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Abstract: The molecular landscape of acute lymphoblastic leukemia (ALL) is highly heterogeneous,
and genetic lesions are clinically relevant for diagnosis, risk stratification, and treatment guidance.
Next-generation sequencing (NGS) has become an essential tool for clinical laboratories, where
disease-targeted panels are able to capture the most relevant alterations in a cost-effective and fast
way. However, comprehensive ALL panels assessing all relevant alterations are scarce. Here, we
design and validate an NGS panel including single-nucleotide variants (SNVs), insertion–deletions
(indels), copy number variations (CNVs), fusions, and gene expression (ALLseq). ALLseq sequencing
metrics were acceptable for clinical use and showed 100% sensitivity and specificity for virtually
all types of alterations. The limit of detection was established at a 2% variant allele frequency for
SNVs and indels, and at a 0.5 copy number ratio for CNVs. Overall, ALLseq is able to provide
clinically relevant information to more than 83% of pediatric patients, making it an attractive tool for
the molecular characterization of ALL in clinical settings.

Keywords: next-generation sequencing; NGS; molecular characterization; childhood acute lymphoblastic
leukemia

1. Introduction

Acute lymphoblastic leukemia (ALL) is the most common type of pediatric cancer. The
current cure rate reaches 80–90%, but it decreases with age, and the prognosis of relapsed
patients is very poor [1,2].

ALL is caused by the clonal proliferation of immature lymphocytes due to the accumu-
lation of genetic alterations, which gives rise to different biological and clinical subtypes of
leukemia. The presence of genetic lesions that drive distinct subtypes of leukemia has set
the bases of ALL classification, in which novel categories defined by point mutations (such
as PAX5 p.P80R or IKZF1 p.N159N) and additional gene fusions (i.e., ZNF384 or MEF2D
rearrangements) have been recently acknowledged [3,4]. Some of these variants, as well as
copy number variation (CNV) affecting other genes, are used for risk stratification, which
drives treatment intensity [5,6]. Genetic lesions can further be utilized for targeted therapy
selection, against either the affected gene or the altered signaling pathway [7,8]. Therefore,
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as molecular variants are used as diagnostic, prognostic, and predictive biomarkers, their
identification is being increasingly demanded by pediatricians and hematologists.

Next-generation sequencing (NGS) allows the simultaneous assessment of a broad
number of targets in several samples and has therefore become an indispensable tool
for clinical laboratories. Different approaches have been developed in order to optimize
resources and shorten the turnaround time, with pathology-directed panels being the
preferred option in most centers [9]. However, the availability of commercial ALL NGS
panels is scarce, as pan-hematological assays usually lack relevant genes or omit CNV
identification.

The purpose of this work was to design and validate an ALL-targeted NGS panel
(ALLseq), including clinically relevant point mutations, insertion–deletions (indels), CNVs,
fusions, and gene expression. Our results show that ALLseq constitutes a useful tool for
patient characterization, identifying driver and secondary alterations in a single experiment,
thus allowing accurate diagnosis, patient risk stratification, and (in some cases) treatment
selection.

2. Results
2.1. ALLseq Design

The ALLseq design included the targets listed in Table 1 and Supplemental Table S1,
for which point mutations, indels, CNVs, fusions, and/or gene expression can be assessed.

Table 1. Main targets included in the ALLseq design.

DNA (2 Primer Pools): 96,7 kb; 1138 Amplicons,
97.91% Coverage RNA (2 Primer Pools)

HotSpots (SNVs and Indels;
22 Genes)

Whole Coding Sequence
(SNVs and Indels; 32 Genes)

Fusions (271 Fusions,
634 Isoforms)

Expression Quantitation
(7 Genes)

CREBBP *, CRLF2, DNMT3A,
EP300, EZH2, FBXW7, FLT3,

IDH1/2, IL7R, JAK1/2/3,
NOTCH1, PAX5, PIK3CA,
PTPN11, K/NRAS, SETD2,

STAT5B, and SH2B3 *

AKT, BCL11B, BTG1,
CDKN2A/B *, DNM2, EBF1,
EED, ERG *, ETV6 *, GATA3,

IKZF1 *, IL2RB, KDM6A, LEF1,
NF1, NT5C, PAX5 *, PHF6,

PTEN, PTPN2, RB1 *,
RUNX1 *, STAG2, SUZ12,

TET2, TP53, and WT1

Main drivers: ABL1/2, KMT2A,
TCF3, ETV6, EPOR, CSF1R, FLT3,

JAK2, PDGFRA/B, LYN,
NTRK1/2/3, TYK2, FGFR1, IL2RB,
TSLP, PAX5, NOTCH1, MEF2D,

ZNF384, and MYB/L1. Main
fusions: P2RY8::CRLF2,

SET::NUP214, PICALM::MLLT10,
and STIL::TAL

CRLF2, HOXA, LMO2,
NKX2, TAL1, TLX1, and

TLX3

* CNV can be assessed.

2.2. ALLseq Set-Up and Sequencing Metrics

The maximum chip efficiency was obtained when 200 ng of the library pool (4:1 DNA:RNA)
was used for template preparation. Under these conditions, the mean chip load was 88.3%
(35.88% polyclonal; 55.6% usable reads), which yielded a mean of 18,451,079 total reads.

The mean quality metrics per sample showed a read depth of 1903×, on-target and
uniformity percentages > 95%, and a median absolute pairwise difference (MAPD) mean
value of 0.19. The mean read depth < 100× was found on 9/1138 amplicons (0.8%).

We compared the ALLseq main sequencing metrics with those obtained with the
Oncomine Childhood Research Assay (OCCRA). The OCCRA is a commercial pan-pediatric
cancer panel, where some ALL targets are present. No significant differences were found
for the on-target % or the percentage of amplicons showing a low mean read depth (<100×)
(Figure 1A,B). However, the median uniformity % and MAPD were lower in ALLseq
(uniformity: 96.46 vs. 97.77, p < 0.05; MAPD 0.16 vs. 0.25) (Figure 1C,D).
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Focusing on RNA results, the mean total number of RNA mapped reads per sample
was 358,240. All of the analyzed samples passed the quality control test (>20,000 total
mapped reads).

2.3. Technical Validation Strategy and ALLseq Performance

For technical validation, 25 molecularly characterized samples were selected. Nineteen
carried SNVs or indels in DNM2, EP300, FBXW7, FLT3, H3F3A, IKZF1, JAK1, JAK3, KMT2D,
NOTCH1, NRAS, PHF6, PTPN11, or TP53. Eighteen samples harbored CDKN2A, CDKN2B,
IKZF1, JAK2, RB1, PAX5, and/or ETV6 deletions. Six samples were used as DNA negative
controls for SNVs/indels, and seven for CNVs.

Seventeen RNA samples carried one of the following fusions: TCF3::ZNF384, KMT2A::
MLLT10, BCR::ABL1, TCF3::PBX1, ARID1B::ZNF384, PICALM::MLLT10, TERF::JAK2, IGH::
CRLF2 (does not generate a fusion transcript but overexpresses CRLF2), ETV6::RUNX1,
KMT2A::AFF1, STIL::TAL1 (overexpresses TAL1), or EBF1::PDGFRB. Eight samples were
used as negative RNA controls.

2.3.1. SNVs and Indels

ALLseq detected all of the expected SNVs and indels; KMT2D c.8743C>T and H3F3A
c.82A>G were not detected, as these genes were not included in the ALLseq design. ALLseq
identified two additional variants: DNM2 c.2080G>T (not included in OCCRA’s design)
and KRAS c.34G>C (confirmed by direct sequencing and Minor Variant Finder analysis)
(Supplemental Table S2). The VAF of the 34 overlapping variants showed a high correlation
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between ALLseq and OCCRA (R2 = 0.93), and the Bland-Altman plot showed that 93.9% of
the VAF values were in agreement within the 95% confidence intervals (Figure 2).
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2.3.2. CNVs

ALLseq detected at least one CNV in 18/25 (72%) samples and a total of 39 CNVs:
CDKN2A—9/39 (23.1%), CDKN2B—9/39 (23.1%), ETV6–-6/39 (15.4%), PAX5—6/39 (15.4%),
IKZF1—4/39 (10.3%), JAK2—2/39 (5.1%), RB1—2/39 (5.1%), and EBF1—1/39 (2.6%). Eight
discrepancies were observed between ALLseq and MLPA (three for IKZF1, two for PAX5,
one for ETV6, one for EBF1, and one for RB1) (Supplemental Table S3). Altogether, the
CNV Cohen’s kappa coefficient was 0.88.

2.3.3. Fusions and Gene Expression

ALLseq detected fusions and/or high gene expression in 18/25 samples (72%). No
false positives were observed (Supplemental Table S4).

RNA 10 showed CRLF2 expression 229-fold higher than the median, consistent with
the presence of a CRLF2 translocation at the IGH locus in this sample. Similarly, RNA 18,
which harbored a STIL::TAL1 fusion (also identified by ALLseq), expressed TAL1 25-fold
compared to the median (Supplemental Table S5). The expression values of CRLF2 and
TAL1 measured by ALLseq and RT-qPCR showed a high correlation (R2 = 0.98 and 0.90,
respectively) (Supplemental Figure S1). As expected, TLX1, TLX3, NKX2-1, and HOXAA
expressions were undetectable in all patients, as these genes are not expressed in bone
marrow or peripheral blood unless they are deregulated. LMO2 showed a stable basal
expression in all samples. Overall, RNA results were in 100% agreement with the expected
results.

A summary of ALLseq performance can be found in Table 2 and Supplemental Table S4.

Table 2. Main ALLseq analytical performance.

Alteration Type Sensitivity Specificity PPV NPV Precision

SNVs and indels 100% 100% 100% 100% 100%

CNVs
(Cohen kappa

coefficient = 0.88)
88.87% 97.92% 92.85% 95.91% 96.45%

Fusions 100% 100% 100% 100% 100%

Gene expression 100% 100% 100% 100% 100%

2.4. Limit of Detection, Reproducibility, Repeatability, and Linearity

The limit of detection (LoD) for SNVs and indels was established at 2% of VAF. Intra-
experiment repeatability and inter-experiment reproducibility showed a 100% concordance
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above this VAF, and a high correlation (R2 ≥ 0.98) was observed between inter- and intra-
sequencing runs (Figure 3, Supplemental Table S6).
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Figure 3. Repeatability and reproducibility of ALLseq. (A) Replicates in experiment 1. (B) Replicates
in experiment 2. (C) Replicate 1 analyzed in two different experiments. (D) Replicate 2 analyzed in
two different experiments.

The CNV LoD was established at a copy number ratio of 0.5, corresponding with a
heterozygous deletion, when, at least, confidence > 20 and precision >10 were reached
(Table 3). Different analysis rounds showed 100% repeatability and reproducibility for CNV
analysis.

Table 3. Limit of detection for CNVs.

Copy Number Ratio

CDKN2A/B IKZF1

Expected Observed Expected Observed

Dil1 (3:1) 0.5 <1 0.25 ND 1

Dil2 (1:1) 1 1 0.5 <1

Dil3 (1:2) 0.66 <1 0.66 <1
1 ND = not detected.

Regarding fusion expression quantitation, serial dilutions yielded a linear range up to
the 10−4 dilution (Supplemental Figure S2).

2.5. Clinical Validation: Prospective Sequencing

In total, 43 correlative patients were prospectively analyzed with ALLseq, whose main
characteristics are shown in Supplemental Table S7.

DNA sequencing identified 54 SNVs or indels, resulting in a mean of 1.26 variants
per sample. Twenty-five cases (58.1%) harbored at least one mutation. The genes with the
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highest mutational frequency were KRAS (18.52%) (10/54), NRAS (14.81%) (8/54), PTPN11
(14.81%) (8/54), and NOTCH1 (9.26%) (5/54). All of the SNVs and indels were confirmed
by direct Sanger sequencing (Supplemental Table S8, Supplemental Figure S3A).

Sixty-eight CNVs were found in 28 out of 43 samples (65.12%). The mean number
of affected genes was 1.58 (range 0–6) per patient. The most frequently deleted gene
was CDKN2A (19.12%; 13/68), followed by CDKN2B (16.18%; 11/68) and ETV6 (8.82%;
6/68). Notably, ALLseq detected additional copies of RUNX1 and TP53 in patients carrying
chromosome 17 and 21 gains (including a patient harboring intrachromosomic amplification
of chromosome 21, iAMP21), respectively (Figure 4, Supplemental Figure S3B). Results
from 5/43 (11.63%) patients were discordant with MLPA (Supplemental Table S8).
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Figure 4. Copy number variations identified by ALLseq in two different patients. The x axis shows
the gene regions, while the y axis represents the copy number ratio values. The red circles highlight
the gains or losses. (A) The dot plot shows a gain of RUNX1, associated with the iAMP21 entity.
(B) The dot plot shows the loss of exons 4–7 of IKZF1, resulting in the main pathogenic isoform (IK6)
in ALL.

Overall, a total of 122 SNVs, indels, and CNVs were detected in the DNA. Genes
affected by these alterations were grouped according to the signaling pathway in which
they have a role. The most frequently altered were the TP53-cell cycle (30.33%; 37/122),
followed by the RAS (18.03%; 22/122) and lymphoid differentiation (17.21%; 21/122)
pathways. Interestingly, the RAS pathway was only affected by SNVs or indels and
represented 41.07% (22/54) of these alterations (Supplemental Figure S4).

ALLseq detected fusions in 11/43 samples (25.6%). The most frequent fusion was
ETV6::RUNX1, identified in 5/43 patients (11.6%), followed by KMT2A rearrangements
and STIL::TAL1, each detected in 2/43 patients (4.6%) (Supplemental Table S8). All the
fusions were confirmed by orthogonal methods.

Regarding gene expression, 3 out of 43 (6.9%) patients overexpressed CRLF2. One
harbored the t(X;14)(p22;q32) translocation (detected by cytogenetics and FISH); another
carried the CRLF2::CSF2RA fusion, also detected by ALLseq and FISH; and the third patient
showed a pseudoautosomic region 1 (PAR1) amplification, which contains CRLF2. Further-
more, the two samples harboring STIL::TAL1 (detected by ALLseq and FISH) overexpressed
TAL1 (Figure 5). Additionally, two patients with translocated TLX3 (confirmed by FISH)
met the overexpression criteria for this gene (Supplemental Table S8).
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are depicted. The red discontinuous line marks the overexpression cutoff value of 105 (target
reads × 104/total mapped reads). Samples overexpressing the target gene for which the molecular
mechanism was confirmed are highlighted as colored dots.

Of note, we detected ectopic TLX1 and NKX2-1 expression in two patients. These
genes are not usually expressed in hematopoietic tissue unless deregulated, but TLX1 was
expressed in one T-cell patient harboring the t(7;17)(q31;q12) translocation (identified by
conventional cytogenetics), and NKX2-1 was expressed in a T-cortical patient for which no
molecular mechanism was found.

Overall, the combined DNA and RNA results showed a total of 142 alterations. Com-
prehensive molecular and basic clinical data are shown in Figure 6.

Next, we tested the ALLseq clinical yield by exclusively classifying prospective pa-
tients according to these NGS results. Only pathogenic variants complying with at least
one of these criteria were considered as clinically relevant, i.e., (a) variants that define
World Health Organization (WHO 2022) and/or the International Consensus Classifica-
tion of myeloid neoplasms and acute leukemias (ICC 2022) categories [3,4] (of note, ALL
classification was updated during the development of this project so we used the latest
classifications, although the design was based on the previous versions); (b) variants defin-
ing genetic risk groups considered by the ALLTogether treatment protocol; and (c) variants
allowing patient selection for targeted therapy according to the ALLTogether protocol or
active clinical trials.

Under these premises, 63/142 (44.37%) of the pathogenic variants were considered as
clinically relevant. Subsequently, ALL patients were allocated into three groups, depending
on the clinical utility of the alteration(s) they carried: diagnosis, risk stratification, and/or
targeted therapy. Moreover, 12/43 (27.91%) patients carried entity-defining alterations,
32/43 (74.42%) harbored risk-associated lesions, and 10/43 (23.26%) were suitable for
targeted therapy (Figure 7A). Co-occurrence among these categories is shown in Figure 7B.
Overall, 36/43 (83.72%) patients could benefit from molecular findings derived from
ALLseq. Among the seven remaining patients, four harbored aneuploidies, and three did
not show any additional molecular lesion.
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are shown at the bottom.

Finally, we analyzed the clinical utility of ALLseq and cytogenetics as independent or
combined techniques. When used as a stand-alone method, ALLseq provided information
related to prognosis or treatment to more patients than cytogenetics, while slightly more
patients benefited from cytogenetics than ALLseq for the identification of ALL entities. By
combining both techniques, most patients (40/43; 93.02%) could be diagnosed, classified
into risk groups, and/or benefit from targeted therapies (Figure 7C).
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3. Discussion

In the present study, an ALL-targeted NGS panel was designed and validated. ALLseq
allows clinically relevant SNVs, indels, CNVs, fusions, and gene expression alterations to
be detected, which, to the best of our knowledge, makes our panel unique.

ALLseq was conceived specifically for somatic analysis. However, recent research
points to germline variants as a driving mechanism in familiar cases [10]. In suspected
cases, germline origin must be confirmed in culture skin fibroblasts according to current
recommendations. If confirmed, the patient should be assigned to a specialized unit [11,12].

ALLseq sequencing metrics were equivalent to those reported by commercial panels
such as the OCCRA, which were also in line with its Illumina counterpart [13]. The overall
performance of ALLseq, as assessed by sensitivity, specificity, PPV, NPV, and accuracy, was
100% on SNVs, indels, and fusions, and only CNV identification was slightly poorer.

The reliable identification of CNVs using NGS continues to be a challenge due to
unequal target coverage [14]; however, ALLseq CNV reliability was acceptable according
to Cohen’s criterion.
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The LoD was set at 2% VAF for SNVs and indels, which is acceptable in the clinical
context, as most protocols establish 5% as the cut-off value for considering variants as clini-
cally relevant [15,16]. Although the LoD is sufficient for SNV and indel detection, special
attention to low blast % samples is required when analyzing CNV and gene expression
with NGS, as recommended by Jennings et al. [17].

The main limitation of ALLseq, like most targeted panels, is its inability to identify
aneuploidies, which are present in up to 30% of pediatric ALL cases. However, these
alterations are easily identified by cytogenetic techniques, which are routinely performed in
all laboratories. It cannot detect DUX4 deregulation (which represents 7% of B-ALL), which
has been considered an independent entity by the WHO 2022 and ICC 2022 classifications
and confers favorable prognosis [18]. DUX4 deregulation is technically difficult to detect,
as it is located within a repetitive region on chromosome 4q, with an almost identical locus
on 10q. Thus, primers can bind to multiple loci on both 4q and 10q. Additionally, DUX4
fusions show great variability in breakpoints [19].

ALLseq allows 634 fusions to be identified (including ABL-class translocations and
virtually all of the class-defining fusions), as well as the aberrant expression of seven genes
including CRLF2. Notably, up to 50% of Ph-like ALLs overexpress this gene due to fusions,
mutations, and alterations in the JAK-STAT pathway [20]. Therefore, with the ALLseq
design, most Ph-like patients can be diagnosed, allowing the identification of candidates
for targeted therapies with tyrosine kinase or JAK-STAT inhibitors (NCT03571321). In fact,
we were able to define the ALL subtype of around 30% of patients, among whom 7% were
Ph-like cases overexpressing CRLF2.

The recent update of the WHO 2022 and new ICC ALL classifications included, for the
first time in this disease, categories defined by point mutations. Moreover, the potential use
of targeted therapies in patients carrying SNVs or indels highlighted the clinical relevance
of these alterations in ALL. In fact, ALLseq identified point mutations in FLT3, the NOTCH1
pathway, or JAK family genes, for which targeted inhibitors have been developed [21], in
16% of patients.

Regarding CNV identification, IKZF1 deletions have been classically recognized as
conferring poor prognosis [22]. More recently, several European groups have developed
different CNV profiles that are significant for risk stratification. In particular, the COALL
has proposed the IKZF1plus group, defined by the deletion of IKZF1 co-occurring with at
least one additional deletion in CDKN2A/Bhomo, PAX5, or the pseudo autosomic region 1
(PAR1) in the absence of ERG deletion, which distinguishes high-risk ALL patients who
benefit from treatment intensification [23]. Similarly, the British group proposes a CNV
profile (UKALL-CNA) involving IKZF1, CDKN2A/B, PAR1, BTG1, EBF1, PAX5, ETV6,
and RB1 to refine risk groups [24]. The ALLTogether (NCT04307576) treatment protocol
incorporates the UKALL-CNA risk stratification, making CNV assessment mandatory.
With ALLseq, we were able to correctly risk-stratify around 90% of patients.

Cytogenetic approaches have been the main diagnostic tool in ALL, given the exclusive
importance of aneuploidies and a few translocations in this disease just a decade ago [25].
However, the development of “omic” technologies has substantially broadened the spec-
trum of molecular lesions that explain the onset of ALL. In this context, NGS has been
incorporated as a complementary tool into most clinical laboratories [26]. Our results show
that the combination of ALLseq and cytogenetics provide clinical information to virtually
all patients, reducing the number and type of assays necessary for ALL characterization
(RT-PCR, MLPA, SNP arrays, etc.). It is worth mentioning emerging technologies, such
as optical genome mapping, which will surely be useful for the analysis of ALL patients.
This technique, unlike NGS targeted panels, is not restricted to a list of genes and therefore
is able to detect novel alterations [27]. Moreover, it can detect numerical and structural
chromosome alterations as well as gene-level gains or losses, which makes it very useful for
ALL characterization. However, it is unable to detect SNVs and indels which, as discussed
above, are currently needed for ALL diagnoses [3,4]. The continuous availability of novel
genomic methodologies makes it difficult to define the optimal technology(ies) for ALL
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characterization. The molecular knowledge of ALL is an evolving field; therefore, the best
diagnostic approach has to be flexible and adapt to conform to the latest guidelines. In this
context, interdisciplinary groups carrying out an integrated diagnosis become essential in
configuring the diagnostic workflow of ALL [28].

In conclusion, ALLseq allows the most frequent alterations in ALL to be identified.
Although there are certain limitations to be considered when interpreting the results, the
panel constitutes a useful tool for patient characterization and management, as it allows the
identification of driver and secondary alterations in a single experiment, thus permitting
accurate diagnosis, patient risk stratification, and (in some cases) treatment selection.

4. Materials and Methods
4.1. Patient Samples and Inclusion Criteria

The study included pediatric and adolescent (≤18 years old) ALL patients diagnosed
at Hospital Universitari i Politècnic La Fe (Valencia, Spain). Inclusion criteria were as
follows: availability of high-quality DNA and RNA from bone marrow or peripheral blood,
and written informed consent in accordance with the recommendations of the Declaration
of Human Rights and the Conference of Helsinki. The Institutional Ethics Committee for
Clinical Research approved this study (approval numbers 2021-045-1 and 2022-09-04).

4.2. ALLseq: An ALL-Targeted Custom NGS Panel

A custom panel targeting ALL (ALLseq) was designed using the White Gloves Service
from Thermo Fisher Scientific. Target selection was based on its potential clinical utility
according to 2 levels of evidence:

• Level 1: clinical guidelines and clinical trials: (a) alterations included in the WHO clas-
sification of hematolymphoid tumors in force at the time of the start of the study [29];
(b) alterations defining genetic ALL subtypes [30]; (c) alterations used for risk stratifi-
cation by international cooperative groups [31], NCT04307576]; (d) alterations used
for potential targeted therapy [32].

• Level 2: other pathogenic alterations described in large cohorts: (a) variants that
cluster into specific subtypes of ALL [15,33]; (b) variants associated with good or bad
prognosis but not currently used for patient risk stratification [34]; (c) variants that
confer resistance to specific drugs in vitro/in vivo experiments [35].

The sequencing workflow was carried out on Ion Torrent platforms (Thermo Fisher
Scientific, San Francisco, CA, USA). DNA libraries were generated from 10 ng of DNA, with
an initial PCR consisting of 17 cycles and 4 min of extension time; for RNA libraries, cDNA
was generated with the SuperScript™ IV VILO™ kit (Thermo Fisher Scientific) from 10 ng
of total RNA, and PCR was performed with 20 cycles and 4 min of extension time. Library
and template preparation was carried out automatically on the Ion Chef™ Instrument
(Thermo Fisher Scientific) using the Ion AmpliSeq™ Kit for Chef DL8 (Thermo Fisher
Scientific) and the Ion 510™ & Ion 520™ & Ion 530™ Kit-Chef (Thermo Fisher Scientific),
respectively. Libraries from eight samples were loaded onto an Ion 530™ Chip (Thermo
Fisher Scientific) and sequenced on an Ion S5 sequencer (Thermo Fisher Scientific).

4.3. Data Analysis

Human genome build 19 was used as the reference genome. Base calling was per-
formed on Torrent Suite software version 5.10.0 (Thermo Fisher Scientific). Variant iden-
tification was accomplished with the Variant Caller Plugin (Thermo Fisher Scientific),
and variant annotation was performed using Ion Reporter (IR) software version 5.10.3.0
(Thermo Fisher Scientific).

For CNV assessment, the normalized read depth of each sample was compared
with that of the reference baseline (generated by sequencing 20 healthy controls). The
IR software applied an algorithm based on a hidden Markov model, which predicts the
copy number or the ploidy state. A copy number of 2 was considered as normal, values
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≥ 3 were considered as amplifications, and a copy number ratio of one or zero suggested
heterozygous or homozygous deletions, respectively.

4.4. ALLseq Validation Strategy

For technical validation, 25 retrospective patients harboring a >90% blast count in bone
marrow or peripheral blood and a complete molecular characterization were selected. A
second validation round was carried out by sequencing sequential unbiased ALL samples
to assess the clinical utility of the panel.

Complementary Molecular and Cytogenetic Methods

All the ALL samples were analyzed at diagnosis by the following methods: conven-
tional cytogenetics, an ALL FISH custom panel (Cytocell Ltd., Cambridge, UK), RT-PCR
to asses ETV6::RUNX1 and BCR::ABL1 fusions [36], and MLPA SALSA P335 ALL-IKZF1
(MRC Holland, Amsterdam, NL).

The Oncomine Childhood Research Assay (OCCRA; Thermo Fisher Scientific) was
used retrospectively to further characterize ALL samples following the manufacturer’s
instructions. After sequencing, variant filtering was performed on IR software version
5.10.3.0 (Thermo Fisher Scientific). For ALLseq technical validation, intronic and synonym
variants were filtered out, whereas pathogenic and likely pathogenic variants, as well as
variants of unknown significance (VUS), were retained.

Variants detected by NGS (OCCRA and/or ALLseq) were confirmed by Sanger se-
quencing and Minor Variant Finder software (Thermofisher Scientific) (SNVs and indels)
or qRT-PCR (fusions and gene expression alterations). Fusion characterization and gene
expression were assessed by qRT-PCR on a LightCycler 480 II (Roche Diagnostics, Switzer-
land, AG) using Sybr green and ABL1 as the control gene. Primers and PCR parameters
are described in Supplemental Tables S9 and S10. For selected samples, optical genome
mapping (OGM) was used following the manufacturer’s instructions in order to confirm
CNVs not included in the MLPA SALSA P335 ALL-IKZF1.

4.5. ALLseq Technical Validation
4.5.1. Run Metrics and Quality Criteria

A DNA result was considered evaluable if it met the following requirements: mean
read depth ≥ 1500× per sample; uniformity and on-target reads ≥ 80%; and MAPD < 0.5,
confidence > 20, and precision > 10 for CNV analysis. Regarding RNA, a minimum number
of 20,000 mapped reads was established; gene and fusion expression levels were calculated
as [(target reads × 1000)/total RNA reads].

The mean on-target and uniformity percentages, depth of coverage, and MAPD
yielded by ALLseq were compared with those from the OCCRA.

4.5.2. Assessment of Analytical Performance

Sensitivity [true-positive (TP)/(TP + false-negative (FN))], specificity [true negative
(TN)/(TN + false-positive (FP))], precision [(TP + TN)/n], positive predictive values (PPVs)
[TP/(TP + FP)], and negative predictive values (NPVs) [FN/(FN + TN)] were assessed by
comparing ALLseq results with data from orthogonal techniques described above. The
Bland–Altman method was used to assess the variant allele frequency (VAF) agreement
between ALLseq and OCCRA panels. CNV detection reliability was further evaluated
with Cohen’s kappa coefficient, where a value > 0.8 indicates a high agreement with the
gold-standard method.

Fusion expression linearity was assessed by diluting an ETV6::RUNX1-positive sample
at 1:10, 1:100, and 1:1000 ratios into a negative control. Gene expression was quantified
by ALLseq and qRT-PCR and compared. The overexpression cutoff was established at
105 expression units (target reads × 104/total mapped reads). In order to calculate analytical
performance for gene expression, expression units were dichotomized (overexpression vs.
no overexpression) according to the cutoff criteria.
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4.5.3. Limit of Detection, Reproducibility, and Repeatability

To assess the LoD, repeatability, and reproducibility, a DNA pool from samples
harboring NOTCH1 (p.Phe2509fs, VAF 6.55%; p.Phe1606_Lys1607insAspSerPro, VAF
7.25%), NRAS (p.Gly12Cys, VAF 17.47%), KRAS (p.Leu19Phe, VAF 16.37%), and/or DNM2
(p.Arg123Ter, VAF 21.16%) was created. Two serial VAF dilutions (ratios of 1:2 and 1:4) were
prepared using a wild-type control sample. For each dilution, two independent libraries
were sequenced twice in back-to-back experiments. In these experiments, a coefficient of
variation (CV) ≤ 20% was considered acceptable for VAF values.

In order to obtain the CNV LoD, two samples harboring CDKN2A/B homozygous
deletion (CDKN2A/Bhomo) and IKZF1 heterozygous deletion (IKZF1hetero), respectively,
were combined at different ratios (CDKN2A/Bhomo:IKZF1hetero; 3:1, 1:1, and 1:2) creating
different copy number ratios. A sample pool was analyzed in three consecutive experiments
to test the reproducibility and repeatability.

4.6. ALLseq Clinical Validation

A total of 43 correlative patients were prospectively analyzed. In these patients,
pathogenic and likely pathogenic variants were confirmed with complementary methods,
as described above.

4.7. Statistical Analysis

Medians of quantitative variants were compared with Mann–Whitney’s U test. Qual-
itative parameters were compared with the chi-square’s test and Cohen’s kappa coef-
ficient. A Bland–Altman plot was used to assess the agreement between VAF values
obtained by ALLseq and OCCRA panels. Box plots were generated with BoxPlot R
(http://shiny.chemgrid.org/boxplotr, accessed on 16 December 2022). A Circos plot was
generated as described by Krzywinski et al. [37]. A landscape diagram was created using
Oviz-bio, a free web-based platform for interactive data visualization [38].

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms24054440/s1.
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