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Abstract: Hepatocellular carcinoma (HCC) remains a global health challenge with a low early
diagnosis rate and high mortality. The Rab GTPase (RAB) family plays an essential role in the
occurrence and progression of HCC. Nonetheless, a comprehensive and systematic investigation
of the RAB family has yet to be performed in HCC. We comprehensively assessed the expression
landscape and prognostic significance of the RAB family in HCC and systematically correlated these
RAB family genes with tumor microenvironment (TME) characteristics. Then, three RAB subtypes
with distinct TME characteristics were determined. Using a machine learning algorithm, we further
established a RAB score to quantify TME features and immune responses of individual tumors.
Moreover, to better evaluate patient prognosis, we established a RAB risk score as an independent
prognostic factor for patients with HCC. The risk models were validated in independent HCC
cohorts and distinct HCC subgroups, and their complementary advantages guided clinical practice.
Furthermore, we further confirmed that the knockdown of RAB13, a pivotal gene in risk models,
suppressed HCC cell proliferation and metastasis by inhibiting the PI3K/AKT signaling pathway,
CDK1/CDK4 expression, and epithelial-mesenchymal transition. In addition, RAB13 inhibited
the activation of JAK2/STAT3 signaling and the expression of IRF1/IRF4. More importantly, we
confirmed that RAB13 knockdown enhanced GPX4-dependent ferroptosis vulnerability, highlighting
RAB13 as a potential therapeutic target. Overall, this work revealed that the RAB family played an
integral role in forming HCC heterogeneity and complexity. RAB family-based integrative analysis
contributed to enhancing our understanding of the TME and guided more effective immunotherapy
and prognostic evaluation.

Keywords: hepatocellular carcinoma; Rab GTPase; tumor microenvironment; immune response;
prognostic evaluation; risk model

1. Introduction

Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer
and the fifth most common malignancy [1,2]. Moreover, HCC has been recognized as
the primary cause of death in patients with liver cirrhosis [3]. Although many treat-
ment options have been proposed in recent years, the prognosis of HCC patients is still
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unsatisfactory [4,5]. There is an urgent demand to discover early diagnostic markers and
therapeutic targets, especially those that could be applied to modulate the tumor microen-
vironment (TME) and inhibit angiogenesis to improve the quality of life and prognosis
of HCC patients. HCC is a morphologically heterogeneous malignancy with variable
structural growth patterns and several distinct histological subtypes [6,7]. In recent years,
large-scale attempts have been made to identify targeted genomic alterations in HCC [8,9].
However, translating genomic features into clinically personalized management remains a
challenge for precision oncology.

The Rab GTPase (RAB) family is the most prominent in the Ras superfamily of small
GTPases and comprises more than 60 members of humans [10]. Similar to other small GT-
Pases, the RAB family is present intracellularly in the GTP-bound or GDP-bound form and
regulates the transport of intracellular substances [11]. Some members of the RAB family
are known to function in specific cells, where they control the trafficking of specialized
vesicles [12]. Accumulating evidence has well-characterized the roles played by certain
members of the RAB family in the progression of HCC. RAB40B and RAB11A promote
HCC progression by regulating the PI3K/AKT signaling pathway and the expression of
matrix metallopeptidase 2 (MMP2) [13,14]. You et al. reported that the hepatitis B virus
X protein upregulates the oncogene RAB18, resulting in the dysregulation of lipogenesis
and the proliferation of hepatoma cells [15]. Sui et al. emphasized that RAB31 promoted
HCC progression by inhibiting cell apoptosis induced by the PI3K/AKT/Bcl-2/BAX path-
way [16]. Nevertheless, their enormous number restricts the possibility of a comprehensive
and thorough study of RAB family members. With the development of multiomics tech-
nologies, utilizing diverse gene expression profiles and bioinformatics approaches has
provided the opportunity to define the expression patterns and clinical significance of RAB
family members in HCC.

In this study, we characterized the expression landscapes of RAB family members
across multiple datasets and summarized the biological characteristics of HCC with dis-
tinct expression patterns of the RAB family. Utilizing unsupervised clustering methods,
RAB family-related molecular subtypes with distinct TME characteristics were determined
based on a pooled HCC cohort. We further constructed a RAB score using the principal
component analysis (PCA) score algorithm to predict the response to immunotherapy in
HCC [17]. Moreover, to better guide the prognostic evaluation of patients, we constructed
a RAB risk score using the least absolute shrinkage and selection operator (LASSO) Cox
regression algorithm [18]. The predictive power of both risk models for the therapeutic
efficacy of immune checkpoint inhibitors and the long-term prognosis were validated in
independent HCC cohorts and distinct HCC subgroups. We further validated the role of
RAB13 expression in cell proliferation and metastasis, and identified its potential down-
stream signaling pathways. Furthermore, we found that sorafenib could induce glutathione
peroxidase 4 (GPX4)-dependent ferroptosis in RAB13-knockdown HCC, underscoring its
potential as a therapeutic target for HCC.

2. Results
2.1. Expression, Diagnosis, and Prognosis of the RAB Family in HCC

The workflow of this study is depicted in Figure 1A. To exhibit expression alterations
of the RAB family in HCC, we visualized the expression landscape of 64 RAB family mem-
bers (Table S1) available in The Cancer Genome Atlas (TCGA) and the International Cancer
Genome Consortium (ICGC) cohorts. According to the criterion of p < 0.05, we observed
that 42 RAB family genes in the TCGA cohort were markedly overexpressed, while five
genes were significantly expressed at lower levels in HCC tissues than in paracancerous tis-
sues (Figure 1B). However, in the ICGC cohort, 43 RAB family genes were highly expressed,
and 8 genes were expressed at low levels in HCC tissues relative to paraneoplastic tissues
(Figure S1A). Moreover, the receiver operating characteristic (ROC) curve of the RAB family
indicated that RAB24, RAB6B, RAB10, and RAB13 were excellent diagnostic predictors
of HCC due to their area under the ROC curve (AUC) greater than 0.9. Meanwhile, the
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AUC values of 11 RAB members were greater than 0.8 (Figure 1C and Table S2). These
data indicated that RAB family members might be strictly associated with HCC initiation.
Using univariate Cox regression analysis, we further investigated whether the expression
of RAB family genes could predict the overall survival (OS) of HCC patients. As expected,
in the TCGA cohort, we found that 26 RAB family genes were tightly associated with OS in
HCC patients, and 2 of them (RAB10 and RAB29) were identified as “high-risk” factors for
OS with a hazard ratio greater than 2 (Figure 1D). We further validated the critical roles
of 23 RAB family genes in predicting OS in HCC using the ICGC dataset (Figure S1B).
Subsequently, we screened 15 critical genes of the RAB family based on the criteria of AUC
values >0.7 and hazard ratio (HR) values of prognosis >1.0. Differential expression analysis
revealed that all 15 genes were markedly overexpressed in HCC relative to paraneoplastic
tissue (Figure 1E). Moreover, the expression correlations among the 15 RAB genes are
shown in Figure 1F exhibiting a strong positive correlation with each other.

2.2. Biological Characteristics of Distinct RAB Clusters in HCC

The powerful hierarchical properties of the 15 RAB family genes in the diagnosis and
prognosis prediction of HCC patients prompted us to further investigate their association
with biological characteristics. First, we used the “Combat” algorithm to remove the batch
effects of nontechnical bias between the hepatocellular liver carcinoma (LIHC) cohorts of
TCGA and ICGC databases (Figure 2A) and named this combined gene expression profile
the pooled HCC cohort to simplify subsequent analysis. Next, the nonnegative matrix
factorization (NMF) algorithm was used to analyze the 15 RAB genes to characterize 2 RAB
clusters in the pooled HCC cohort (Figure 2B). The silhouette width plots indicated that
the silhouette width values of RAB cluster 1 and cluster 2 were 0.65 and 0.94 (Figure 2B),
respectively, indicating good classification effectiveness of the NMF algorithm. Moreover,
these 15 RAB family genes also differed markedly in distinct RAB clusters (Figure 2C,D).
Kaplan–Meier survival analysis revealed that HCC patients in RAB cluster 1 had better OS
than HCC patients in RAB cluster 2 (Figure 2B).

To investigate the biological characteristics of distinct RAB clusters, we further per-
formed a Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis
on the gene expression profiles of each RAB cluster in the pooled HCC cohort. Notably,
both the gene ontology (GO)-biological processes and KEGG pathway enrichment analyses
suggested that HCC in RAB cluster 1 was markedly associated with abnormal tumor
metabolism, including metabolic pathways, drug metabolism, lipid metabolism, and amino
acid metabolism, whereas HCC in RAB cluster 2 was significantly associated with aberrant
activation of oncogenic signaling pathways, including PI3K/AKT signaling pathways,
pathways in cancer, focal adhesion, and tight junction (Figure S2A). Gene set enrichment
analysis (GSEA) also revealed that metabolism-related signals and oncogenic signals were
concentrated in RAB cluster 1 and RAB cluster 2, respectively, in HCC (Figure 2E). Interest-
ingly, gene set variation analysis (GSVA) indicated that HCC of RAB cluster 1 not only had
the most remarkable correlation with metabolic pathways such as xenobiotic metabolism,
bile acid metabolism, and fatty acid metabolism, but also had a strong association with
immune signals such as the interferon-gamma/alpha response, while RAB cluster 2 in
HCC was significantly associated with cell cycle regulation, the TGF-β signaling pathway,
the PI3K/AKT/mTOR signaling pathway, and epithelial-mesenchymal transition (EMT)
(Figure S2B).
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Figure 1. The expression landscape of RAB family genes in HCC. (A) Analytical workflow of this 
study. (B) Heatmap of the expression of RAB family genes in HCC and normal liver tissues from 
the TCGA cohort. (C) Receiver operating characteristic (ROC) curve of RAB family members among 
HCC patients in the TCGA and ICGC cohorts. (D) Hazard ratios of survival analyses for RAB family 

Figure 1. The expression landscape of RAB family genes in HCC. (A) Analytical workflow of this
study. (B) Heatmap of the expression of RAB family genes in HCC and normal liver tissues from
the TCGA cohort. (C) Receiver operating characteristic (ROC) curve of RAB family members among
HCC patients in the TCGA and ICGC cohorts. (D) Hazard ratios of survival analyses for RAB family
members in the TCGA cohort. (E) The relative expression of the 15 critical RAB family genes in
the TCGA and ICGC cohorts. (F) The interaction among the 15 critical RAB family genes in HCC.
The lines linking genes show their interactions, and the thickness of the lines shows the correlation
strength. Positive correlations are marked with red lines, and negative correlations are marked with
green lines. The asterisks represent the statistical p value (* p < 0.05, ** p < 0.01, and *** p < 0.001).
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Figure 2. Clustering HCC based on the 15 RAB family genes by NMF analysis. (A) Principal com-
ponent analysis (PCA) of the transcriptome profiles in the pooled HCC cohort from the TCGA and 
ICGC databases. (B) HCC samples were clustered by the NMF method. Kaplan–Meier survival 
curve for comparing the OS among two clusters by the “CancerSubtypes” package (upper panel). 
Two RAB clusters by PCA (lower panel). Silhouette width plots of NMF analysis (right panel). (C) 
Heatmap of the 15 critical RAB family genes in the 2 RAB clusters. (D) The relative expression of 
the 15 critical RAB family genes in the 2 RAB clusters from the pooled HCC cohort. (E) GSEA anno-
tations for two RAB clusters in the pooled HCC cohort. (F) The diversity of immune cell infiltration 

Figure 2. Clustering HCC based on the 15 RAB family genes by NMF analysis. (A) Principal
component analysis (PCA) of the transcriptome profiles in the pooled HCC cohort from the TCGA
and ICGC databases. (B) HCC samples were clustered by the NMF method. Kaplan–Meier survival
curve for comparing the OS among two clusters by the “CancerSubtypes” package (upper panel).
Two RAB clusters by PCA (lower panel). Silhouette width plots of NMF analysis (right panel).
(C) Heatmap of the 15 critical RAB family genes in the 2 RAB clusters. (D) The relative expression
of the 15 critical RAB family genes in the 2 RAB clusters from the pooled HCC cohort. (E) GSEA
annotations for two RAB clusters in the pooled HCC cohort. (F) The diversity of immune cell
infiltration patterns between patients with various RAB clusters is displayed. (G,H) TIDE values
of two RAB clusters in the pooled HCC cohort. In (H), the chi-square test was used to calculate
significant differences. The asterisks represent the statistical p value (* p < 0.05, ** p < 0.01, and
*** p < 0.001). ns, no significance.
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Significant progress has been achieved recently using immunotherapy for the treat-
ment of HCC [19,20], highlighting the importance of the immune microenvironment in the
treatment of HCC. According to previously reported algorithms [17], we further analyzed
the differences in the proportion of immune cell infiltration between RAB clusters in the
pooled HCC cohort. Interestingly, the analysis indicated that the HCC of RAB cluster 1 had
higher levels of B cells, CD8 T cells, dendritic cells (DCs), activated DCs (aDCs), cytotoxic
cells, eosinophils, and neutrophils, whereas RAB cluster 2 in HCC contained a higher pro-
portion of macrophages, mast cells, natural killer (NK) cells, and T helper cells (Figure 2F).
We further performed a tumor immune dysfunction and exclusion (TIDE) analysis on
the pooled HCC cohort to evaluate the association of RAB clusters with immunotherapy
response in HCC. As expected, RAB cluster 1 had a lower TIDE score and a better response
to immunotherapy than RAB cluster 2 in HCC (Figure 2G,H). Moreover, our TIDE analysis
revealed that RAB cluster 1 in HCC had lower levels of cancer-associated fibroblasts (CAFs)
and myeloid-derived suppressor cells (MDSCs), as well as a higher microsatellite steady
state (MSI), whereas HCC of RAB cluster 2 was directly associated with immune exclusion
(Figure 2G). However, the levels of PD-L1, CD8, interferon-gamma, and CD8 and T-cell
inflammation (Merck18) were not markedly different between the two RAB clusters in
HCC (Figure 2G). The above results suggested that RAB family genes may play critical
roles in the progression and TME cell infiltration of HCC.

2.3. Three TME Subtypes Were Revealed by Unsupervised Clustering Analysis of the
RAB-Associated Signatures in HCC

The absence of differences in immune checkpoints and partial immune cells indicated
that the 15 RAB family genes alone failed to cluster HCC well (Figure 2G). Thus, we further
attempted to perform unsupervised clustering for differentially expressed genes (DEGs)
in the two RAB clusters to identify the subtypes of HCC. According to the criteria of
log | fold change (FC)| > 1 and p < 0.05, a total of 830 DEGs between the 2 RAB clusters
from the pooled HCC cohort were obtained, which were named RAB-associated gene
signatures, including 304 positively correlated genes and 526 negatively correlated genes
(Figure S2C and Table S3). Subsequently, the patients with different TME patterns in
the pooled HCC cohort were classified based on the expression of RAB-associated gene
signatures using the R package ConsensusClusterPlus. Notably, three distinct RAB subtypes
were eventually identified using unsupervised clustering, including 326 cases in subtype-
1, 69 cases in subtype-2, and 213 cases in subtype-3 (Figure 3A). Prognostic analysis for
the three main RAB subtypes revealed a particularly prominent survival advantage in
subtype-1 (Figure 3B).

To investigate the biological features of these distinct RAB subtypes, we performed
a GO enrichment analysis. As shown in Figure 3C, the results of the GO biological pro-
cess analysis implied that RAB subtype-1 was markedly enriched in metabolic pathways,
RAB subtype-2 presented enrichment pathways associated with carcinogenic activation,
and RAB subtype-3 was prominently associated with immune activation. GSVA further
indicated that adipogenesis, cholesterol homeostasis, fatty acid metabolism, and bile acid
metabolism were markedly activated in RAB subtype-1 but were remarkably inhibited
in RAB subtype-2. Additionally, immune response-related signals such as the interferon-
gamma/alpha response, IL6/JAK/STAT3 signaling pathway, and IL2/STAT5 signaling
pathway were significantly activated in RAB subtype-3 (Figure 3D). For further quantitative
comparison, we performed GSVA for metabolic-, immune-, and carcinogenesis-related
signaling pathways. Consistently, glycolysis, heme metabolism, adipogenesis, and fatty
acid metabolism had the highest enrichment scores (ES) in RAB subtype-1 compared with
RAB subtype-2 or -3, while RAB subtype-3 had the highest ES in the immune response-
related signaling pathways (Figure 3E). Meanwhile, RAB subtype-2 had a higher ES in
oncogenic-related signaling, including cell cycle-related signaling, the PI3K/AKT/mTOR
signaling pathway, Notch signaling, and the P53 pathway (Figure 3F).
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Figure 3. The three distinct RAB subtypes were identified in HCC using an unsupervised clustering 
analysis. (A) Consensus matrices of the pooled HCC cohort for k = 3. (B) Survival analyses for dis-
tinct RAB subtypes of the pooled HCC cohort. (C) The biological process from GSEA for distinct 
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Figure 3. The three distinct RAB subtypes were identified in HCC using an unsupervised clustering
analysis. (A) Consensus matrices of the pooled HCC cohort for k = 3. (B) Survival analyses for
distinct RAB subtypes of the pooled HCC cohort. (C) The biological process from GSEA for distinct
RAB subtypes in the pooled HCC cohort. (D) GSVA annotations for distinct RAB subtypes in the
pooled HCC cohort. (E,F) GSVA annotations for distinct RAB subtypes in the pooled HCC cohort.
(G) The diversity of immune cell infiltration patterns between patients with distinct RAB subtypes
in the pooled HCC cohort is displayed. (H) mRNAsi score, (I) ferroptosis index, and (J) TMB score
in distinct RAB subtypes of the pooled HCC cohort. (K) The gene mutation frequency in distinct
RAB subtypes of the TCGA cohort. Each column represents an individual patient. The upper bar
plot shows TMB. The number on the right indicates the mutation frequency in each gene. The right
bar plot shows the proportion of each variant type. The asterisks represent the statistical p value
(* p < 0.05, ** p < 0.01, and *** p < 0.001). ns, no significance.
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Interestingly, the analysis of TME cell infiltration revealed that the three RAB subtypes
had distinct immune cell infiltration characteristics. Specifically, RAB subtype-3 had the
highest abundance of adaptive immune cells, including B cells, T cells, NK cells, and
neutrophils (Figure 3G). Together with the activation status of its immune signaling, RAB
subtype-3 was classified as an immune-inflamed phenotype, a previously reported model
of immune classification characterized by immune activation and adaptive immune cell
infiltration [21]. However, RAB subtype-2 was remarkably abundant in innate immune cell
infiltration, including aDCs, immature DCs (iDCs), macrophages, mast cells, T helper cells,
central memory T cells (Tcm), effector memory T cells (Tem), follicular helper T cells (Tfh),
and Th1 cells (Figure 3G). However, patients with RAB subtype-2 HCC did not exhibit a
matching survival advantage (Figure 3B). Previous studies have demonstrated that stromal
activation suppresses the antitumor effects of immune cells [21]. GSEA analysis revealed
that stromal activity was markedly enhanced in RAB subtype-2, including the activation
of apical surfaces and junctions, TGF-β signaling pathways, and EMT (Figure 3F). Thus,
RAB subtype-2 was classified as an immune-excluded phenotype characterized by stromal
activation and innate immune cell infiltration. Notably, malignant tumors with immune
exclusion also exhibited the presence of abundant immune cells, but these cells remained in
the stroma surrounding tumor cell nests rather than penetrating the parenchyma and were
considered T-cell suppressive. Furthermore, RAB subtype-1 in HCC had only plasmacytoid
DC, eosinophil, and T regulatory cell (Treg) infiltration (Figure 3G), which was classified as
an immune-desert phenotype characterized by the suppression of immunity.

We further found that the HCC of RAB subtype-2 had the highest mRNAsi index
compared with RAB subtype-1 and -3, representing the strongest tumor stemness in RAB
subtype-2 in HCC (Figure 3H). Conversely, RAB subtype-2 had the lowest ferroptosis
index, indicating that this subtype of HCC had the weakest ferroptosis vulnerability, while
subtype-1 had the highest ferroptosis index (Figure 3I). Moreover, a tumor mutational bur-
den (TMB) analysis revealed that the overall TMB was significantly higher in RAB subtype-1
than in the other subtypes (Figure 3J), with mutations mainly originating from catenin beta
1 (CTNNB1), whereas the mutations in RAB subtype-2 and -3 were primarily derived from
P53 (Figure 3K). Based on the above analysis, we realized that HCC could be classified
into three subtypes with distinct TME characterization based on RAB-associated gene
signatures, namely: RAB subtype-1, oncogenic signal suppression, metabolic activation,
immune-desert, tumor stemness, ferroptosis sensitivity, and high TMB; RAB subtype-2,
oncogenic signal activation, metabolic suppression, immune-excluded and ferroptosis
tolerance; and RAB subtype-3, oncogenic signal suppression, metabolic suppression, and
immune-inflamed.

2.4. Construction of a RAB Score and Evaluation of Its Predictive Ability in the Pooled
HCC Cohort

The above results indicated that RAB-associated gene signatures played a nonnegligi-
ble role in shaping distinct TME landscapes in HCC. Next, we further evaluated whether
RAB-associated gene signatures could predict TME characteristics and prognosis in indi-
vidual patients. According to the criteria of log |FC| > 2 and p < 0.05, we further screened
100 DEGs between 2 RAB subtypes from the pooled HCC cohort to narrow the gene number
of RAB-associated gene signatures and facilitate subsequent analysis (Figure 4A). Then,
based on these 100 phenotype-related DEGs, we constructed a scoring system to quantify
the TME characteristics of individual patients with HCC, which was termed the RAB score.
Notably, the Kruskal–Wallis test showed considerable differences in RAB scores between
RAB subtypes (Figure 4B). RAB subtype-1 exhibited the highest median score, while RAB
subtype-2 had the lowest median score, which implied that a high RAB score could be
closely associated with metabolic activation-related signatures, whereas a low RAB score
could be related to oncogenic signal activation-related signatures. Consistently, as shown in
Figure 4C, GSVA revealed that metabolism-related signals were markedly activated in HCC
patients with high RAB scores, including xenobiotic metabolism, bile acid metabolism,
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and fatty acid metabolism, while oncogenic-related signaling pathways were remarkably
activated in HCC patients with low RAB scores, including cell cycle-related signaling, EMT,
the PI3K/AKT/mTOR signaling pathway, and the TGF-β signaling pathway. Interestingly,
the immune-related interferon alpha response was positively correlated with the RAB score,
while the IL2/STAT5 signaling pathway was negatively correlated with the RAB score.
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Figure 4. Construction of the RAB score for predicting immunotherapy response. (A) Heatmap
exhibiting the expression of the 100 critical differentially expressed genes in the two RAB clusters.
(B) The RAB score of distinct RAB subtypes in the pooled HCC cohort. (C) GSVA annotations show
the correlation of the RAB score with the activation status of biological pathways. (D) Survival
analyses for high- or low-RAB score groups of the pooled HCC cohort. (E,F) The correlation of RAB
score with (E) mRNAsi score and (F) ferroptosis index in the pooled HCC cohort. (G) Correlation
of the RAB score with the diversity of immune cell infiltration patterns in the pooled HCC cohort.
(H) TIDE value of high- or low-RAB score groups of the pooled HCC cohort. The chi-square test
was used to calculate significant differences. The asterisks represent the statistical p value (* p < 0.05,
** p < 0.01, and *** p < 0.001). ns, no significance.
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Next, patients in the pooled HCC cohort were divided into low or high RAB score
groups with a median as the cutoff value. Notably, patients with high RAB scores demon-
strated a moderate survival benefit (p < 0.001, 95% CI: 0.36–0.66), with an HR value of
0.49 (Figure 4D). Moreover, the mRNAsi index confirmed that a high RAB score HCC was
markedly correlated with lower tumor stemness (Figure 4E). Meanwhile, the RAB score and
ferroptosis index also exhibited a noticeable positive correlation (Figure 4F). Subsequently,
the analyses of TME cell infiltration indicated that HCC with a higher RAB score was
correlated significantly with a high proportion of Th17 cell, B cell, DC cell, eosinophil, and
neutrophil infiltration (Figure 4G), which meant that these patients were characterized by
an immune-inflamed phenotype with a better clinical outcome. However, HCC patients
with a lower RAB score were strongly correlated with the proportion of NK cells, Tem cells,
Tfh cells, T helper cells, macrophages, and mast cell infiltration (Figure 4G), which also
indicated that these HCC patients tend to have an immune-excluded phenotype with a
poorer clinical outcome. TIDE analysis was further performed in the pooled HCC cohort
to evaluate the capability of the RAB score in predicting the response to immunotherapy.
Notably, studies confirmed that high TIDE scores were associated with poorer responses
to anti-PD1 and anti-Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) therapy [22].
Our TIDE quantitative analysis indicated that HCCs with high RAB scores usually had
lower TIDE scores, suggesting that HCC patients with high RAB scores responded better
to immunotherapy (Figure 4H). Moreover, a low RAB score was directly associated with
immune exclusion, which further emphasized that HCC with a low RAB score was closely
related to the immune exclusion phenotype. Meanwhile, the correlation analysis further
indicated that HCC with a low RAB score contained more abundant immunosuppres-
sive cells, including MDSCs and CAFs (Figure 4H). These data all support the essential
indicative and predictive role of the RAB score in the TME of HCC.

2.5. Validation of the RAB Score in Response to Immunotherapy

To further validate the validity of the RAB score for predicting immunotherapy re-
sponse, multiple HCC datasets from the Gene Expression Omnibus (GEO) database were
used as test cohorts to validate our above results. Pathway enrichment analysis of GSE14520
indicated that the RAB score was positively correlated with metabolism-related signals
but adversely correlated with oncogenic signaling pathways such as the cell cycle, EMT,
and inflammatory responses (Figure 5A, upper left panel). Moreover, the RAB score was
significantly positively correlated with the proportion of Th17 cell, DC cell, eosinophil,
and neutrophil infiltration but negatively associated with NK cell, Tfh cell, T helper cell,
macrophage, and mast cell infiltration levels in HCC (Figure 5A, lower right panel). The
analysis of major histocompatibility complex (MHC) molecular and adhesion molecule
levels further indicated that HCC with a high RAB score has higher levels of PDCD1,
CD40, and ICAM4 factors (Figure 5B), suggesting that this type of HCC may have better
immune responses than HCC with a low RAB score. More importantly, a low RAB score
demonstrated significant clinical benefit and significantly prolonged OS and recurrence-
free survival (RFS) compared with a high RAB score in HCC (Figure 5C). Furthermore,
consistent with the TIDE analysis of the pooled HCC cohort, the TIDE analysis of GSE14520
also suggested that a high RAB score was indeed associated with low TIDE scores and a
higher proportion of patients with immune responses in HCC (Figure 5D), and these results
were also consistently validated by TIDE analysis of GSE5975, GSE25097, and GSE124751
(Figure 5E–G).
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2.6. Construction of the RAB Risk Score to Better Predict the Prognosis of HCC Patients

Notably, the previous prognostic analysis showed that the RAB score could well predict
the prognosis of HCC patients with a p value significantly less than 0.05 (Figures 4D and 5C).
However, the HR values of the prognostic analysis were all less than 0.6, which indicated



Int. J. Mol. Sci. 2023, 24, 4335 12 of 25

that the prognostic stratification ability of the RAB score was not very reliable. To further
obtain an ideal prognostic prediction model based on RAB-associated gene signatures
(Figure S2C), we applied an iterative LASSO Cox regression algorithm. Interestingly, we ob-
tained 26 genes with independent prognostic significance in patients with HCC (Figure 6A).
Then, the RAB risk score was calculated based on the expression values and regression
coefficients of these 26 genes (Figure 6B and Table S4). Importantly, using the pooled HCC
cohort, we found that these 26 genes could well predict the prognosis of HCC patients with
a 5-year AUC value of 0.765 and an HR value of 3.78 (Figure 6C,D). The RAB risk score
allowed patients in the pooled HCC cohort to be divided into high-risk (n = 304, score value
> 1.013) and low-risk (n = 304, score value < 1.013) score groups based on median values.
Consistently, the number of deaths in HCC patients increased significantly with increasing
RAB risk score (Figure 6E), which also reflected that the high-risk score group had a signifi-
cantly higher mortality rate than the low-risk score group. Subsequently, we attempted to
determine whether the RAB risk score could serve as an independent prognostic factor in
HCC patients by univariate and multivariate Cox regression analyses. As expected, the
univariate analysis demonstrated that tumor stage, tissue grade, RAB score, and RAB risk
score were all prognostic factors for HCC patients (Figure 6F). Multivariate Cox regression
analysis further indicated that RAB risk score and tumor stage were independent factors
that could be used to predict the prognosis of HCC patients (Figure 6G). To provide clini-
cians with a relatively quantitative tool for predicting mortality risk in HCC patients, we
constructed a nomogram using these prognostic factors (Figure 6H). By adding the points
for each prognostic factor, each patient was assigned a total prognostic score. A higher total
prognostic score corresponds to a worse OS outcome in patients with HCC. The calibration
curves suggested good consistency between the prediction by the nomogram and actual OS
outcomes at three and five years (Figure 6I). More importantly, the time-dependent AUC
values of the RAB risk score for predicting the 1- to 8-year survival rates were all greater
than 0.75, which was much better than the time-dependent AUC value of the RAB score for
predicting OS (Figure 6J).

2.7. Validation of the Prognostic Predictive Ability of the RAB Risk Score

To determine whether the RAB risk score is robust, we further evaluated the predictive
effect of the RAB risk score on the prognosis of HCC patients in different clinical cohorts
and subgroups. Here, the median value was used as the cutoff value for different HCC
cohorts. First, we validated the prognostic stratification ability of the RAB risk score using
the TCGA and ICGC cohorts. Kaplan–Meier survival curves of the TCGA cohort indicated
that HCC patients with high RAB risk scores had worse OS than those with low RAB
risk scores (p < 0.001, HR = 3.25, 95% CI = 2.27–4.65), with a time-dependent AUC value
greater than 0.75 at 1, 3, 5, and 8 years (Figure 7A). Consistent Kaplan–Meier analysis out-
comes were obtained from the ICGC cohort (p < 0.001, HR = 5.13, 95% CI = 1.76–9.56). The
time-dependent AUC values of the RAB risk score for the prediction of one- to four-year
survival rates in the ICGC cohort all exceeded 0.8 (Figure 7B). Subsequently, all patients in
the pooled HCC cohort were grouped by age and then ranked by the RAB risk score into
high- and low-risk subgroups. Kaplan–Meier survival analyses indicated that the OS in
the high-risk subgroup was markedly worse than that in the low-risk subgroup (age > 60:
p < 0.001, HR = 4.34, 95% CI = 2.95–6.39; age ≤60: p < 0.001, HR = 3.11, 95% CI = 1.91–5.06)
(Figure 7C). Our above analysis suggested that tumor stage, tissue grade, and RAB
score were prognostic factors in patients with HCC. Likewise, a high RAB risk score
was correlated with dramatically worse OS regardless of whether the patient exhibited
early- (p < 0.001, HR = 3.52, 95% CI = 2.27–5.47) or advanced-stage (p < 0.001, HR = 3.51,
95% CI = 2.11–5.81), well-differentiated (p < 0.001, HR = 3.34, 95% CI = 2.20–5.07) or poorly
differentiated (p < 0.001, HR = 5.91, 95% CI = 3.32–10.53), and high- (p < 0.001, HR = 4.03,
95% CI = 2.63–6.17) or low-RAB score (p < 0.001, HR = 3.81, 95% CI = 2.06–7.04) HCC
(Figure 7D-F). Tumor mutation is also a malignant burden factor of HCC. Consistently,
the RAB risk score provided a statistical stratification of OS regardless of whether the
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HCC was CTNNB1 wild-type (WT) (p < 0.001, HR = 3.14, 95% CI = 2.06–4.80), CTNNB1
mutant (MUT) (p < 0.001, HR = 3.48, 95% CI = 1.64–7.38), P53 WT (p < 0.001, HR = 3.09,
95% CI = 2.01–4.74), or P53 MUT (p < 0.001, HR = 5.56, 95% CI = 2.87–10.78) (Figure 7G,H).
Furthermore, we further validated the predictive power of the RAB risk score for OS and
RFS in HCC patients using the GSE14520 dataset. As expected, Kaplan–Meier survival
curves of the GSE14520 dataset also indicated that HCC patients with high risk scores had
worse OS (p < 0.001, HR = 2.44, 95% CI = 1.59–3.75) and RFS (p < 0.001, HR = 1.98, 95%
CI = 1.38–2.86) than those with low risk scores with a time-dependent AUC value greater
than 0.60 at 1, 3, and 5 years (Figure 7I,J). These data demonstrated that the RAB risk score
is a reliable and stable model for predicting the prognosis of patients with HCC.
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Figure 6. Construction of the RAB risk score for prognostic evaluation. (A,B) Iteration LASSO Cox
regression analysis constructed a RAB risk score with 26 genes. (C) The AUC value was 0.765, and
(D) the survival curve for a RAB risk score of the pooled HCC cohort is shown. (E) The survival time
of each HCC patient with a different RAB risk score. (F) Univariate analysis and (G) multivariate
analysis containing the RAB score, the RAB risk score, and clinical factors. (H) The comprehensive
nomogram for predicting the probabilities of HCC patients with 3- and 5-year OS in the pooled HCC
cohort. (I) The calibration plots for predicting HCC patients with 3- and 5-year OS in the pooled HCC
cohort. The nomogram-predicted probability of survival is plotted on the x-axis; actual survival is
plotted on the y-axis. (J) The time-dependent AUC values of the RAB score and the RAB risk score
for the prediction of 3- and 5-year survival rates in the pooled HCC cohort.
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Figure 7. Validation of the RAB risk score for prognostic evaluation in HCC. (A,B) Kaplan–Meier
curves of OS in patients with HCC from the (A) TCGA-LIHC and (B) ICGC-LIHC cohorts stratified
by the RAB risk score. The time-dependent AUC values of the RAB risk score for the prediction of
survival rates (right panel). (C) Kaplan–Meier curves of OS in HCC patients with different ages from
the pooled HCC cohort stratified by the RAB risk score. (D) Kaplan–Meier curves of OS in HCC
patients with different tumor stages from the pooled HCC cohort stratified by the RAB risk score.
(E) Kaplan–Meier curves of OS in HCC patients with different histological grades from the pooled
HCC cohort stratified by the RAB risk score. (F) Kaplan–Meier curves of OS in HCC patients with
different RAB scores from the pooled HCC cohort stratified by the RAB risk score. (G,H) Kaplan–
Meier curves of OS in HCC patients with different tumor mutation statuses stratified by the RAB
risk score. (I,J) Kaplan–Meier curves of (I) OS and (J) RFS in patients with HCC from the GSE14520
cohort stratified by the RAB risk score. The time-dependent AUC values of the RAB risk score for the
prediction of survival rates (right panel).
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2.8. RAB13 Is Essential for the Malignant Biological Behaviors of HCC Cells

The above data proposed and validated a RAB score for immune response prediction
and a RAB risk score for prognosis prediction in HCC. Here, Pearson correlation analysis
further indicated an inverse correlation between the RAB score and the RAB risk score
(Figure 8A). Next, we attempted to further screen critical RAB family genes to ascertain
their roles in HCC. We performed TIDE analysis on 15 previously screened RAB family
members (Figure 1E), and the results indicated that the expression of seven RAB family
genes (RAB11A, RAB13, RAB1B, RAB35, RAB5B, RAB5C, and RAB6B) had remarkable
differences in the immune response of HCC (Figure 8B). Notably, RAB13 was used as
a target for subsequent studies, as its roles were not fully explored in HCC. Further
analysis revealed that RAB13 exhibited a positive correlation with the RAB score and a
negative correlation with the RAB risk score (Figure 8C,D). GSVA showed that RAB13 was
positively correlated with multiple oncogenic signaling pathways, including the PI3K/AKT
signaling pathway, EMT, and cell cycle-related signaling pathways, while it was negatively
associated with metabolism-related signaling pathways. Moreover, RAB13 also exhibited
a marked negative correlation with immune-related signals, including the IL2/STAT5
signaling pathway, IL6/STAT3 signaling pathway, inflammatory response, and interferon
alpha/gamma response (Figure 8E). We further analyzed the correlation between RAB13
and the immune microenvironment. Interestingly, the expression of RAB13 was markedly
positively correlated with immune exclusion (Figure 8F). Meanwhile, RAB13 expression
was positively associated with MDSC, TAM M2, and Th2 cell levels and remarkably
negatively correlated with neutrophil, eosinophil, DC cell, cytotoxic cell, CD8 T cell, and
B-cell infiltration levels in HCC (Figure 8F,G). In addition, the level of RAB13 was negatively
correlated with the immune checkpoint PDL1 (Figure 8F).

Furthermore, our clinical samples indicated that RAB13 protein expression was
markedly elevated in HCC tissues compared to paired non-cancer liver (NCL) tissues
(Figure 9A). Using the Human Protein Atlas, we also verified that the protein expression of
RAB13 was markedly higher in HCC than in paracancerous tissues (Figure 9B). Next, we fur-
ther investigated the potential role of RAB13 in HCC using cytological assays. RAB13 was
markedly knocked down by transfection with siRNA targeting RAB13 sequences (siRAB13)
in Huh7 and Hep3B cells compared to the control siRNA (siCTL) (Figure 9C,D). The Cell
Counting Kit-8 (CCK-8) and EdU assays revealed that RAB13 knockdown markedly inhib-
ited the proliferation and DNA replication of HCC cells (Figure 9E,F). Moreover, wound
healing and transwell assays demonstrated that RAB13 silencing significantly inhibited the
metastasis of HCC cells (Figure 9G,H). Based on previous analysis, we further investigated
the precise relationship of RAB13 expression with the PI3K/AKT signaling pathway, cell
cycle regulation, and EMT. As expected, RAB13 silencing markedly suppressed the protein
levels and phosphorylation levels of the PI3K/AKT signaling pathway (Figure 10A). CDK1
is pivotal in regulating the G2-phase transition of the cell cycle, while CDK4 manages the G1
phase to enter the S phase of DNA synthesis [23,24]. Interestingly, our results indicated that
RAB13 knockdown significantly restrained CDK1 and CDK4 expression (Figure 10B). In
addition, inhibition of RAB13 expression restricted the EMT process (Figure 10C). Notably,
our data implied that RAB13 levels are inversely correlated with the IL2/STAT3 signaling
pathway (Figure 8E). Consistently, RAB13 knockdown promoted the expression and acti-
vation of JAK2/STAT3 signaling (Figure 10D). Moreover, we found that RAB13 silencing
enhanced the expression of interferon regulatory factors-1 (IRF1) and IRF4 (Figure 10E),
which are vital factors mediating tumor immunity. These data indicate that elevated RAB13
expression is critical for the malignant progression of HCC.
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Figure 8. The integrative analysis identifies a potentially critical role for RAB13 in HCC. (A) Corre-
lation between RAB score and RAB risk score in the pooled HCC cohort. (B) Relative TIDE values
for high or low expression of the indicated RAB family genes from the pooled HCC cohort. The
chi-square test was used to calculate significant differences. (C) Correlation of the RAB score with
the indicated RAB family genes in the pooled HCC cohort. (D) Correlation of the RAB risk score
with the indicated RAB family genes in the pooled HCC cohort. (E) Correlation of the indicated RAB
family genes with enriched signaling pathways from GSVA annotations in the pooled HCC cohort.
(F) Correlation of the indicated RAB family genes with immunosuppressive factors and immune cells
from TIDE analysis in the pooled HCC cohort. (G) Correlation of the indicated RAB family genes
with immune cell infiltration in the pooled HCC cohort. The asterisks represent the statistical p value
(* p < 0.05 and *** p < 0.001). ns, no significance.
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for 48 h. Magnification, 400×. (G) Wound healing (Magnification, 200×) and (H) Transwell assays 
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Figure 9. RAB13 promotes the proliferation and metastasis of HCC cells. (A,B) Representative IHC
images of RAB13 in HCC and nontumor liver tissue (NCL) from (A) our clinical samples and (B) the
Human Protein Atlas. The scale bar denotes 50 µm. (C) qRT–PCR and (D) Western blotting for RAB13
in Huh7 and Hep3B cells transfected with RAB13 siRNAs (siRAB13) and control siRNA (siCTL),
respectively. (E) CCK-8 assays for Huh7 and Hep3B cells transfected with siRAB13 or siCTL over a
3-day period. (F) EdU assays for the indicated HCC cells transfected with siRAB13 or siCTL for 48 h.
Magnification, 400×. (G) Wound healing (Magnification, 200×) and (H) Transwell assays for Huh7
and Hep3B cells transfected with siRAB13 or siCTL. Magnification, 400×. The results are presented
as the means ± SDss, and three independent experiments (N = 3) were performed in triplicate.
The student’s t-test was used for statistical analysis. The asterisks represent the statistical p value
(*** p < 0.001).
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Western blotting for CDK1 and CDK4 in Huh7 and Hep3B cells transfected with siRAB13 or siCTL. 
(C) Western blotting for EMT signaling pathways in Huh7 and Hep3B cells transfected with 
siRAB13 or siCTL. (D) Western blotting for JAK2/STAT3 signaling pathways in Huh7 and Hep3B 
cells transfected with siRAB13 or siCTL. (E) Western blotting for IRF1 and IRF4 in Huh7 and Hep3B 
cells transfected with siRAB13 or siCTL. (F) Correlation of the indicated RAB family genes with 
ferroptosis vulnerability. (G) CCK-8 assays of Huh7 and Hep3B cells transfected with siRAB13 or 
siCTL and treated with 5 μM sorafenib for 72 h. (H) P-GSK staining of Huh7 and Hep3B cells trans-
fected with siRAB13 or siCTL and treated with 5 μM sorafenib for 72 h. Magnification, 400×. (I) 
MDA levels in Huh7 and Hep3B cells transfected with siRAB13 or siCTL and treated with 5 μM 
sorafenib for 72 h. (J) Western blotting for GPX4 and FSP1 in Huh7 and Hep3B cells transfected with 
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Figure 10. RAB13 knockdown promotes ferroptosis vulnerability. (A) Western blotting for PI3K/AKT
signaling pathways in Huh7 and Hep3B cells transfected with siRAB13 or siCTL. (B) Western blotting
for CDK1 and CDK4 in Huh7 and Hep3B cells transfected with siRAB13 or siCTL. (C) Western
blotting for EMT signaling pathways in Huh7 and Hep3B cells transfected with siRAB13 or siCTL.
(D) Western blotting for JAK2/STAT3 signaling pathways in Huh7 and Hep3B cells transfected with
siRAB13 or siCTL. (E) Western blotting for IRF1 and IRF4 in Huh7 and Hep3B cells transfected with
siRAB13 or siCTL. (F) Correlation of the indicated RAB family genes with ferroptosis vulnerability.
(G) CCK-8 assays of Huh7 and Hep3B cells transfected with siRAB13 or siCTL and treated with
5 µM sorafenib for 72 h. (H) P-GSK staining of Huh7 and Hep3B cells transfected with siRAB13 or
siCTL and treated with 5 µM sorafenib for 72 h. Magnification, 400×. (I) MDA levels in Huh7 and
Hep3B cells transfected with siRAB13 or siCTL and treated with 5 µM sorafenib for 72 h. (J) Western
blotting for GPX4 and FSP1 in Huh7 and Hep3B cells transfected with siRAB13 or siCTL. The results
are presented as the means ± SDss, and three independent experiments (N = 3) were performed in
triplicate. The student’s t-test was used for statistical analysis. The asterisks represent the statistical
p value (*** p < 0.001).
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2.9. RAB13 Knockdown Promotes GPX4-Dependent Ferroptosis Vulnerability in HCC Cells

Our data suggested that activation of metabolism-related signaling pathways was
associated with a better prognosis for patients with HCC (Figure 3B,E). Notably, dysregu-
lation of metabolic signaling regulates ferroptosis vulnerability. Therefore, we wondered
whether RAB13 expression could alter the ferroptosis vulnerability of HCC cells. Correla-
tion analysis indicated a significant negative relationship between RAB13 expression and
the FPI index (Figure 10F), implying that RAB13 overexpression may impair ferroptosis
vulnerability in HCC. In addition, sorafenib, a ferroptosis inducer, markedly restrained
the proliferation of RAB13-knockdown HCC cells (Figure 10G). To further demonstrate
that RAB13-inhibited HCC cells suffered ferroptosis following sorafenib treatment, we
observed the Phen Green SK diacetate (P-GSK) probe and examined the variation in malon-
dialdehyde (MDA) levels. As expected, the P-GSK probe indicated that sorafenib markedly
promoted the accumulation of iron in HCC cells after RAB13 knockdown (Figure 10H).
Meanwhile, sorafenib promoted lipid oxidative damage in RAB13-knockdown HCC cells
(Figure 10I). Finally, we detected alterations in GPX4 and ferroptosis suppressor protein 1
(FSP1) expression. Interestingly, our Western blot results indicated that RAB13 knockdown
suppressed GPX4 protein expression but not FSP1 expression (Figure 10J). These data illus-
trate that RAB13 is a crucial target for boosting GPX4-dependent ferroptosis vulnerability
in HCC.

3. Discussion

The RAB family acts as molecular switches that localize to different intracellular mem-
branes, providing spatiotemporal control of organelle maintenance and trafficking [10–12].
However, a comprehensive and thorough investigation of RAB family genes in HCC is still
lacking. Here, we comprehensively characterized the landscape of RAB family genes and
constructed RAB gene-related models for the clustering and evaluation of HCC, which has
tremendous clinical implications.

In our study, we first attempted to cluster the gene expression profiles of HCC ac-
cording to RAB family genes using the NMF algorithm. Although the results suggested
that RAB cluster 1 and RAB cluster 2 could well stratify the prognosis of HCC patients,
the two clusters were more similar to a summary of the biological characteristics for the
gene expression patterns with different levels of RAB family genes and failed to exhibit
good stratification in describing TME differences. Furthermore, the mRNA transcriptome
differences between distinct RAB expression levels have been demonstrated to be dramat-
ically associated with metabolic-, oncogenic-, and immune-related biological pathways.
Thus, these DEGs were considered RAB-associated signatures. Interestingly, three genomic
subtypes with distinct TME patterns were revealed based on RAB-associated signatures
utilizing unsupervised clustering analysis. RAB subtype-1 was characterized by the ac-
tivation of metabolism and the suppression of oncogenic signaling corresponding to the
immune-desert phenotype. In addition, RAB subtype-1 had the highest TMB and the
weakest ferroptosis vulnerability. Notably, RAB subtype-1 exhibited greater prognostic
survival than RAB subtypes-2 and -3, indicating that immune status is not an independent
predictor for assessing patient prognosis. Moreover, we hypothesize that the worst prog-
nosis in RAB subtype-2 is associated with its oncogenic signaling activation, ferroptosis
tolerance, and immune-excluded phenotype. Furthermore, our analysis revealed that
patients with RAB subtype-2 are optimal candidates for immune checkpoint therapy, as
RAB subtype-2 was characterized by activation of adaptive immunity, corresponding to an
immune-inflamed phenotype, also known as an immune hot tumor [25,26], manifested by
a prominent infiltration of immune cells in the TME.

Considering individual heterogeneity, to further quantify individual tumor characteris-
tics and facilitate clinical application, we attempted to establish a scoring system—the RAB
score—to evaluate the immunological features and prognosis of individual HCC patients.
RAB subtype-1, characterized by an immune-desert phenotype, exhibited a higher RAB
score and was associated with a better prognosis. RAB subtype-2, which is characterized
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by an immune-excluded phenotype, showed a lower RAB score and was associated with
a poorer prognosis. Moreover, we validated this model in several distinct HCC cohorts.
This finding indicated that the RAB score was a robust and reliable tool to comprehensively
assess the TME characteristics for individual HCC, which could be used to further deter-
mine the tumor immunophenotype. However, the integrated analysis revealed that the
RAB score was not an independent prognostic biomarker for HCC. To this end, we further
constructed the RAB risk score using the iterative LASSO regression algorithm, whose
predictive power of prognosis was also validated in various HCC cohorts and subgroups.
Notably, the RAB risk score was not comparable to the RAB score in evaluating the TME
characteristics of HCC, so we did not present and interpret these results. We speculated that
this status was mainly caused by the fact that the RAB score recombined the crucial genes
of the RAB family-related DEGs through the PCA score method, which contains multiple
gene patterns and could well characterize the TME features according to the expression
of crucial genes, but not all of these essential genes were prognostic stratification genes;
thus, the RAB score was not suitable for prognostic assessment of HCC. Conversely, the
RAB risk score incorporated genes with significant prognostic stratification, but its limited
number of genes restricts the capacity of a robust depiction of TME for HCC. Therefore, the
two scoring models could complementarily guide clinicians in the management of HCC,
which has potential clinical significance.

The role of RAB13 in tumors has been widely reported. Wang et al. elucidated
that RAB13 sustains breast cancer stem cells by supporting tumor-stromal crosstalk [27].
Hinger et al. reported that RAB13 regulates the secretion of small extracellular vesicles in
mutant KRAS colorectal cancer cells [28]. Zhang et al. demonstrated that RNF115 inhibits
the postendoplasmic reticulum trafficking of Toll-like receptors (TLRs) and TLR-mediated
immune responses by catalyzing K11-linked RAB1A and RAB13 ubiquitination [29]. How-
ever, the role of RAB13 in HCC has not been reported. In our constructed models, we
found that RAB13 had significant weights in both the RAB score predicting immune re-
sponse and the RAB risk score predicting prognosis. Therefore, we further investigated
the function of RAB13 in HCC cells using cytological studies. Interestingly, we found that
RAB13 could be involved in modulating HCC cell proliferation through the PI3K/AKT
signaling pathways and cell cycle regulation. Meanwhile, we demonstrated that RAB13
promotes the metastasis of HCC cells through EMT. Moreover, we found that the promo-
tion of the immune-excluded phenotype by elevated RAB13 expression may be associated
with the inhibition of interferon-regulated signaling (IRF1/IRF4) and the JAK2/STAT3
signaling pathway. These data all indicated that RAB13 might be a potential target for
HCC therapy. To validate this hypothesis, we further tested whether RAB13 could regulate
ferroptosis due to the relevance of RAB13 to metabolism-related signaling and ferroptosis
vulnerability. As expected, RAB13-silenced HCC had increased sensitivity to sorafenib,
and this phenomenon was associated with the accumulation of intracellular iron and
increased levels of lipid oxidation. More importantly, our Western blotting results con-
firmed that RAB13-induced alterations in ferroptosis vulnerability were dependent on
GPX4 expression.

4. Materials and Methods
4.1. Clinical Samples and Immunohistochemistry

A retrospective analysis of resected HCC samples at West China Hospital of Sichuan
University from May 2014 to December 2020 was performed. Thirty fresh human HCC and
paired NCL tissues were collected. Immunohistochemistry (IHC) staining was performed
as described previously [30,31]. Anti-RAB13 (ABclonal, A10571, Wuhan, China, 1:200)
was used. The IHC results were evaluated by two independent observers based on the
percentage of positively stained cells (scored from 0 to 3 points) and intensity of staining
(scored from 0 to 3 points), and a final immunoreactivity score (range 0–9 points) was
obtained by multiplying the two scores. RAB13 expression levels were classified as low if
the score was less than five and high if the score was ≥five [30,31].
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This study was approved by the Ethics Committee on Biomedical Research, West
China Hospital of Sichuan University (2020, No 385). Informed consent forms were signed
by all involved patients or their families.

4.2. Cell Culture and Reagents

Huh7 and Hep3B cell lines were purchased from the National Collection of Authenti-
cated Cell Cultures (Shanghai, China) and were cultured in complete medium containing
Dulbecco’s modified Eagle’s medium (HyClone, Logan, UT, USA) supplemented with 10%
fetal bovine serum (Gibco, Grand Island, NY, USA), 1000 U/mL penicillin, and 100µg/mL
streptomycin (HyClone, Logan, UT, USA), and were grown in a humidified air atmosphere
containing 5% CO2 at 37 ◦C. All cell lines were analyzed by STR profiling for cell line
authentication and routine mycoplasma detection. Sorafenib (S7397) was purchased from
Selleckchem (Houston, TX, USA).

4.3. Transfection

Transfection was performed as previously described [30,31]. Additional information
about siRNAs is available in Table S5.

4.4. Quantitative Real-Time Polymerase Chain Reaction (qRT–PCR) and Western Blot Analysis

qRT–PCR and Western blot analysis were performed as previously described [30,31]. The
primers and the primary antibodies used in this study are listed in Tables S6 and S7, respectively.

4.5. Wound Healing and Transwell Assays

Wound healing assays were performed as previously described [31]. For the transwell
assay, transfected HCC cells resuspended in an FBS-free medium were added to the top
chamber (Corning-Costar; pore size 8 µm), and the bottom chamber was filled with 30%
FBS as an inducer. After 48 h, the cells that failed to invade from the top of the membranes
were erased, and then the invaded cells on the bottom of the membrane were fixed and
stained. Invaded cells from five random fields were counted and photographed under a
light microscope.

4.6. Cell Counting Kit-8

CCK-8 proliferation assay was performed as previously described [30]. Additionally,
to examine the inhibitory effect of sorafenib on the indicated cells, the processed cells
(1 × 103 cells per well) were inoculated in 96-well plates for 24 h. Sorafenib was then
administered at a concentration of 5 µM and incubated for 72 h. Then, 10 µL of CCK-8
solution was added to the wells and incubated for 4 h. Finally, the absorbance at 450 nmol
was recorded, and the results were analyzed.

4.7. EdU Assays

EdU assays were performed using a BeyoClick™ EdU Cell Proliferation Kit with Alexa
Fluor 594 (Beyotime, Wuhan, China) according to the manufacturer’s instructions.

4.8. Ferroptosis Detection

A P-GSK probe was used to monitor the iron content in the indicated HCC cells using a
Phen Green SK Reagent Kit (Thermo, Waltham, MA, USA) in accordance with the manufac-
turer’s instructions. The levels of MDA (A003-1-2) were measured to assess the level of lipid
oxidative damage using commercially available kits from Nanjing Jiancheng Bioengineering
Institute (Nanjing, China) in accordance with the manufacturer’s instructions.

4.9. Data Sources and Preprocessing

The LIHC clinical information and raw fragment per kilobase (FPKM) values were
taken from the ICGC and TCGA datasets. We then transformed FPKM values into tran-
scripts per kilobase million (TPM) values. The series matrix files of the Affymetrix and



Int. J. Mol. Sci. 2023, 24, 4335 22 of 25

Illumina-generated microarray for GSE14520, GSE5975, GSE25097, and GSE124751 were
directly downloaded from the GEO database.

4.10. Pathway Enrichment Analysis

The Database for Annotation, Visualization, and Integrated Discovery (DAVID) v6.8
was used for the KEGG pathway analysis. According to previously published expression
methods, we further performed the GSEA on the specified set of transcripts. Moreover, the
gene set “c5.all.v6.2. symbols” was downloaded from the MSigDB database, and another
published pathway gene set is summarized in Table S8. GSVA enrichment analysis was
further used to estimate the pathway and biological process variations using these two
gene sets.

4.11. Consensus Clustering with Nonnegative Matrix Factorization

To correlate the survival status of patients with gene expression values, we employed a
consensus clustering method, NMF, to perform clustering analysis based on the expression
of RAB genes and the OS of HCC patients [32]. The principle of consensus clustering is to
perform two-dimensional resampling of the original dataset and then repeatedly cluster
the perturbation subsets, and the final clustering results are obtained by clustering the
consensus matrix. Pearson’s correlation coefficient was used to measure the distance, and
“average” was used as the linkage method, with 100 repetitions. The performance of these
clustering methods was evaluated with three frequently utilized measures as previously
reported [33]: (1) Survival analysis to evaluate the prognostic values between subtypes;
(2) average silhouette width, a measure of cluster coherence, to assess the similarities across
subtypes; and (3) clustering heatmap to intuitively visualize the effect of sample clustering.

4.12. Unsupervised Clustering for RAB-Associated Gene Signatures

Based on the expression of RAB-associated gene signatures, unsupervised clustering
analysis was conducted using the pooled HCC cohort to identify distinct HCC subtypes
for further research. The number of clusters and their stability were determined by a
consensus clustering algorithm. The above steps were repeated 1000 times using the
“ConsensuClusterPlus” R package to ensure the strength of the classification.

4.13. Construction of the Risk Models

To quantify the RAB expression patterns of individual tumors, the PCA score method
was used to construct a scoring system named the RAB score [17]. In addition, the iteration
LASSO Cox regression model was used to screen for the best genes for prognostic assess-
ment in HCC [18]. The RAB risk score could be calculated using the following formula:
RAB risk score = Σ (Coef i × Exp i), where I is the member involved in the gene signature.

4.14. Immune Response Prediction and Immune Microenvironment Assessment

The TIDE algorithm was used to predict HCC responsiveness to immunotherapy [23].
We used the GSVA method to quantify the relative abundance of each infiltrating cell
in a single sample. The immune cell markers used in this study were extracted from a
previously published authoritative study.

4.15. mRNA-Based Stemness Index (mRNAsi) and Ferroptosis Potential Index (FPI)

To assess the stemness of cancer cells, a one-class logistic regression algorithm, mR-
NAsi, was used to calculate the stemness index for each HCC sample using the workflow
available on a previously established database [34]. In addition, an index representing
ferroptosis vulnerability was found from the expression data of ferroptosis core machine
genes according to a previously published algorithm [35].
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4.16. Development and Validation of the Prognostic Nomogram

Based on the clinical risk factors and multivariate Cox regression coefficients, a prog-
nostic nomogram was built using the “rms” R package, and the predictive accuracy of this
nomogram was assessed using the calibration curve and the concordance index.

4.17. Statistical Analysis

All statistical analyses were performed using R software (version 3.6.1). Analysis of
differentially expressed genes (DEGs) between different defined groups was performed
using the “limma” R package. DEGs between the two RAB clusters were obtained with
significance criteria set as adjusted p value < 0.05 and log2 |FC| > 1, while the criteria of
p value < 0.05 and log2 |FC| > 2 were set for screening DEGs between two RAB subtypes.
DEGs were visualized as heatmaps in R using the packages “pheatmap” and “ggplot2”.
To calculate the TMB per megabase, the total number of mutations counted was divided
by the size of the coding region of the targeted territory in the TCGA-LIHC cohort. The
mutation landscape oncoprint was generated using the R package “ComplexHeatmap”. The
comparison of normally distributed variables between the two groups was performed using
an unpaired t-test, and the statistical significance of the nonnormally distributed variables
was estimated using the Mann–Whitney U test (Wilcoxon rank-sum test). Spearman’s
correlation analysis was performed to calculate the correlation coefficient between the
two factors. Based on the correlation between gene expression and patient survival, the
optimal cutoff point for each dataset was determined using the “survminer” R package,
and the “surv-cutpoint” function was used to repeat all potential cutoff points to obtain
the maximum rank statistic, divided into two groups: high and low. Survival curves
for prognostic analysis were generated using the Kaplan–Meier method, and significant
differences were determined using the log-rank test. The false discovery rate (FDR) method
was used to adjust the p value for multiple comparisons, and statistical significance was set
at p < 0.05; that is, the FDR was less than 0.05. The asterisks represent the statistical p value
(* p < 0.05; ** p < 0.01; *** p < 0.001).

5. Conclusions

In conclusion, this work highlighted the potential importance of RAB family genes
in the TME of HCC. Aberrant expression of RAB family genes is a nonnegligible factor in
the TME heterogeneity and complexity of HCC. The models constructed based on RAB-
associated signatures will contribute to improving our understanding of the characteristics
of cell infiltration in the TME, and guide more effective immunotherapy strategies and
prognostic assessments.
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