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Abstract: Background: We aimed to investigate the association between contextual-level social
determinants of health (SDoH) and the use of novel antidiabetic drugs (ADD), including sodium-
glucose cotransporter-2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor agonists (GLP1a)
for patients with type 2 diabetes (T2D), and whether the association varies across racial and ethnic
groups. Methods: Using electronic health records from the OneFlorida+ network, we assembled a
cohort of T2D patients who initiated a second-line ADD in 2015–2020. A set of 81 contextual-level
SDoH documenting social and built environment were spatiotemporally linked to individuals based
on their residential histories. We assessed the association between the contextual-level SDoH and
initiation of SGTL2i/GLP1a and determined their effects across racial groups, adjusting for clinical
factors. Results: Of 28,874 individuals, 61% were women, and the mean age was 58 (±15) years. Two
contextual-level SDoH factors identified as significantly associated with SGLT2i/GLP1a use were
neighborhood deprivation index (odds ratio [OR] 0.87, 95% confidence interval [CI] 0.81–0.94) and
the percent of vacant addresses in the neighborhood (OR 0.91, 95% CI 0.85–0.98). Patients living
in such neighborhoods are less likely to be prescribed with newer ADD. There was no interaction
between race-ethnicity and SDoH on the use of newer ADD. However, in the overall cohort, the
non-Hispanic Black individuals were less likely to use newer ADD than the non-Hispanic White
individuals (OR 0.82, 95% CI 0.76–0.88). Conclusion: Using a data-driven approach, we identified the
key contextual-level SDoH factors associated with not following evidence-based treatment of T2D.
Further investigations are needed to examine the mechanisms underlying these associations.

Keywords: social determinants of health; type 2 diabetes; antidiabetic drugs; neighborhood depriva-
tion index; vacant land

1. Introduction

More than 100,000 individuals die from diabetes each year in the United States (US) [1].
Of these deaths, 60% are attributed to concurrent cardiovascular disease (CVD), with
myocardial infarction being the most common cause [2]. Among the antidiabetic drugs
(ADD) currently available on the US market, two relatively novel agents, sodium-glucose
cotransporter-2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor agonists (GLP1a),
are associated with significant reductions in blood glucose levels and have been found
particularly effective in reducing the risk of CVD in individuals with type 2 diabetes
(T2D) [3]. In addition, these novel antidiabetic agents have been shown to associate with
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weight loss, reduced risk of hypoglycemia and cardiorenal protection, favorable benefits
that are of great importance to patients with T2D [3]. The American Diabetes Association
(ADA) recommends SGLT2i and GLP1a for patients with T2D who have CVD, heart failure,
chronic kidney disease, or an increased risk of these conditions, regardless of their glycemic
status [4,5].

However, the utilization of SGLT2i and GLP1a in real-world T2D patient populations
is relatively low in the US compared to other ADD [6,7], especially among historically
marginalized communities, such as racial and ethnic minority groups and individuals
experiencing socioeconomic disadvantages. Data from commercial insurance and Medicare,
for example, showed that Black patients were 10–20% less likely to receive newer ADD than
White patients [7–10]. While such disparity can be explained overall by racial disparity as
a distal cause, its proximal cause—the underlying mechanism whereby racial and ethnic
groups have initiated SGLT2i/GLP1a—remains largely unknown.

In the past, research and clinical approaches centered on the individual-level have
led improvements in self-management outcomes and reduction in cardiovascular risk
among patients with T2D [11]. More recently, researchers have acknowledged the need
to consider external factors, namely the social determinants of health (SDoH) to achieve
the goal of sustainable improvement in diabetes outcomes [12]. SDoH refer to the various
social, economic, and environmental factors, including access to healthcare, education,
employment, housing, and social support that have an impact on people’s health, well-
being, and quality of life [13]. Contextual-level SDoH refers to the broader social and built
factors within community or region that influence health outcomes, and are increasingly
recognized as a vital source of information to develop healthcare policies designed to
improve population health management and value-based care [14,15]. Previous studies
have demonstrated the association of contextual-level SDoH with geographic variation
and diabetes risk [16]. However, minimal data exist on the extent to which contextual-level
SDoH (e.g., residential segregation, food environment, and neighborhood walkability) may
impact healthcare use, including initiating evidence-based treatment in T2D care [8]. A
Dutch study published in 2012 examined the association of regional-level aging composition
and socioeconomic status with spatial variation in ADD use but without a comprehensive
evaluation of multiple contextual-level SDoH [17].

Given that race and ethnicity are social constructs [18], contextual-level SDoH can
play important roles in the development of racial and ethnic disparities across geographic
regions [19]. Therefore, understanding how contextual-level SDoH impact the adoption
of these outcome-improving therapies in millions of Americans with T2D is imperative.
Accordingly, this study aimed to examine the association between patients’ contextual-
level SDoH and their initiation of the newer ADD, and how such associations may vary
across racial and ethnic groups. With such empirical evidence, the racial disparity in
SGLT2i/GLP1a utilization can be better understood, and relevant policymaking can be
better guided.

2. Materials and Methods
2.1. Data Source and Study Population

This is a retrospective cohort study using data from the OneFlorida+ network, con-
taining large collections of electronic health records (EHR) covering more than 19 million
patients from Florida (~16.8 million), Georgia (~2.1 million), and Alabama (~9.1 thou-
sand) [20]. We assembled a cohort of adults (i.e., aged ≥ 18) identified as having at least one
inpatient or outpatient T2D diagnosis (using ICD-9 codes 250.x0 or 250.x2, or ICD-10 code
E11) and ≥1 ADD prescription. The algorithm used to identify T2D has been validated in
OneFlorida+ with a positive predictive value (PPV) > 94 [21] and is preferred over using
only diagnosis codes, which can lead to misclassification error [22]. Among the T2D cohort,
we identified individuals who initiated SGLT2i or GLP1a, or another second-line ADD
(i.e., dipeptidyl-peptidase-4 inhibitors, sulfonylureas, thiazolidinediones, and basal insulin)
in 2015–2020. The index date was the day of the first prescription of a second line ADD,
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defined as no use of the drug in three prior years. We restricted the study cohort by only
including those individuals who had ≥ 2 inpatient or outpatient encounters per year in
OneFlorida+ in the three years prior to the index date to obtain complete information
for modelling.

2.2. Study Outcome and Covariates

The outcome was the initiation of a newer ADD (i.e., SGLT2i or GLP1a) versus another
second-line drug. We collected baseline demographic and clinical information on or within
the 3-year period prior to the index date, including age, sex, race-ethnicity (non-Hispanic
White [NHW], non-Hispanic Black [NHB], Hispanic, and other), rurality (defined using
linkage to rural–urban continuum codes [RUCC] based on patients’ residencies’ Federal
Information Processing System [FIPS] county code and classified the rurality into three
levels by the US Department of Agriculture’s (USDA) Economic Research Service: RUCC
≤ 3 as metropolitan; 3 < RUCC ≤ 7 as urban; and 7 < RUCC ≤ 9 as rural), primary
payer (Medicare, Medicaid, private insurance, no insurance, and other), diabetes compli-
cations and comorbidities (such as cardiovascular disease and chronic kidney disease),
co-medications (i.e., use of another ADD, antihypertensives, statins, and antidepressants),
clinical presentation (most recent blood pressure and body mass index [BMI], identified
in four categories: ≤25, 25–30, 30–100 kg/m2, or missing), and lab values (most recent
hemoglobin A1c [HbA1c], identified in four categories: ≤7, 7–10, 10–21 mmHg, or missing).
Clinical data were extracted from de-identified EHR records in the OneFlorida+ network.

2.3. Contextual-Level SDoH

We obtained data on built and social environment measures from six well-validated
sources with different spatiotemporal scales, characterizing food access, walkability, vacant
land, neighborhood disadvantage, social capital, crime and safety. All measures were
spatiotemporally linked to each individual considering residential mobility during the
study period. Area-weighted averages were first calculated according to a 250 m buffer
around the centroid of each 9-digit ZIP code. Time-weighted averages were then calculated,
accounting for each individual’s residential history.

Table 1 summarizes the contextual-level data sources and the corresponding spatiotem-
poral scales. A total of 43 food access measures at census tract level in 2015 and 2019 were
obtained from USDA’s Food Access Research Atlas [23]. Walkability was assessed using
the National Walkability Index developed by the US Environmental Protection Agency
(EPA) [24], which assesses walkability on a scale from 1 to 20 for each census block group,
with 1 indicating the least walkable and 20 the most walkable. Vacant land measures at the
census-tract level from 2015 to 2019 were obtained from the US Department of Housing
and Urban Development aggregated with US Postal Service administrative data [25] and a
total of 18 measures that were available across all years were included. The neighborhood
deprivation index (NDI), a socioeconomic status measure, was obtained at the census block
group level based on data from the 2015 to 2019 American Community Survey (ACS).
It yields information on the income, education, employment, and housing quality of a
neighborhood and allows ranking by socioeconomic disadvantage [26]. In addition, ten
social capital measures were constructed using the Census Business Pattern data based on
the North American Industry Classification System (NAICS) codes [27] at the 5-digit ZIP
code tabulation area (ZCTA5) level. Furthermore, eight county-level annual measures of
crime and safety were obtained from the Uniform Crime Reporting Program from 2015 to
2019 [28]. A total of 81 SDoH measures were included in the analyses.
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Table 1. Summary of contextual-level SDoH measures.

Category Data Source Time Period Spatial Scale Temporal Scale Number of
Variables

Food access Food Access Research Atlas, USDA 2015, 2019 Census tract 1-year 43

Walkability Walkability Index, EPA 2006–2013 Census block
group Cross-sectional 1

Vacant land Aggregated USPS Administrative
Data on Address Vacancies, HUD 2015–2019 Census tract 3-month 18

Socioeconomic status Neighborhood Deprivation Index,
ACS 2015–2019 Census block

group 5-year 1

Social capital Census Business Pattern 2015–2019 ZCTA5 1-year 10

Crime and safety Uniform Crime Reporting Program,
FBI 2015–2019 County 1-year 8

Abbreviations: ACS: American Community Survey; EPA: Environmental Protection Agency; USDA, US Depart-
ment of Agriculture; HUD, Department of Housing and Urban Development; FBI: Federal Bureau of Investigation.

2.4. Statistical Analysis

We conducted normalization transformations for all continuous contextual-level SDoH
variables using the bestNormalize package in R, which implements several transformation
methods, including log, square root, exponential, arcsinh, box cox, and Yeo-Johnson trans-
formations [29]. The best transformation was determined based on Pearson P statistics. All
continuous variables were also z-score standardized (mean = 0 and standard deviation = 1).
All contextual-level SDoH factors and covariates of interest described above had missing
values for <2% of the participants; Missing data for all contextual-level SDoH factors were
imputed using the chained equations method of the MICE package in R. A variable was
considered a predictor in the imputation model if its proportion of non-missing values
among counties with missing values in the variable to be imputed was larger than 40% and
they were correlated (i.e., with the absolute correlation value > 0.4) with the variable to
be imputed or the probability of the variable being missing. We imputed a single dataset
given the minimal impacts of the imputation procedure due to the large sample size and a
small fraction of missing data. Missing information on BMI and HbA1c were not imputed
and maintained as a separate category.

We used a two-phase approach to identify key contextual-level associated with initi-
ation of SGTL2i/GLP1a versus other second-line ADD [30,31]. In Phase 1, we randomly
split the data into a 50% discovery set and a 50% replication set. We considered all the
83 contextual-level SDoH for associations with newer ADD initiation after accounting
for multiple comparisons. We built multivariable logistic regression models for each
contextual-level factor after adjusting for demographics, urbanicity, diabetes complications,
co-medications, clinical presentation, and primary payer. To account for the multiple test-
ing, the Benjamin-Hochberg procedure was used to control the false discovery rate (FDR) at
5% [32]. A variable was considered significant if it had an FDR-adjusted p-value (or q-value)
< 0.05 in both the discovery and the replication sets. A correlation heatmap was generated
to show the pairwise Pearson correlations of the variables retained from Phase 1. Variables
from highly correlated pairs (with the absolute value of correlation coefficients > 0.6) were
removed to avoid collinearity between variables [33].

In Phase 2, we used a multivariable logistic regression model including all significant
variables identified from Phase 1 as well as all the demographic and clinical information,
including age, sex, primary payer, BMI, HbA1c, type of residence, cardiovascular disease,
chronic kidney disease, use of insulin and non-insulin antidiabetic medications to estimate
the effect sizes. Adjusted odds ratios (aOR) and 95% confidence intervals (CI) were reported.

For the key contextual-level SDoH identified using the two-phase approach, we
dichotomized them using the 80th percentile from the key variables as the cutoff. A Higher
numeric value in NDI and percent of vacant addresses indicates a neighborhood that
is more disadvantaged in socioeconomic profile and has a larger vacancy in addresses.
Therefore, we defined neighborhoods with the top 20th percentile in NDI as more deprived
neighborhoods, and neighborhoods with the top 20th percentile in percent of vacant
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addresses as neighborhoods with more occupancy. We applied multilevel logistic regression
and adjusted for demographic and clinical characteristics to determine the effect variation
by race-ethnicity of key contextual-level SDoH in association with newer ADD initiation.

Analyses were performed using the R statistical software (version 3.6.1; R Develop-
ment Core Team) and SAS 9.4 (Cary, North Carolina). The study was approved by the
Institutional Review Board at the University of Florida (IRB202102283).

3. Results
3.1. Descriptive Analysis

Our final analysis comprised 28,874 patients in the cohort. Table 2 highlights the
demographic and clinical characteristics of the study population by race and ethnicity.
Overall, the mean age was 58 (±15) years, and 61% were women. The majority of the
patients were enrolled in public insurance programs such as Medicare (37%) and Medicaid
(35%). Compared with NHW patients, NHB patients were younger (54.6 vs. 58.5 years,
p < 0.01) and more likely to be covered by Medicaid (41% vs. 28%, p < 0.01), while Hispanics
and patients of other races were older (mean age of Hispanics: 61 years, other race/ethnicity:
60 years), and more likely to be women. Of our cohort, 11,649 patients (40%) had initiated
the newer ADD (i.e., SGLT2i or GLP1a). NHW and patients of other races/ethnicities were
more likely to have initiated a newer ADD versus another second-line ADD compared to
NHB (NHW and other race/ethnicity: both 44%, NHB: 38%, Hispanics: 35%, p < 0.01)

Table 2. Patient Characteristics, by race/ethnicity.

Overall
(n = 28,874)

NHW
(n = 11,892) NHB (n = 10,427) Hispanics

(n = 5458) Others (n = 818) p-Value

Age, mean (SD) 57.65 (15.19) 58.65 (14.44) 54.60 (14.96) 60.84 (16.17) 60.40 (15.06) <0.0001
Age group, %(n) <0.0001

<25 2.01 (580) 1.54 (183) 2.61 (272) 1.89 (103) 1.71 (14)
25–34 5.69 (1644) 4.40 (523) 8.00 (834) 4.53 (247) 3.06 (25)
35–44 11.81 (3410) 10.43 (1240) 14.75 (1538) 9.60 (524) 9.66 (79)
45–54 19.65 (5674) 19.44 (2312) 21.24 (2215) 17.09 (933) 20.66 (169)
55–64 28.33 (8180) 29.57 (3516) 28.93 (3017) 25.30 (1381) 22.62 (185)
65–74 18.68 (5393) 21.21 (2522) 15.14 (1579) 19.13 (1044) 22.62 (185)
≥75 13.83 (3993) 13.42 (1596) 9.32 (972) 22.46 (1226) 19.68 (161)

Female, %(n) 61.18 (17,666) 55.26 (6571) 67.90 (7080) 62.48 (3410) 55.38 (453) <0.0001
Primary payer, %(n) <0.0001

Medicare 37.57 (10,847) 38.73 (4606) 33.36 (3478) 44.10 (2407) 31.66 (259)
Medicaid 34.94 (10,090) 28.85 (3431) 41.44 (4321) 37.38 (2040) 25.43 (208)

Private insurance 19.96 (5764) 23.74 (2823) 18.64 (1944) 12.42 (678) 32.52 (266)
No insurance 2.26 (652) 1.95 (232) 3.19 (333) 1.14 (62) 2.81 (23)

Others 5.27 (1521) 6.73 (800) 3.37 (351) 4.97 (271) 7.58 (62)
BMI categories, %(n) <0.0001

≤25 9.51 (2745) 9.41 (1119) 9.03 (942) 8.94 (488) 20.78 (170)
25–30 18.16 (5244) 18.05 (2146) 16.74 (1746) 19.77 (1079) 27.87 (228)
30–100 54.37 (15,699) 57.69 (6861) 58.22 (6071) 42.84 (2338) 36.92 (302)
missing 17.96 (5186) 14.85 (1766) 16.00 (1668) 28.45 (1553) 14.43 (118)

HbA1c categories, %(n) <0.0001
≤7 mmHg 18.43 (5322) 21.72 (2583) 19.37 (2020) 8.67 (473) 25.18 (206)

7–10 mmHg 23.45 (6772) 28.33 (3369) 23.60 (2461) 10.90 (595) 32.03 (262)
10–21 mmHg 10.44 (3014) 9.59 (1141) 13.91 (1450) 5.79 (316) 10.27 (84)

missing 47.68 (13,766) 40.35 (4799) 43.12 (4496) 74.64 (4074) 32.52 (266)
Type of residence, %(n) <0.0001

Metro Areas 91.99 (26,553) 86.65 (10,300) 94.66 (9868) 97.97 (5345) 95.96 (784)
Urban or suburban Areas 7.79 (2248) 12.91 (1535) 5.29 (551) 2.00 (109) 3.79 (31)

Rural Areas 0.22 (63) 0.44 (52) 0.06 (6) 0.04 (2) 0.24 (2)
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Table 2. Cont.

Overall
(n = 28,874)

NHW
(n = 11,892) NHB (n = 10,427) Hispanics

(n = 5458) Others (n = 818) p-Value

OneFlorida network site,
%(n) <0.0001

A 17.76 (5127) 18.31 (2177) 14.17 (1478) 23.10 (1261) 20.90 (171)
B 0.27 (78) 0.45 (53) 0.19 (20) 0 0.12 (1)
C 3.88 (1121) 3.14 (374) 4.99 (520) 2.91 (159) 7.70 (63)
D 5.94 (1716) 6.23 (741) 8.47 (883) 0.77 (42) 2.57 (21)
E 52.11 (15,045) 64.96 (7725) 56.09 (5849) 14.40 (786) 61.25 (501)
F 20.04 (5787) 6.91 (822) 16.08 (1677) 58.81 (3210) 7.46 (61)

CVD, %(n) 41.26 (11,797) 40.87 (4860) 41.09 (4824) 43.64 (2382) 33.13 (271) <0.0001
CKD, %(n) 33.24 (33.24) 30.21 (3592) 36.55 (3811) 33.86 (1848) 31.17 (255) <0.0001

Insulin use, %(n) 48.59 (14,029) 45.63 (5426) 53.28 (5556) 47.45 (2590) 41.20 (337) <0.0001
Any non-insulin

antidiabetics use, %(n) 67.30 (19,432) 66.25 (7878) 67.33 (7021) 69.02 (3767) 70.29 (575) 0.0008

Metformin, %(n) 45.68 (13,190) 45.01 (5353) 45.98 (4794) 46.01 (2511) 48.78 (399) 0.117
DPP-4 inhibitors, %(n) 21.27 (6141) 21.41 (2546) 19.62 (2046) 23.43 (1279) 23.59 (193) <0.0001

Sulfonylureas, %(n) 31.49 (9092) 29.09 (3459) 31.77 (3313) 35.87 (1958) 35.21 (288) <0.0001
Thiazolidinediones, %(n) 4.68 (1351) 5.05 (601) 3.86 (403) 5.15 (281) 6.60 (54) <0.0001

Abbreviations: SD, standard deviation; BMI, body mass index; HbA1c, hemoglobin A1c; CVD, cardiovascular
disease; CKD, chronic kidney disease; DPP-4, dipeptidyl-peptidase 4. Values are means (SD) for continuous
variables; percentages or ns or both for categorical variables. Values of polytomous variables may not sum to
100% due to rounding.

3.2. Selection of Contextual-Level SDoH

Figure 1 is a volcano plot summarizing the results from Phase 1. After accounting for
multiple comparisons using the Benjamin Hochberg procedure, a total of 20 and 11 variables
were significantly associated with novel ADD use in the discovery and replication sets,
respectively. Among them, ten variables from three categories were significant in both the
discovery and replication sets, including the NDI, percentage of low food access (percentage
without vehicle access living a half-mile from supply, a food access measure variable), and
eight variables documenting the vacant housing in the neighborhood. All ten variables
were associated with a lower likelihood of initiating newer ADD (with OR < 1, Figure 1). We
observed high correlations among the eight variables documenting vacant land measures
(all pairwise correlation coefficients > 0.6, Appendix A, Figure A1). Therefore, we kept only
one variable, the percent of vacant addresses in the Phase 2 analysis, as this variable is a
more comprehensive measure than the others in the category.

In Phase 2 analysis, the NDI, percentage without vehicle access living a half mile from
supply, and percent of vacant addresses, were simultaneously included in a multivariable
logistic regression model after adjusting for baseline demographic and clinical information.
Two variables—NDI and percent of vacant addresses—remained statistically significant in
the multivariable model. Therefore, our two-phase approach identified two contextual-level
SDoH that were significantly associated with a lower likelihood of newer ADD initiation,
which are neighborhoods with a higher degree of deprivation and neighborhoods with
more vacant housing (Table 3).

3.3. Association of Contextual-Level SDoH and New ADD Initiation across Racial and
Ethnic Groups

Table 4 shows the results from multivariable logistic regression of binary key contextual-
level SDoH variables in association with the novel ADD initiation in the overall cohort and
in each racial-ethnic subgroup. In the overall cohort, NHB were significantly less likely to
use newer ADD than NHW (aOR 0.82, 95% CI: 0.76–0.88, p < 0.01) after adjusting for all the
covariates listed above. Patients living in a more deprived neighborhood were associated
with a significantly lower likelihood of initiating a newer ADD than the remaining patients
(aOR 0.87, 95% CI: 0.81–0.94, p < 0.01). Patients living in a neighborhood with more oc-
cupancy were less likely to initiate a newer ADD (aOR: 0.91, 95% CI: 0.87–0.95, p < 0.01)
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than their counterparts. We observed similar trends in racial and ethnic subgroups, and no
significant interaction of race/ethnicity and contextual-level SDoH was detected.
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Table 3. Significant social determinants of health variables associated with the use newer antidiabetic drugs identified by the two-phase approach.

Exposure

Transformation Standard
Deviation

Phase 1
Phase 2

Discovery Set Replication Set

Variable Category OR
(95% CI) q-Value OR

(95% CI) q-Value OR
(95% CI) p-Value

Percentage of low access population
with housing units without vehicle

access at 1/2 mile
Food access log_x 0.165 0.90

(0.85, 0.95) 0.0349 0.86
(0.81, 0.91) <0.0001 0.96

(0.91, 1.01) 0.0905

Neighborhood deprivation index Socioeconomic
status

Yeo-Johnson
(lamda = −0.49) 2.052 0.88

(0.83, 0.93) 0.0024 0.84
(0.79, 0.89) <0.0001 0.92

(0.88, 0.97) 0.0031

Percent of vacant addresses Vacant land Square Root 0.089 0.86
(0.81, 0.91) <0.0001 0.86

(0.82, 0.91) <0.0001 0.91
(0.87, 0.95) <0.0001

Abbreviations: OR, odds ratio; CI, confidence interval. Odds ratio (OR) and 95% confidence interval (CI) for each standard deviation increase.

Table 4. Results from multivariate logistic regressions (with binary contextual-level social determinants of health).

Variable
Overall (n = 28,874) NHW Subgroup

(n = 11,892)
NHB Subgroup

(n = 10,427)
Hispanic Subgroup

(n = 5458)
Other Race Subgroup

(n = 818)

Category aOR
(95% CI) p-Value aOR

(95% CI) p-Value aOR
(95% CI) p-Value aOR

(95% CI) p-Value aOR
(95% CI) p-Value

Neighborhood
deprivation index

Socioeconomic
Status

0.87
(0.81, 0.94) 0.0003 0.80

(0.67, 0.95) 0.0121 0.91
(0.82, 1.00) 0.0517 0.83

(0.70, 0.97) 0.0215 0.81
(0.40, 1.66) 0.5653

Percent of vacant
addresses Vacant Land 0.91

(0.85, 0.98) 0.0087 0.95
(0.84, 1.08) 0.46 0.87

(0.79, 0.96) 0.0073 0.96
(0.77, 1.18) 0.6899 0.92

(0.54, 1.57) 0.7645

Abbreviations: aOR, adjusted odds ratio; CI, confidence interval; NHW, non-Hispanic White; NHB, non-Hispanic Black. Adjusted odds ratio (aOR) and 95% confidence interval (CI) for
comparing the top 20th percentile to bottom 80th percentile (for neighborhood deprivation index: comparing more deprived neighborhoods compare to less deprived neighborhoods; for
percent of vacant addresses: comparing more occupancy neighborhoods compare to less occupancy neighborhoods) while adjusting for age, sex, primary payer, BMI, HbA1c, type of
residence, cardiovascular disease, chronic kidney disease, use of insulin and non-insulin antidiabetic medications.
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4. Discussion

SDoH are not only experienced by individuals but also exert influence at the commu-
nity level. Community-level information about the neighborhoods in which individuals
live, learn, work, and play is recognized as the community’s vital signs [18], conveying
contextual-level social deprivation and impacting health risks. Our study is unique in
linking a set of contextual-level factors documenting social and built environments to exten-
sive collections of EHR data via individuals’ residential histories in a cohort of real-world
patients with T2D. Using a data-driven approach, we determined the key contextual-level
SDoH factors associated with evidence-based treatment for T2D. After accounting for
multiple testing and high correlations among the exposures, two contextual-level SDoH
variables characterizing the neighborhood deprivation and vacant housing were identified
as being significantly associated with individuals’ limited initiation of newer ADD known
to improve cardiorenal outcomes of T2D. These results provide evidence supporting a
spatially explicit data-driven approach in developing interventions to address disparities
in initiation of T2D treatment.

Increasing evidence has demonstrated an association between neighborhood factors
and diabetes outcomes. For example, a more disadvantaged socioeconomic status, poorer
food access and built environment (e.g., walkability, recreational facilities), and less social
cohesion are associated with the risk of T2D [34–37]. Additionally, lower neighborhood
socioeconomic status was significantly associated with worsening physical and mental
health status and poor glycemic control among patients with diabetes [38,39]. However,
very few studies have examined whether contextual-level SDoH may influence healthcare
quality, such as the initiation of evidence-based treatment. A study conducted using claims
data found that contextual-level SDoH, such as poor food access, weak social support, and
lack of a healthy built environment, were significantly associated with non-adherence to
antihypertensive medication [40]. A randomized trial that enrolled 749 Mexican–American
patients at a university-affiliated clinic showed that patients who lived in neighborhoods
with greater deprivation were much less likely to adhere to their ADD protocols than
those living in neighborhoods in the next higher quartile on the deprivation index [41]. In
a US-based study examining the association between neighborhood social environment
factors and adherence to oral antidiabetic medications, residents living in neighborhoods
with high sociability were more likely to adhere to ADD regimens than their counterparts
in less sociable surroundings [42].

The current study found that the NDI, an index documenting neighborhood depriva-
tion, was significantly associated with newer ADD initiation. NDI is a composite indicator
of contextual-level socioeconomic disadvantages in four areas beyond the strictly specified
healthcare setting: income, housing quality, employment, and education. Previous studies
have documented the association between neighborhood deprivation, attributed to income,
employment, and education, and the quality of diabetes care, reporting that patients living
in more deprived neighborhoods were significantly less likely to obtain high-quality dia-
betes care [7,8,10]. At an individual level, a lack of income and unemployment can create
barriers to accessing high-quality diabetes care, while a lack of education has been linked
to poor health literacy [43]. At the contextual level, the role of political context could also
shape socioeconomic factors, and this interplay could result in unequal resource distribu-
tion and structural inequalities in the neighborhoods that perpetuate health disparities [44].
Therefore, individuals with a low socioeconomic profile at the contextual level may face
barriers to the use of novel ADD treatment.

The consequences of vacant housing can extend far beyond just an empty space. Vacant
land usually is an indicator of population out-migration and disinvestment. In addition to
the increased risk of violence and crime [45], vacant housing often leads to a reduction in
business and employment, therefore resulting in a lack of community resources, as well
as access to essential facilities such as food, medical and social support services [46,47],
further exacerbating health disparities in these communities. This lack of resources can
have far-reaching consequences on the health and well-being of individuals residing in
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these areas. Previous studies have shown that empty lots are associated with higher
levels of chronic stress and fewer social interactions, and thus resulting in unfavorable
health outcomes [25]. In our study, individuals living in a neighborhood with more
vacant addresses had lower access to the newer ADD, which could be explained by the
lack of access to high-quality diabetes care. It is essential to address the issue of vacant
housing and provide necessary resources and support to such disadvantaged communities.
Developing innovative strategies, such as mobile medical clinics, have been effective in
serving the requirements of medically vulnerable populations, such as the urban poor [48]
and populations without stable housing [49], for whom accessibility to fixed healthcare is
limited due to the lack of facilities and meager financial resources. MMCs could improve
access to care by overcoming geographic and social restrictions, such as neighborhoods
with many vacant addresses, which traditional, permanent healthcare facilities must avoid,
thus addressing health inequities and mitigating social obstacles to healthcare.

Despite having a disproportionately higher risk of cardiovascular disease, patients
from racial and ethnic minority groups have a lower probability of initiating guideline-
based therapies that improve their outcomes, including the uptake of new ADD [9,50]. It
is suggested that differences might be driven by the disadvantages in insurance coverage
and poor socioeconomic status among these racial and ethnic subgroups, and it has been
acknowledged in several studies that Medicare Advantage enrollees are less likely to initiate
newer ADD than commercial insured patients [7–9]. However, in our study, the racial and
ethnic disparities in new ADD use persisted after adjusting not only for insurance, but
also for NDI, a proxy to socioeconomic status. This represents that such disparity was
not driven solely by insurance factors and socioeconomic status. However, we did not
identify a significant interaction between race/ethnicity and key contextual-level SDoH
in association with initiating newer ADD. While it is possible that the interaction lies
elsewhere and was not captured using the two-phase method presented in this study, our
findings highlight the structural–environmental factors that drive inequities in the use of
evidence-based treatment, independent of race and ethnicity.

Our study has several limitations. First, our study does not exclude patients with
gestational diabetes, and there is a possibility of misclassification for individuals with
pregnancy and gestational diabetes but not diagnosed by physicians. Second, the two-
phase approach we used did not consider non-linear associations and potential interactions.
Generalize additive model could be considered in future work to account for the non-linear
relationships among key contextual-level SDoH in association with the study outcome.
Additionally, Bayesian kernel machine regression and Bayesian multiple index models can
capture the complex interrelations among contextual-level SDoH. Third, although many
contextual-level SDoH have been included to characterize the social and built environment,
this list is not exhaustive. Continuing efforts are needed to improve the measurement of
the contextual-level SDoH further. Fourth, our study cohort was constructed using EHR
data, and we cannot completely preclude the prevalence of users of second-line ADD.
However, we extended our baseline to three years and restricted individuals who had
at least two encounters per year to capture prescription and medical information, which
largely eliminated the cases of prevalent users. In addition, regarding the association
between individual-level factors and newer ADD initiation, our results were consistent
with prior studies using claims data [50], suggesting the validity of the current study’s
findings. Finally, participants included in this study were limited to those who received
care at one or more sites included in the OneFlorida+ Clinical Research Network. Thus,
our results may not be generalizable to those who did not receive healthcare at one of
these facilities.

5. Conclusions

In a cohort of T2D patients from a statewide network of EHR, we identified two key
contextual-level SDoH factors associated with limited use of new ADD: individuals living in
neighborhoods with a higher deprivation index and more vacant addresses were less likely
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to initiate newer ADD compared with those living in less deprived and more fully occupied
neighborhoods. Although the specific mechanisms underlying these associations require
further investigation, our findings have contributed to the growing body of evidence of
the neighborhood-level factors, their interplay with race across various spatial contexts,
and their circumstances on evidence-based healthcare. It is crucial to gain a comprehensive
understanding of these complex factors to develop effective strategies for addressing health
equities and promoting evidence-based treatment in T2D care.
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