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Abstract: Nanoplatforms applied for the loading of anticancer drugs is a cutting-edge approach for
drug delivery to tumors and reduction of toxic effects on healthy cells. In this study, we describe
the synthesis and compare the sorption properties of four types of potential doxorubicin-carriers,
in which iron oxide nanoparticles (IONs) are functionalized with cationic (polyethylenimine, PEI),
anionic (polystyrenesulfonate, PSS), and nonionic (dextran) polymers, as well as with porous carbon.
The IONs are thoroughly characterized by X-ray diffraction, IR spectroscopy, high resolution TEM
(HRTEM), SEM, magnetic susceptibility, and the zeta-potential measurements in the pH range of
3–10. The degree of doxorubicin loading at pH 7.4, as well as the degree of desorption at pH 5.0,
distinctive to cancerous tumor environment, are measured. Particles modified with PEI were shown
to exhibit the highest loading capacity, while the greatest release at pH 5 (up to 30%) occurs from the
surface of magnetite decorated with PSS. Such a slow release of the drug would imply a prolonged
tumor-inhibiting action on the affected tissue or organ. Assessment of the toxicity (using Neuro2A
cell line) for PEI- and PSS-modified IONs showed no negative effect. In conclusion, the preliminary
evaluation of the effects of IONs coated with PSS and PEI on the rate of blood clotting was carried
out. The results obtained can be taken into account when developing new drug delivery platforms.

Keywords: doxorubicin; sorption; iron oxide nanoparticles; surface functionalization; magnetic
properties; cell viability

1. Introduction

Doxorubicin (DOX) and other antibiotics from the anthracycline series attract the
attention of the scientific community due to the simultaneous combination of positive and
negative effects on human body [1–4]. Furthermore, DOX plays a key role in the treat-
ment of many neoplastic diseases, in particular cancer, even though its prolonged action
causes cardiomyopathy and congestive heart failure [5,6]. A strong desire to reduce cardio-
and nephrotoxicity of DOX led to the idea of binding the drug to various nanomaterials,
e.g., engineered nanoparticles [7]. Various nano-sized structures based on synthetic and
natural polymers, solid lipids and lipid nanoemulsions (liposomes), silver, gold, calcium
carbonate, metal–organic frameworks, carbon, silicon, or magnetic materials have been
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proposed as controlled delivery systems for doxorubicin [8–11]. Among nanocarbon ma-
terials, graphene, graphene oxide, carbon nanotubes, and fullerene are explored [12–17],
with a focus on the toxicity and biocompatibility of the nanosystems in use. Nanoplatforms
based on magnetic nanoparticles are the most commonly used for drug delivery, including
DOX [18–22]. Their advantages include simplicity and cheap synthesis, biocompatibility,
and the ability to efficiently adsorb the drugs that makes them ideal candidates for the
reconstruction of a drug delivery platform. Despite the fact that the different ionic forms
produced by iron oxide nanoparticles (IONs) after degradation can be easily assimilated
by the body [23], there is still no unambiguous conclusion about the biocompatibility
of IONs [24]. This stimulates further research in the field of biological applications of
IONs [25–29]. An additional advantage of using IONs is their superparamagnetic prop-
erties, which make it feasible to control the drug delivery using an external magnetic
field [8,30]. The IONs are also employed in magnetic resonance imaging, molecular imag-
ing, hyperthermia, and cancer diagnostics [19,31–35]. Such attractive biomedical facets
open an avenue for combining the specificity of drug delivery and magnetic resonance
imaging, which enhances the effectiveness of anticancer therapy [36–38].

Due to the developed surface, the IONs tend to aggregate and oxidize. For this
reason, their surface is coated with inorganic, organic, or polymeric materials that per-
form the functions of surface protection and selective functionalization, as reviewed by
Zhu et al. [39]. It is important to note that the list of non-polymeric modifiers used for the
loading and delivery of DOX is rather short, with a few contributions on IONs coated
with silicon dioxide [40–42], gold [43], zinc oxide [44], and silicon dioxide activated with
glutaric anhydride [45]. In addition, co-coating with carbon and/or gold conjugated
with glutathione [46] and polypyrole [47] has been reported. Alternatively, magnetite
can be covered with dimercaptosuccinic acid [48], citric acid [49], oleic acid [50], nonionic
surfactants [50], and carbon [51].

In contrast, IONs are much more actively functionalized with synthetic and nat-
ural polymers for the purpose of DOX delivery [7,52–55]. Modification of the surface
with polymers provides the sorbent with new useful properties, including pH and ther-
mal sensitivity [56–59] and controlled drug release [60]. The polymer coating based on
polyethylene glycol (PEG) helps reduce the drug degradation and thereby reduces the toxic
effect on healthy cells [61]. Surface modification with the polysaccharides carrageenan [62],
starch [63], cellulose [64], chitosan [65,66], and various conjugates based on polysaccha-
rides [67–71] proved useful to enhance the selectivity of DOX release. The functionalization
of IONs by proteins and large biomolecules also contributes to an increased efficiency
of the use of IONs in cancer therapy [72,73]. Coating of IONs with heparin promotes
anticoagulant activity and also has its own anticancer properties [74,75]. Described in
recent literature is the use of nonionic polymers and block copolymers, as detailed in the
Supplementary Materials Table S1. From the tabulated data, it is evident that the majority
of alternative, ionic polymeric coatings contain the carboxyl group that renders a negative
charge under sorption conditions and therefore electrostatic interactions with the proto-
nated amino group of DOX. Among other valuable assets, most of the presented polymers
are safe for in vivo use and are easily biodegradable.

Another promising direction in shaping cancer therapy is the use of magnetolipo-
somes [76,77]. Encapsulation of IONs into a liposome reduces the toxicity of the DOX and
improves the IONs delivery, increases the DOX release, and also expands the possibilities
for combining treatment methods [76,78–80]. However, there is a need to destroy the lipo-
some prior to applying the combined chemotherapy with magnetic hyperthermia, which
requires additional technical equipment [81].

It should be noted that sometimes the modifier adversely affects the biocompatibility
of the material. The use of a cationic surfactant, CTAB, as a surface modifier increases
the loading of DOX but reduces cell viability, causing the formation of pores in the cell
membrane [82]. Therefore, the major aim of coating is to balance high sorption capacity,
selectivity, and aggregative stability of nanoplatforms with their non-toxicity.
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To reach the affected tissue, the IONs must pass through the capillaries and avoid
phagocytosis, thus, their size should be less than 100 nm [83,84]. In addition, IONs must
have a high magnetization which should disappear after the removal of the magnetic field
in order not to cause the formation of aggregates [83,85]. Accordingly, the average size of
IONs less than 100 nm or in the range of 100–150 nm is considered the best for loading and
efficient drug delivery [7,86]. When choosing the proper size of IONs, it is also necessary to
take into account the methods of their excretion from the body. It has been reported that
particles up to 20 nm in diameter are removed from the blood through the kidneys, while
particles > 100 nm, as a rule, are absorbed by the liver, spleen, or bone marrow [84].

A detailed analysis of available literature allows for several general conclusions. First,
commonly used are the IONs of widely varied sizes, from small 6–10 nm, to medium (tens
of nm), and quite large, over 100 nm and up to 300 nm. This is due to the fact that a priori
it is unclear which particular size would provide the best targeting function [84,87,88].
For instance, for IONs ranging from 60 to 310 nm it was found that smaller nanoparticles
demonstrate better cellular internalization, deeper penetration into multicellular spheroids,
and provide higher efficiency of photothermal ablation in vitro. At the same time, large
IONs are better accumulated in tumors, causing more effective inhibition of their growth.
In their turn, 120 nm particles are best suited for magnetic resonance imaging and in vitro
photoacoustic tomography. It is noted that apart from the size, the particle shape and the
chemical composition of the modified surface may be important [89].

Second, in most studies the authors focus on block copolymers of complex structure
(see Table S1). However, such techniques are of little use in the biomedical practice,
since multi-stage synthesis is difficult and time-consuming. Furthermore, sorption and
desorption processes on such modified particles sometimes last several days and have low
efficiency. Third, only one type of ION surface modifier is usually subject to investigation.
This shortcoming retards the choice of the most effective carrier for DOX. Likewise, little
attention has been paid on the influence of the size and shape of the ION core.

The aim of this work was to (i) obtain IONs of 80–150 nm in size, (ii) modify their
surface with cationic and anionic polyelectrolytes, nonionic polymer dextran, and porous
carbon, and (iii) reveal the optimal core–shell system for the sorption of DOX, with the
objective to develop and implement an effective nanocarrier for controlled drug deliv-
ery. The modified IONs were characterized in detail by various methods (XRD, FTIR,
measuring the zeta-potential, scanning and transmission microscopy, etc.) to explain the
sorption behavior.

2. Results and Discussion
2.1. Characterization of IONs
2.1.1. X-ray Diffraction

The crystal structures of Fe3O4 were characterized by X-ray diffractometer, as shown
in Figure S1. Diffraction peaks at 2θ values around 30.11◦ (200), 35.61◦ (311), 43.13◦

(400), 53.67◦ (422), 57.17◦ (511), 62.77◦ (440), and 73.25◦ (533) correspond to the lattice
planes of the face-centered cubic Fe3O4 phase [90,91], being in good agreement with the
standard XRD data card of Fe3O4 crystals (JCPDS No.85–1436). The synthesis product, in
addition to magnetite, contains fractions of hematite Fe2O3 and goethite FeO(OH), at 24
and 6%, respectively. High-temperature treatment (boiling) in propylene glycol reduced
the proportion of hematite to 11%, while the goethite phase disappeared completely.

2.1.2. SEM and TEM

The results of TEM and SEM measurements of particle size are presented here and in
the Supplementary Materials Figures S2 and S3. The synthesized materials are a polydis-
perse ensemble of crystalline particles of cubic magnetite. Particle size (d) for unmodified
magnetite Fe3O4, determined from TEM and SEM images, is in the range of 80–150 nm. The
calculated values of d were limited to a sample of 500 particles. The presence of fine (d < 80)
and larger (d > 150) fractions does not exceed 10% by volume. Thus, the average particle
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size (dav) is 115 ± 35 nm. The TEM micrographs also show variable in size aggregates with
a size of 300–400 nm.

Using HRTEM, the size of the magnetite particles after surface modification (PSS, PEI,
and Carb) was determined to estimate the change in the size of the shell thickness after
the sorption of DOX (see Section 3.6 for more detail). Based on TEM images, it was found
that the shell for PSS- and PEI-modified IONs is uniform (Figure 1c,e). The thickness of
MNPs is 11.6 ± 0.6 and 11.2 ± 2.6 nm for Fe3O4@PSS and Fe3O4@PEI, respectively. The
thickness of the porous carbon layer in Fe3O4@Carb (Figure 1g,h) is substantially wider,
26.0 ± 6.7 nm. The TEM micrographs witness that the IONs coated with PSS and PEI are in
an aggregated state while forming the chain structures (Figure S3). The reason may be the
interaction between the polymer shells of MNPs as well as intrinsic limitations of TEM and
SEM, operating in a high vacuum where particles tend to stick together.
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Figure 1. HRTEM images for the IONs before DOX sorption: (a)—Fe3O4, (c)—Fe3O4@PSS,
(e)—Fe3O4@PEI, and (g,h)—Fe3O4@Carb; and after sorption of DOX: (b)—Fe3O4@DOX, (d)—
Fe3O4@PSS@DOX, (f)—Fe3O4@PEI@DOX, and (i)—Fe3O4@Carb@DOX.

For unmodified magnetite, the particle sizes before (Figure 1a) and after DOX sorption
(Figure 1b) are comparable. The presence of the drug was not detected on HRTEM-
photographs, and the change in particle size is not significant, amounting less than 5% of the
average size. The results for the modified materials also indicate the absence of noticeable
changes in the particle morphology after the sorption of DOX: the shell thickness of
Fe3O4@PSS@DOX was 11.0± 0.7 nm (Figure 1d), and for Fe3O4@Carb@DOX 26.1 ± 7.5 nm
(Figure 1i). Changes for Fe3O4@PEI are more noticeable. After the sorption of the drug, the
average shell thickness increased by 2.9 nm (the thickness of the Fe3O4@PEI@DOX shell
was 14.1 ± 1.9, see Figure 1f), likely indicating the presence of DOX on the surface.
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2.1.3. Infrared Spectroscopy

The IR spectra of the original magnetite and magnetite coated with porous carbon
and polymers are shown in Figure 2. The summary of peak assignment, given in Table 1,
confirms the successful surface modification.
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Figure 2. IR spectra of IONs covered by different surface modifiers: (1)—Fe3O4, (2)—Fe3O4@Carb,
(3)—Fe3O4@Dex, (4)—Fe3O4@PEI, and (5)—Fe3O4@PSS.

Table 1. IR band assignment for modified magnetite particles.

Surface
Modifier Wavenumber (cm–1) Assignment

pure Fe3O4 575 Stretching vibrations of Fe–O bond [92]

PEI

3200–3400 Stretching vibrations of N–H bond [93]
2920 Stretching vibrations of C–H groups of CH in PEI [94]
2780 Stretching vibrations of C–H groups of CH2 in PEI [91]
1560 Deformation vibrations of C–N bond
1460 Deformation vibrations of CH2 group [95]

1037,1090 Stretching vibrations of C–N bond [95,96]

Carb

3300–3450 Stretching vibrations of O–H bond
2950, 2880 Stretching vibrations of C–H groups of CH in carbon [97]
1700, 1580 Stretching vibrations of C=O bond [92,98]

1604 Stretching vibrations of C=C bond [99]
1000–1450 Stretching vibrations of C–O bond [98]

875–750 Out-of-plane bending vibrations of aromatic CH groups [98]

Dex

3200 Stretching vibrations of O–H bond [100]
2900 Stretching vibrations of C–H bond in -CH2 group [100]
1636 Stretching vibrations of C=O [101]
1344 Stretching vibrations of C–O [100]

1105, 1075, and 1020–995, Stretching vibrations of C–O–C ester group of dextran [100,102,103]

PSS

2930, 2800 Stretching vibrations of C–H bond in –CH3 and –CH2– groups [104]
1590 Stretching vibration of a C–C bond in an aromatic ring
1350 Vibrations of the O–S–O double bond in –SO3H group
1200 Stretching vibrations of the O=S=O in –SO3H groups [105]
1110 C–H bending vibrations of the aromatic ring

1120, 1152, and 1034 S=O stretching vibrations of the sulfonic group [104,106]
770 Bending vibrations of C–H
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The IR spectra of DOX itself and magnetite nanoparticles with adsorbed DOX are
presented in Figure 3. In all cases the drug’s spectrum is subject to drastic changes,
indicating that its sorption does take place. The strongest spectral changes are observed
upon sorption on the pure magnetite nanoparticles and Fe3O4 coated with porous carbon.
Characteristic absorption peaks and their assignments are summarized in Table 2.
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Table 2. Characteristic IR bands of doxorubicin and its conjugates with magnetite nanoparticles.

Wavenumber (cm−1) Assignment

3282 Stretching vibrations of O–H bond
2925, 2885 Stretching vibrations of C–H bond in –CH2 group [107]

1725 Stretching vibrations of C=O [107]
1611, 1577, 1412 C=C stretching vibrations of the aromatic ring [107]

1105, 1067 Stretching vibrations of C–O–C ester group [107]
1008 Deformation vibrations of C=O [108]
693 Stretching vibrations C=C ring bend [107]

The change in the IR spectra after the sorption of DOX indicates the presence of the
drug on the surface of the sorbents.

2.1.4. Magnetic Characterization

The magnetic properties were measured using vibrating-sample magnetometry that
assumes that the saturation magnetization (Ms) is related to the sample mass [109]. By
a slightest change in the Ms and coercive force (Hc), it is possible to detect not only
changes in the internal structure of the magnetic material and pertinent chemical processes
(particle growth, oxidation, etc.), but also changes in the mass of the sample with high
accuracy [70,110].

As can be seen from Figure S4 and Table 3, implementation of the modifiers slightly
reduces the magnetization compared to the parent magnetite. Specifically, functionalization
with polymers, regardless of their nature, results in a magnetization decrease of almost 10%.
This may indicate small differences in the thickness of the modifier layer on the magnetite
surface, shielding the magnetic core and hence reducing its magnetic moment [69]. For
Fe3O4@Carb, the magnetization is reduced by 20%. Importantly, for all types of nanoparti-
cles under scrutiny, superparamagnetic behavior is observed with a characteristic absence
of residual magnetization and an insignificant HC of 5.0 mT. This phenomenon presents a
crucial factor for using magnetic drug carriers in the biomedical field. As already mentioned
above, one of IONs’ positive features is that after the removal of the external magnetic field,
there is no residual magnetization, which causes the aggregation of magnetic particles.
After the sorption of DOX, a slight change in the saturation magnetization was observed
(Table 3) and additionally to IR-spectra and HRTEM images, this finding indicates the
presence of the drug on the adsorbent and an increase in the thickness of the nonmagnetic
layer of the particle. The change in Ms was no more than 4%. The greatest change is
observed in PEI- and carbon-modified IONs.

Table 3. Magnetic properties of IONs coated with various modifiers before and after sorption of DOX.

Sample
Ms (emu·g−1)

∆ (%)
Before After

Fe3O4 77.7 77.6 <1
Fe3O4@PSS 71.1 69.3 3
Fe3O4@PEI 70.5 67.8 4
Fe3O4@Dex 70.2 70.0 <1
Fe3O4@Carb 60.8 58.4 4

2.1.5. Zeta-Potential Measurements

Results of determining the zeta-potential of functionalized IONs are presented in
Figure 4. In all cases, surface modification significantly changes the ζ of the initial magnetite.
For the polyelectrolyte-modified particles, the ζ exceeds the accepted stability threshold
(
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> |30| mV [111]) at most of the examined pH values so that one could expect their
improved stability behavior in suspensions. Nanoparticles coated with porous carbon
have a negative ζ over the entire pH range, but only at pH ≥ 10 does its value (−34 mV)
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correspond to the mentioned stability condition. The most plausible reason of this obser-
vation is the presence (and dissociation in an alkaline medium) of carboxyl and hydroxyl
groups on the surface of porous carbon. Coating with dextran reduces the surface charge
by virtue of the particle enveloping with a polymer shell, built-up via the mechanism of
hydrogen bond formation [112]. At the same time, in the region of pH 5.5, an isoelectric
point was observed.
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2.2. Assessment of Colloidal Stability

An important characteristic for dispersion of nanoparticles is stability over time. The
stability of magnetite suspensions might be low because of rather large particle sizes. Here,
to assess the sedimentation stability, the method of sedimentation in a gravitational field
presented in the Supplementary Materials (Procedures) was used [113]. To evaluate the
effect of modification chemistry on colloidal stability, the time during which the particle
sedimentation takes place was measured (Figure S5). The data obtained, as well as the
results of measuring the hydrodynamic diameter dav (Z-average size) of samples, are
collected in Table 4.

Table 4. Colloidal stability, zeta-potential, and hydrodynamic size of aqueous suspensions with
concentration 50 mg·mL−1 at 25 ◦C (n = 3, p = 0.95).

Sample
Average Settling Time (min) ζ-Potential (mV) Z-Average Size (nm) a

pH 5.0 pH 7.4 pH 5.0 pH 7.4 pH 5.0 pH 7.4

Fe3O4 2.3 ± 0.1 2.0 ± 0.1 (2.1) b 15 ± 1 5 ± 1 126 ± 4 151 ± 3
Fe3O4@PEI 8.5 ± 0.2 8.5 ± 0.2 (8.3) 55 ± 1 53 ± 1 95 ± 2 97 ± 2
Fe3O4@PSS 3.4 ± 0.1 10.3 ± 0.1 (10.1) −47 ± 1 −52 ± 1 118 ± 5 118 ± 7
Fe3O4@Dex <1 7.8 ± 0.2 (7.8) 3 ± 1 −9 ± 1 282 ± 9 130 ± 2
Fe3O4@Carb ~1 ~1 (~1) −18 ± 1 −22 ± 1 296 ± 8 290 ± 9

a Measured immediately after evaluation of colloidal stability. b Given in parentheses is the average sedimentation
time after the sorption of DOX.

The DLS measurements give only an approximate size of the MNPs because they
are very sensitive to temperature, solvent viscosity, and the presence of “shell” around
particles [114]. For TEM, the dried samples are to be used, since the method works under
ultra-high vacuum conditions. For this reason, the average particle size obtained by DLS is
usually higher [114]. Diagrams of the distribution of particle size by intensity are presented
in Figure S6.
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The data of Table 4 show that in all cases the stability of MNPs is not high and it is
limited to 11 min. On the other hand, the tested nanomaterials demonstrate a different
sedimentation rate, which indicates the important role of the surface modifier. The sedi-
mentation time, zeta-potential, and hydrodynamic size of Fe3O4@PEI remain practically
unchanged at both pH values and their sedimentation proceeds quite slowly due to the
high
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be explained by the steric factor [115]. On the other hand, the Fe3O4@Carb suspension
displays marginal stability (see Table 4), as an effect of large particle size and low zeta-
potential. Changes in the rate of colloidal stability after sorption of DOX were not observed.
The value of the sedimentation rate of IONs loaded with DOX did not change significantly
and was within experimental error (see Table 4, values in parentheses).

Thus, based on the results of Sections 2.1.3 and 2.1.5 on the study of the sorption of
various modifiers on the surface of MNPs, as well as the literature data on the state of bare
magnetite nanoparticles and polymers in an aqueous solution at pH 7.4, we can assume
that this sorption is caused by the complex various types of interactions. Since, at this pH,
the amino groups of PEI are partially protonated, and the OH groups on the magnetite
surface are partially dissociated, its binding to the polyelectrolyte is due to both electrostatic
interaction and the participation of the H-bond [91,116]. In the case of PSS, the negatively
charged sulfonic groups of the polymer interact electrostatically with surface iron cations
and simultaneously form H-bonds with the surface OH groups of the magnetite. The
binding of dextran and porous carbon to magnetite is also caused by electrostatic forces,
van der Waals interactions, and H-bonding [99–102,117].

2.3. Sorption of Doxorubicin

Figure 5 shows typical sorption isotherms and dependences of the degree of sorption
on the mass of the sorbent. The highest degree of sorption (65%) is achieved when using
the Fe3O4@PEI nanoparticles, the outcome being in accord with their highest zeta-potential
(+53 mV). It can be assumed that under these conditions, sorption takes place through
the formation of hydrogen bonds between non-protonated amino groups of PEI and
heteroatoms of the phenolic, alcohol, methoxy, and amino groups of DOX. According to
Suh et al. [118], at pH 7.4 about 80% of amino groups of PEI, which can participate in the
formation of H-bonds with DOX, are not protonated. In turn, at this pH about half of the
DOX amino groups are also not protonated [119–121]. Our assumption is consistent with
the findings of a study by Coluccini et al. [122], who by applying the 1H NMR spectroscopy
as well as NOESY and NOE NMR analysis in D2O found out that the chemical shifts of
the protons of the proton-donor groups and aromatic rings of DOX, PEI are all subject to
alterations upon the addition of PEI.

A higher degree of drug loading onto Fe3O4@Carb (compared to unmodified IONs or
Fe3O4@Dex) is presumably associated with the shell porous structure. Increased negative
potential favors the electrostatic interaction of IONs with the drug cation formed due to
the partial protonation of the DOX amino group [121]. Such interpretation is consistent
with an even a higher degree of sorption (32%) by Fe3O4@PSS particles, whose negative
zeta-potential at pH 7.4 is higher than that at pH 5.0. An additional factor for increasing
the degree of sorption by Fe3O4@PSS may be the hydrophobic interaction of modifier’s
benzene rings with the hydrophobic parts of the drug molecule. From the data of Figure 5b,
it follows that a 95% sorption of DOX (0.5 mg) into nanoparticulate form requires from 2 mg
Fe3O4@PEI and 15 mg Fe3O4@PSS to 25 mg Fe3O4@Carb and more than 30 mg Fe3O4@Dex
(all sorbents being considerably more efficient than Fe3O4).



Int. J. Mol. Sci. 2023, 24, 4480 10 of 26

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 11 of 28 
 

 

 

 

(a) (b) 

Figure 5. Time- and sorbent mass-dependent sorption of doxorubicin on various IONs. Conditions: 
(a) m0 = mS = 0.5 mg and (b) mS = 0.5 mg; time 45 min, pH 7.4, 25 °C. Traces: (1)—Fe3O4, (2)—
Fe3O4@Dex, (3)—Fe3O4@Сarb, (4)—Fe3O4@PSS, and (5)—Fe3O4@PEI. (n = 3, p = 0.95). 
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adsorption stage is rapid as the DOX molecules incline to be bound onto an external, 
highly developed surface of the nanoparticles. The correlation coefficients (R2) presented 
in Table 5 witness that the pseudo-second-order kinetic model describes the process of 
DOX adsorption more precisely. This confirms that adsorption depends on the amount of 
the drug and the active sites on the surface of the sorbent. It is interesting to note that the 
calculated values of qe, determined by the pseudo-second-order model, are larger than the 
experimental ones (Table 5). This may indicate the need for employing longer sorption 
times. 

Figure 5. Time- and sorbent mass-dependent sorption of doxorubicin on various IONs. Conditions:
(a) m0 = mS = 0.5 mg and (b) mS = 0.5 mg; time 45 min, pH 7.4, 25 ◦C. Traces: (1)—Fe3O4, (2)—
Fe3O4@Dex, (3)—Fe3O4@Carb, (4)—Fe3O4@PSS, and (5)—Fe3O4@PEI. (n = 3, p = 0.95).

To gain a deeper understanding of the characteristics of the synthesized sorbents,
we compared them with other reported nanosized sorbents used for loading DOX (see
Table S2). The PEI- and PSS-functionalized IONs of interest have a higher sorption capacity
(691 and 325 mg·g–1, respectively). Such a difference can be explained by the fact that in the
case of PEI, the interaction with DOX involves all oxygen-containing groups of DOX and
amino groups of PEI, whereas PSS can interact electrostatically only with the protonated
amino group of DOX. This explains the larger amount of the PSS-sorbent required for the
sorption of DOX.

Another benefit of the modified IONs is much shorter time required for making
quantitative drug loading true. However, the most principal advantage comprises the
potential of magnetic site-specific targeting, when the drug is delivered to the deceased
tissue or organ by means of external magnetic field.

2.4. Adsorption Kinetics

Comparison of the efficiency of DOX sorption on all sorbents of our interest follows
from Figure 6, with all the fitting kinetic parameters listed in Table 5. The initial adsorption
stage is rapid as the DOX molecules incline to be bound onto an external, highly developed
surface of the nanoparticles. The correlation coefficients (R2) presented in Table 5 witness
that the pseudo-second-order kinetic model describes the process of DOX adsorption more
precisely. This confirms that adsorption depends on the amount of the drug and the active
sites on the surface of the sorbent. It is interesting to note that the calculated values of
qe, determined by the pseudo-second-order model, are larger than the experimental ones
(Table 5). This may indicate the need for employing longer sorption times.

Thus, immobilization of DOX on nanoparticles may take place due to the electrostatic
and van der Waals interactions, hydrogen bonds, and π–π stacking of the anthracycline
DOX fragment with aromatic fragments of the coating material [122]. Thus, it is difficult to
predict what factor(s) governs the efficiency and degree of immobilization.
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Table 5. Kinetic parameters of the pseudo-first- and pseudo-second-order for the sorption of DOX
at 25 ◦C.

Sample qe
exp (mg g−1)

Pseudo-First Order Pseudo-Second Order

qe (mg g−1) k1 R2 qe (mg g−1) k2 R2

Fe3O4/PEI 690 ± 10 649 ± 22 0.31 ± 0.05 0.972 719 ± 9 6.10 ± 0.04 0.998
Fe3O4/PSS 325 ± 10 311 ± 8 0.40 ± 0.05 0.982 337 ± 9 18.00 ± 0.01 0.999

Fe3O4/Carb 151 ± 8 147 ± 5 0.11 ± 0.01 0.986 178 ± 5 6.70 ± 0.08 0.996
Fe3O4/Dex 63 ± 7 60 ± 2 0.37 ± 0.05 0.979 66 ± 1 84.00 ± 0.06 0.998

Fe3O4 39 ± 8 39 ± 2 0.49 ± 0.15 0.913 42 ± 2 0.016 ± 0.005 0.965

2.5. Desorption of DOX

An important step in developing the ION-based drug delivery system was the verifi-
cation of drug release. To study the applicability of modified IONs as carriers of anticancer
drugs, the behavior of DOX release was modeled at physiological (pH 7.4) and cancer
cell pH (pH 5.0) The resulting kinetic profiles are depicted in Figures 7 and S7, the latter
portrays the first 60 min of desorption.

As noted in many studies, desorption of DOX at pH 7.4 proceeds 2–4 times slower
than in a slightly acidic environment [10,123–125]. The same behavior was observed in
our experiments. As shown in Figure 7a, all samples showed no significant drug release
(<7%) at pH 7.4. This collective behavior of sorbents is associated with a strong electrostatic
interaction between sorbent and sorbate. Additionally, this may be due to the poor solubility
of the drug itself with an increasing the pH [126]. At the same time, abrupt initial desorption
(Figure S7), which is observed in all samples during the first 15–30 min, is associated with
the weak physical adsorption of some drug molecules on the surface of MNPs.

On the other hand, as the pH decreases, as shown in Figure 7b, drug desorption
increases. In all cases, at pH 5.0, the drug is only partially desorbed, with a highest
release of about 30% recorded for the PSS-modified IONs. It is important to mention
that within the first 30 min, i.e., the timeframe simulating in vivo application of a mag-
netic nanoformulation, DOX release reaches up to 15%. This would generate drug active
concentration of 0.14 mmol·L−1 and 2–3 times higher that could be achieved with other
nanosorbents [127–129].
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The IONs coated with Dex and Carb demonstrate relatively easy desorption in an
acidic environment (but not to the full extent). In the case of Dex, two phenomena can
play a role here. On the one hand, the zeta-potential (in absolute units) decreases with
decreasing the pH and passes through the isobestic point at the region of pH 5.5, hence
implying a weakening of electrostatic interactions and increasing the release of the drug.
Similar results were observed by Liu et al. [69] for the DOX desorption from the surface
of modified carboxymethylchitosan. On the other hand, a decrease in pH reduces the
solubility of Dex-modified IONs (see Section 2.2) and increases their aggregation [115],
which can hinder the drug release over time.

In the case of the Carb coating, we assume the presence of two types of localization of
the drug on the surface. In the first case, DOX is attached to the surface due to electrostatic
forces, and a change in the zeta-potential led to a decrease in forces and desorption of the
drug. In the second case, the drug enters the cavities of porous carbon layer, making des-
orption extremely difficult to achieve. It is possible that additional conditions are required
for such desorption mechanism such as the magnetic-field-induced drug release [130].

In our opinion, a slow (but sufficient) release of the drug can be considered as a
positive factor, ensuring its long and uniform cell-killing action. In therapeutic practice,
this would allow for preventing repeated exposure, drug overdosage, and possibly re-
ducing its negative side effects. From this viewpoint, the Fe3O4@PEI nanoparticles may
have the greatest medicinal potential, with low release efficiency compensated by high
sorption capacity.

2.6. Cell Viability Analysis

The cytotoxicity of DOX and IONs is well known. Therefore, our relevant interest was
directed to the modifiers PSS and PEI. Whereas PSS in the free form is well studied, for
instance in the treatment of hyperkalemia [131], where it showed no measurable cytotoxic-
ity [132,133], PEI proved to be a highly toxic agent capable of initiating apoptosis and cell
necrosis [134–136]. Moreover, as noted by Kafil et al., branched PEI is more harmful than a
linear analog [134]. Furthermore, it was shown that an increase in the molecular weight of
PEI inhibits the cell proliferation [137].

The widely used MTT assay has a number of limitations and is only capable of
assessing cytotoxicity based on the metabolic activity of the cell according to the “living–
non-living” principle [138]. At the same time, the mechanism by which this or that agent
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affects the cells remains beyond the scope of the analysis. It is also impossible to transfer
the properties of individual components to the entire system, which forced us to consider
modifiers not as separate substances, but in combination with the core entity. The results
acquired revealed that the presence of the Fe3O4@PEI and Fe3O4@PSS NPs in the cell
medium (for both materials) did not statistically reduce cell survival. Figure 8 shows the
percentage of living cell depending on the concentration of particles added to the cell
medium. It is clear that all of the tested particles and concentrations did not affect cells
viability remaining no less than 75–80%.
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The most intriguing result is the impact of small doses of IONs (5 µg·L−1) and PEI-
modified IONs (5 and 1 µg·L−1), as statistical analysis by non-parametric one-way ANOVA
indicated their difference with the control group. Probably, this could be related to the
better availability of particles for cells at small concentrations compared to applying higher
concentrations, at which the particles can agglomerate and become unavailable to cells.

2.7. Real-Time Platelet Dynamics

Biocompatibility testing involves a systematic approach with many different assays.
As a preliminary trial, we studied the effect of IONs on the rate of thrombus formation.
Fe3O4 nanoparticles, as previously found, have high biocompatibility with blood and are
widely used in vitro and in vivo assays [25,139]. The presence of magnetite nanoparticles
does not cause degradation of blood cells (leukocytes, thrombocytes, and erythrocytes)
or noticeable side effects [140]. However, in our case, MNPs have a developed surface,
imposing various interactions with blood cells. The rate of thrombus formation on the
surface of glass coated with collagen was assessed during the first 10 min for three different
MNPs: Fe3O4@PSS, Fe3O4@PEI, and Fe3O4. Blood without the addition of nanoparticles
was used as a control.

For the control sample, the rate of thrombus formation, as well as the size of the
formed thrombi, is comparable to each other (Figure 9). At the same time, the blood flow
through the capillary was laminar and the speed constant. Abnormal aggregative (or other)
activity was not observed. Similar results were obtained for unmodified and PSS-modified
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nanoparticles (see Figure 9). By the end of the analysis, the thrombi reached comparable
sizes, similar to the results of the control experiment.
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Conversely, Fe3O4@PEI caused increased thrombus formation. The appearance of
large aggregates of platelets and immune cells was already registered in the blood at the
entrance to the flow chamber with collagen, which may indicate the effect of this sample
type of particles on platelets. The morphology of the formed thrombi was visually different
from other samples, and their size was much larger than in other cases.

3. Materials and Methods
3.1. Chemicals

Iron(II) sulfate, ammonium chloride, 25% ammonia solution, and o-phosphoric acid
were purchased from Reakhim (Moscow, Russia). Sodium hydroxide was obtained from
LenReaktiv (St. Petersburg, Russia). 1,2-Propylene glycol was the product of EKOS-1
(Moscow, Russia). D-Glucose monohydrate was obtained from LenReaktiv (St. Peters-
burg, Russia). Anhydrous sodium hydrogen phosphate (≥99.0%) and potassium dihy-
drogen phosphate (≥99.5%) used to prepare the buffer solutions were purchased from
Sigma-Aldrich (St. Louis, MO, USA). All chemicals were of analytical grade and were
used as received. Dextran ((C6H10O5)n Mr~40.000), sodium poly(4-styrenesulfonate) (PSS,
Mr~70.000) and branched polyethylenimine (PEI, Mr~25,000) were obtained from Sigma-
Aldrich, DOX (lyophilizate for solution for injection, 10 mg/ampoule) was obtained from
Pharmachemie (Petah Tikva, Israel). All solutions were prepared using ultrapure water
obtained from a Milli-Q system, Millipore Corporation (Millipore SAS, Molsheim, France).
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3.2. Synthesis of IONs

Cubic magnetite (Fe3O4) was obtained by precipitation followed by deposit aging in
accordance with slightly modified published approach [141] (see Figure 10 for details). First,
an alkaline solution was prepared by dissolving 3.86 g of NaOH in 400 mL of deionized
water under nitrogen atmosphere. Then, a solution of iron(II) sulfate was made up by
dissolving 10.0 g of FeSO4·7H2O in 100 mL of deionized water under nitrogen atmosphere.
This solution was added to the NaOH solution heated to 80 ◦C and constantly stirred at
2000 rpm. Next, a current of air (1000 mL·min−1) was passed through the mixed solution
for 2 h, as a result the colloidal solution changed color from light blue to black. The resulting
IONs were isolated from suspension by centrifugation (6000 rpm, 10 min), washed several
times with deionized water and ethanol, and dispersed in propylene glycol under the action
of ultrasound for 1 h. After heating at 180 ◦C for 3 h in a Teflon autoclave, the particles were
cooled, washed with water and ethanol, and isolated by centrifugation (same conditions as
above). The IONs were applied at a concentration of 100 µg·mL−1 in all suspensions under
investigation, unless stated otherwise.
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Figure 10. A workflow for obtaining nanoparticles of cubic magnetite. US = ultrasound;
PG = propylene glycol.

3.3. Coating with Polyelectrolytes and Dextran

An aqueous suspension of IONs was mixed with a respective modifier solution
(100 µg·mL−1) at a ratio of 1:10, sonicated for 10 min, and stirred for 24 h at 50 rpm.
The modified particles were washed several times with water and ethanol and isolated by
centrifugation at 4000 rpm (Figure 11).
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3.4. Coating with Porous Carbon

Nanoparticles were coated with porous carbon (Carb) by hydrothermal carbonization
in aqueous medium [117]. A total of 10 mL of an aqueous particle suspension (10 mg·mL−1)
was added to 20 mL of water containing 200 mg of glucose, at a ratio to saccharide as 1:2 by
weight. The mixture was diluted with deionized water to 50 mL, stirred for 2 h and then
sonicated for 20 min. The resulting suspension was quantitatively transferred to a Teflon
autoclave, kept for 12 h at 180 ◦C, cooled, and washed several times with water and ethanol.
Finally, the modified particles were separated by centrifugation at 4000 rpm (Figure 12).
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3.5. Characterization of Nanoparticles

The size and shape of nanoparticles were measured using a scanning electron micro-
scope with a resolution of 1.2 nm at 30 keV, the VEGA 3 Tescan (Brno, Czech Republic) and
the transmission electron microscope Tecnai-G2 F20 (FEI Company, Hillsboro, OR, USA)
with a spatial resolution of up to 0.2 nm. Hydrodynamic diameter (z-average size) and sur-
face charge (zeta-potential, ζ) values of sample suspensions were recorded by dynamic light
scattering (DLS) analysis using a Nano-ZS Zetasizer, model ZEN3600 (Malvern Instruments
Ltd., Malvern, UK) at an angle of 173◦. X-ray diffraction measurements were carried out on
a Bruker D2 PHASER diffractometer (Bruker, Billerica, MA, USA) using Cu Kα radiation
(λ = 0.154 nm) at 40 kV and 30 mA in the range of 2θ values (from 10◦ to 80◦). Absorption
and IR spectra were recorded with a Shimadzu UV-2550 spectrophotometer (Shimadzu,
Kyoto, Japan) and a Bruker Vector 22 FTIR spectrometer (Bruker, Ettlingen, Germany),
respectively. Magnetization curves were monitored using a Lake Shore 7407 magnetometer
(Lake Shore Cryotronics Inc., Westville, IN, USA). The solutions were mixed on Bio RS-24
analog controlled rotator (BioSan, Riga, Latvia). Used for the magnetic separation was a
permanent Nd–Fe–B magnet with (VN)max = 40 MGOe (Guangzhou, China). For dispersion
and functionalization of IONs, a Grad 57–35 serial ultrasonic bath with a generator power
of 165 W (Grad-Technology, Moscow, Russia) was used. For hydrothermal carbonization, a
50 mL Teflon autoclave with a Toption (Xi’an, China) stainless steel body was employed.
Sedimentation analysis and sample centrifugation were performed, respectively, on an
Vibra HT-224RCE analytical balance Shinko Denshi, Co. (Tokyo, Japan) and using an EBA
200 centrifuge (Hettich, Kirchlengern, Germany).
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3.6. Sorption of DOX

An analysis of the literature showed that the optimum conditions for the sorption
of DOX correspond to neutral phosphate-buffered saline (PBS; Table S2). Polypropylene
tubes were used for sorption, as previously recommended [42]. To assess the effect of
sorption time, 5 mL of standard ION suspension and 5 mL of aqueous solution of doxoru-
bicin (100 µg·mL−1) were placed in each of six test tubes and the mixture was diluted to
30 mL with phosphate buffer solution at pH 7.4 (10 mmol·L−1). The tubes were placed
in a rotary mixer and stirred at 20 rpm. At certain time intervals (2, 5, 10, 15, 30, and
45 min), one test tube was removed and after the precipitation of IONs by applying an
external magnetic field, the supernatant was separated to determine the unbound drug
spectrophotometrically [142].

To assess the effect of the nanosorbent mass, 8 solutions were used, containing the
same amount of doxorubicin (500 µg) and increasing amounts of IONs, from 0.5 to 50 mg
(final volume 10 mL). The tubes were placed in a rotary mixer and stirred for 45 min at
20 rpm. The IONs were then magnetically separated and the concentration of DOX in the
supernatant determined (Figure 13).
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The degree of sorption was calculated as

R =
(C0 − C)

C0
·100% (1)

where C0 is the initial concentration of the drug and C is its residual concentration after
sorption. To compare the efficiency of drug sorption by different sorbents, we used the
sorption capacity calculated by the following equation:

q =
(m0 −m)DOX

mS
(2)

where q is the difference between the initial (m0) and residual (m) masses of DOX in solution
and mS is the mass of the sorbent. Each experimental series was repeated at least five times.

We repeated the measurements three times and built graphs of the averaged values.
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3.7. Adsorption Kinetics

To evaluate the adsorption kinetics, we used the pseudo-first-order and pseudo-
second-order models [109] specified by the following equations:

qt = qe[1− exp(−k1t)] (3)

and

qt =
q2

e k2t
1 + qek2t

(4)

where qt is the amount of adsorbed drug at time t per 1 g of sorbent (mg·g–1), qe is the
equilibrium (maximum) amount of adsorbed drug per 1 g of sorbent (mg·g–1), k1 (min–1),
and k2 (g·mg–1·min–1) are the pseudo-first and pseudo-second order constants, respectively.

3.8. Desorption of Doxorubicin

In the release studies, 5.0 mg of differently functionalized IONs with adsorbed drug
were placed in 50 mL of phosphate buffer (pH 5.0 and 7.4) and mechanically stirred for 24 h
at 20 rpm. At the pre-determined time points (5, 10, 15, 30, 60, 120, 360, and 1440 min), a
5 mL aliquot was removed, the supernatant was separated from the sorbent using a magnet
and the doxorubicin concentration was determined by the spectrophotometric method.
DOX releases were calculated using the following equation:

Cumulative release =
mt

m∞
·100% (5)

where mt is the amount of released DOX at time t and m∞ is the total amount of DOX
loaded onto the sorbent.

Each experimental series was repeated at least three times and the averaged values
were used to build graphs.

3.9. Cell Viability Analysis

Cell viability analysis was carried out according to the method described earlier [143],
with slight changes.

3.9.1. Cell Culture

Neuro-2A (N2A) cell lines (obtained from the American Type Culture Collection,
ATCC, Manassas, VI, USA) were cultured in standard DMEM media (Biolot, St. Petersburg,
Russia) supplemented with 10% fetal bovine serum (FBS; Gibco, Waltham, MA, USA),
L-glutamine (Biolot), and 100 µg·mL−1 penicillin/streptomycin (Biolot). The media were
replaced every 3 days, and the cells were maintained in a humidified incubator (Innova
CO-170, Hyland Scientific, Washington, DC, USA) at 5% CO2 and 37 ◦C.

3.9.2. Cell Viability

The effects of the nanoparticles on N2A cells were determined by the standard Alamar-
Blue test. Cells were seeded into 96-well cell culture plates (Eppendorf, Hamburg, Germany)
at a cell density of 104/well in the culture medium and incubated at 37 ◦C under 5% CO2
during 24 h. The particle solutions at concentrations 1, 5, 10, 50, and 100 µg·L−1 were tested.
After 24 h, 10 µL of the fluorescent dye AlamarBlue (10,000 U·mL−1, Thermo Fisher Scien-
tific, Waltham, MA, USA) was added to each well, and the fluorescence (540/590 nm) intensity
was measured with a spectrophotometer (Infinite F200 PRO, Männedorf, Switzerland).

3.10. Real-Time Platelet Dynamics Ex Vivo Observed by Confocal Microscopy

The rate of thrombus formation in the presence of NPs was assessed according to a
slightly modified method described in [144].
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3.10.1. Human Blood Collection

Human blood collection investigations were performed in accordance with the Dec-
laration of Helsinki under a protocol approved by the NMRC PHOI Ethical Committee
Informed written consent was obtained from all donors. Blood was collected in sterile
tubes containing Hirudin anticoagulant (100 U·mL−1; Merck, Darmstadt, Germany).

3.10.2. Preparation of Flow Chamber System and Human Blood for Perfusion

Glass coverslips (24 × 24 mm; Heinz Herenz Medizinalbedarf GmbH, Hamburg,
Germany) were cleaned with Plasma Cleaner (Harrick Plasma Inc, Ithaca, NY, USA). In
order to immobilize collagen fibers on the surface of cleaned glass coverslips, we diluted
stock solution of native Chronolog fibrillar type I collagen reagent (1 mg·mL−1, Chrono-
Log, Havertown, PA, USA), which already has collagen fibrils, with a 20 mM acetic acid
(Reakhim) to a final concentration of collagen solution of 200 µg·mL−1. This solution was
added as a 10 µL drop to the surface of a cleaned glass coverslip and incubated for 40 min
in a humid chamber at room temperature, then rinsed with water, dried, and assembled
as part of the parallel platelet flow chamber described in [145]. Before perfusion, the
fluorescent dye DiOC6(3) (3,3′-dihexyloxacarbocyanine iodide; Thermo Fisher Scientific)
was added in an amount of 0.1% (final concentration 1 µM) of the blood volume and
an aqueous dispersion of IONs (concentration 0.5 µg·µL−1) in an amount of 1% of the
blood volume.

3.10.3. In Vitro Flow-Based Thrombus Formation Assay

Hirudinized (100 U·mL−1) human whole blood in the presence of DiOC6(3) dye was
perfused at a wall shear rate (1000 s−1) through collagen-coated channels at room tem-
perature using a programmable syringe pump PHD 2000 (Harvard Apparatus, Hollistion,
MA, USA). DiOC6(3)-loaded platelets were visualized by differential interferential contrast
(DIC) or fluorescence microscopy with an Axio Observer Z1 microscope (Carl Zeiss, Jena,
Germany) equipped with a 100× microscopic objective. Images were acquired with a
Photometrics EMCCD camera (QuantEM 512sc, Teledyne Technologies, Thousand Oaks,
CA, USA).

4. Conclusions

Thus, in this work, we functionalized the nanomagnetite surface with cationic (PEI),
anionic (PSS), and nonionic (dextran, Dex) modifiers, as well as porous carbon (Carb), and
compared the degree of loading of these and bare MNPs with doxorubicin. Using DLS
and TEM, we found that the size of the obtained sorbents is in the range of 80–290 nm. We
have shown that modification with polymers increases the stability of particles in aqueous
suspension by a factor of 4–6 compared to unmodified magnetite. A comparison of the
sorption capacity of MNPs with respect to DOX made it possible to establish the following
series of sorption efficiency: Fe3O4@PEI (691) > Fe3O4@PSS (325) > Fe3O4@Carb (151) >
Fe3O4@Dex (63) > Fe3O4 (45) mg g−1. All samples showed no significant drug release (<7%)
at pH 7.4, while at pH 5.0 the release rate and extent of desorption, although increased
by 2–3 times, remained relatively low. The drug release percentage varies from 30 for
Fe3O4@PSS to 13–16 for Fe3O4@Dex and Fe3O4@Carb, and up to about 6% for Fe3O4@PEI
after a 30 min incubation at pH 5.0. Cytotoxicity analysis showed high biocompatibility of
Fe3O4, Fe3O4@PSS, and Fe3O4@PEI. The survival rate of Neuro2A cells was above 80%. A
preliminary assessment of the effect of unmodified and PSS-modified IONs on the rate of
thrombus formation in the blood did not reveal noticeable changes. We believe that the
obtained materials and results of the study can be taken into account when developing
new drug delivery platforms.
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