Table 5.
Data Base | Classification Techniques | Reduction Dimensionality Techniques | Parameters Selected | Accuracy (%) |
---|---|---|---|---|
Dataset1 | NN | Forward Selection | PF(f/VT), PA(TI/TTot), PA(TI), PA(RR), PA(f/VT), IQR(TTot), IQR(CD1-TI), IQR(RR), IQR(f/VT) |
50.00 ± 1.6 |
Bidirectional Search | PF(f/VT), PF(TI/TTot), PA(TI), PA(RR), PA(f/VT), P(TTot) | 58.36 ± 1.3 | ||
Dataset2 | NN | Forward Selection | S(CD1-TTot), (CD1-f/VT), IQR(CD1-f/VT), K(CD2-RR), Sk(CD1-f/VT), K(CD1-f/VT) |
83.31 ± 3.4 |
Bidirectional Search | S(CD1-TTot),(CD1-f/VT), IQR(CD1-f/VT), K(CD2-RR), Sk(CD1-f/VT), K(CD1-f/VT), S(CD1-f/VT), (CA5-TI/TTot), S(CD1-TI), K(CD1-TTot), Sk(CD1-TTot), IQR(CD2-RR), K(CD4-TE) |
91.62 ± 4.9 | ||
Dataset1 | LDA | Forward Selection | PF(f/VT), PA(f/VT), PA(TE), PA(TI/TTot), P(f/VT) | 76.00 ± 10.8 |
Bidirectional Search | (CD2-RR), S(CD2-RR) | 75.34 ± 11.3 | ||
Dataset2 | LDA | Forward Selection | PA(f/VT), IQR(TTot) | 75.36 ± 11.3 |
Bidirectional Search | (CD2-RR) | 80.15 ± 10.6 |