysfunction are maintained even
after the restoration of normoglycemia, known as hyperglycemic memory phenomenon,
we observed from previous studies that the degree of endothelial function improvement
achieved by arginase inhibition was independent of glucose control, which can be partly
explained by the role of the AGEs/RAGE axis involved in this phenomenon [57–59].

These intriguing observations highlight the role of AGE in arginase regulation of
NO and oxidative stress, which may present a putative therapeutic target to maintain
cardiovascular integrity and function in diabetes.

5. Conclusions

Based on our findings, we conclude that AGEs affect VD by upregulating arginase
activity and expression, thus limiting NO bioavailability in endothelial cells. This study
emphasizes the importance of further investigating the interaction between AGEs and
arginase enzymes, particularly in diabetes.
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