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The ability to deliver genetic cargo to human cells is enabling rapid progress in molecular medicine,
but designing this cargo for precise expression in specific cell types is a major challenge. Expression
is driven by regulatory DNA sequences within short synthetic promoters, but relatively few of these
promoters are cell-type-specific. The ability to design cell-type-specific promoters using model-based
optimization would be impactful for research and therapeutic applications. However, models of expression
from short synthetic promoters (promoter-driven expression) are lacking for most cell types due to
insufficient training data in those cell types. Although there are many large datasets of both endogenous
expression and promoter-driven expression in other cell types, which provide information that could be
used for transfer learning, transfer strategies remain largely unexplored for predicting promoter-driven
expression. Here, we propose a variety of pretraining tasks, transfer strategies, and model architectures
for modelling promoter-driven expression. To thoroughly evaluate various methods, we propose two
benchmarks that reflect data-constrained and large dataset settings. In the data-constrained setting, we
find that pretraining followed by transfer learning is highly effective, improving performance by 24 − 27%.
In the large dataset setting, transfer learning leads to more modest gains, improving performance by up
to 2%. We also propose the best architecture to model promoter-driven expression when training from
scratch. The methods we identify are broadly applicable for modelling promoter-driven expression in
understudied cell types, and our findings will guide the choice of models that are best suited to designing
promoters for gene delivery applications using model-based optimization. Our code and data are available
at https://github.com/anikethjr/promoter_models.

1. Introduction
Gene therapy aims to deliver therapeutic genes, or
transgenes, to disease-associated cells and tissues.
The expression of transgenes is controlled by an up-
stream compact regulatory DNA sequence called a
promoter, which consists of transcription factor (TF)
binding sites that regulate transcription of the ad-
jacent transgene. To effectively treat disease while
mitigating off-target side effects, promoters for gene
delivery should be optimized for inducing expression
only in particular target cell types (i.e. for inducing
differential expression), which requires compact pro-
moter sequences with a high density of regulatory
information. Recent advances in single-cell sequenc-
ing have illuminated over 400 cell types in the human
body (Tabula Sapiens Consortium, 2022), yet only a
handful of compact cell-type-specific promoters are
known. Traditional methods to engineer promoters

with cell-type-specificity rely on manual curation of
sequence elements that are known to regulate ex-
pression, such as tiling of cis-regulatory elements
(CREs) or tandem repeats of TF-binding motifs (Miao
et al., 2000; Selvakumaran et al., 2001; Yun et al., 2008;
Nissim et al., 2017; Wu et al., 2019). While these ap-
proaches have been successful in some cell types,
extending them to less-studied cell types is a labori-
ous process.
Data-driven promoter or CRE design methods

that harness the power of machine learning (ML)
models have been proposed (Linder et al. (2020);
Wang et al. (2020); Jores et al. (2021); LaFleur et al.
(2022); Gosai et al. (2023) among others). These meth-
ods build sequence-based models of promoter-driven
expression (PE) using experimental measurements
and then optimize for the promoter sequence using
model predictions as surrogates for experimental
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measurements. Although these methods have the
potential to accelerate promoter discovery by being
automated, the models they use are trained on large
PE datasets, which are only available for a handful
of well-studied cell types, again making it difficult
to design promoters that target the vast majority
of relatively understudied cell types for which we
have relatively small datasets. Additionally, previ-
ous promoter design studies have not rigorously ex-
plored model architectures and modelling strategies,
or explored leveraging existing related datasets for
transfer learning to cell types with small datasets,
which has the potential to further improve predic-
tion performance. In this work, we aim to address
these shortcomings and identify the most effective
methods to model PE. We identify and benchmark
various architectures and modelling strategies on
two PE datasets and show that transfer learning en-
ables us to build accurate sequence-based models
of PE in a data-efficient manner, thereby enabling
the development and usage of data-driven promoter
design methods in data-constrained settings.
Transfer learning using pretrained models has

emerged as one of the most effective ways to model
small datasets. For example, self-supervised tasks
such as masked language modelling (MLM) have re-
cently been used to pretrain genomic sequence em-
beddings that are then fine-tuned for downstream
tasks (e.g. Ji et al. (2021); Mo et al. (2021); Benegas
et al. (2022); Zeng et al. (2023)). Pretraining using
task-relevant data can improve the performance of
fine-tuned models (Gururangan et al., 2020), while
pretraining using irrelevant data can hurt perfor-
mance (Liu et al., 2022). For our application, many
datasets are closely related to PE and are potentially
useful for transfer learning. In particular, massively
parallel reporter assays (MPRAs) typically measure
PE from a large set of sequences and this data can
be used for model training (e.g. Movva et al. (2019);
Agarwal et al. (2023); Gosai et al. (2023)). Data from
endogenous sequences have also been used to train
large models to predict endogenous gene expression
and other molecular phenotypes (Agarwal and Shen-
dure, 2020; Avsec et al., 2021), and these models can
be fine-tuned to predict PE (Agarwal et al., 2023).
Transcription factor (TF) binding data may also help
models learn relevant sequence motifs that regulate
expression when present in promoters. We evalu-
ate the utility of pretraining on such datasets for
modelling a new small PE dataset that we collected

from three immune cell lines, two of which are rel-
atively understudied. We also evaluate the utility
of pretraining before fine-tuning on a larger MPRA
dataset from five cell lines to understand whether
pretraining also helps in this setting.

Our work has three main contributions. Most im-
portantly, we propose and evaluate several transfer
learning approaches to improve our ability to model
PE and present conclusive evidence that transfer
learning significantly improves our ability to predict
PE in target cell types, especially in data-constrained
settings. As part of this work, we also develop two
benchmarks to gauge the performance of PE predic-
tors in both data-constrained and large dataset set-
tings. Finally, we propose a novel model architecture
called MTLucifer to effectively model PE datasets
when training models from scratch. To the best of
our knowledge, prior work has not attempted to
use transfer learning to improve PE prediction, apart
from Agarwal et al. (2023) who propose to predict PE
by performing linear probing on a large model (En-
former) that was previously trained on a variety of
endogenous expression and epigenomic data (Avsec
et al., 2021). Moreover, unlike prior work that mostly
foregoes benchmarking, we systematically bench-
mark several model architectures and transfer learn-
ing methods to identify the best approaches. This
benchmarking is performed using two PE datasets: a
smaller dataset with ∼ 17𝐾 PE measurements from
three cell lines (data-constrained setting), and a
larger dataset with ∼ 750𝐾 PE measurements from
five cell lines (large dataset setting). In both set-
tings, when models are trained using only the bench-
marking datasets (no transfer learning), MTLucifer
models have the best performance. When using
transfer learning, in the data-constrained setting,
we find that Agarwal et al. (2023)’s approach of per-
forming linear probing on Enformer improves pre-
diction performance by 𝟐𝟒 − 𝟐𝟕% in all three cell
types. We also identify a more inexpensive pretrain-
ing approach that pretrains MTLucifer on existing
PE data from MPRAs, which improves prediction
performance by 𝟏𝟎 − 𝟏𝟔%. However, these large per-
formance improvements from pretrained models do
not carry over to the large dataset setting, where
the best performing method—pretraining MTLucifer
on another MPRA dataset before fine-tuning it on
the benchmarking dataset—leads to only relatively
modest improvements of up to 2%when compared to
training models on the target dataset alone. Our find-
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ings are broadly applicable to most PE datasets and
can be applied to design promoters for gene therapy
that are optimized for expression in a therapeutic
target cell type, reducing potential off-target side
effects in other cell types. Our benchmarks can also
be used to thoroughly evaluate the effectiveness of
PE predictors.

2. Existing gene expression predictors
Endogenous gene expression is a complex process
that is regulated by multiple DNA sequence fea-
tures, including CREs, TF-binding motifs, and epi-
genetic modifications. Before the advent of DL,
most sequence-to-expression models extracted hand-
crafted sequence features such as counts of known
TF-binding motifs and other short sequence (k-mer)
counts within the input sequence (Zrimec et al.,
2021). Early applications of DL in genomics used
convolutional neural nets (CNNs) with one-hot en-
coded sequence inputs. For example, Zhou and Troy-
anskaya (2015) used CNNs to predict various epi-
genetic modifications and TF-binding sites. More
recently, Avsec et al. (2021) showed that using con-
volutional layers followed by transformer layers
(CNN+Transformer model), in a model called En-
former, improves prediction of endogenous gene
expression when compared to convolutional layers
alone. Although many of these models achieve high
accuracy for endogenous expression, they are not
suited to directly predicting expression from com-
pact promoters used in gene delivery applications
because (1) unlike endogenous gene expression, con-
trol of promoter-driven expression relies on only a
short promoter sequence without additional distal
regulatory elements, and (2) promoter-driven ex-
pression utilizes promoter sequences with a much
higher information density (density of regulatory
sequence motifs) when compared to endogenous
promoters. However, Agarwal et al. (2023) showed
that one can build an effective sequence-based PE
predictor by training a Lasso regression model (Tib-
shirani, 1996) that takes Enformer predictions as in-
puts, using MPRA data. This predictor outperforms
two other models that they trained from scratch and
shows thatmodels like Enformer encode information
that is important for transfer learning since they are
typically trained using very large genomic datasets
that capture a lot of regulatory grammar.
Models of PE trained exclusively using large

MPRA datasets have also been developed, which

are more directly relevant to the gene delivery set-
ting. For instance, Movva et al. (2019) train a CNN
to predict PE in K-562 and HepG2 cells. Similarly,
Gosai et al. (2023) build a CNN to predict PE in K-562,
HepG2, and SK-N-SH cells. Recently, the DREAM
challenge1 aimed to uncover the best architectures to
model PE in yeast using a very large MPRA dataset
- the best-performing model was a modified CNN
called LegNet (Penzar et al., 2022). Although this
challenge benchmarked many architectures, trans-
fer learning was not allowed, it did not identify ap-
proaches that are ideal for data-constrained settings,
and it did not model human cell lines-based MPRA
data that is most similar to the gene delivery setting.
Therefore, there is a need to identify the best ap-

proach to model PE for use in promoter design, in-
cluding transfer learning approaches, especially in
data-constrained settings. To this end, we bench-
mark many different architectures and see that
MTLucifer, a CNN+Transformer model, has the best
performance when trained from scratch in both data-
constrained and large dataset settings. We then use
this architecture, Enformer, and DNABERT (Ji et al.,
2021) (a language model trained using the human
genome) to explore various transfer learning ap-
proaches.

3. Transfer learning approaches for
leveraging related data

Collecting large datasets that measure PE in multiple
cell types is expensive and time-consuming. How-
ever, there are several large datasets that provide
relevant information for modelling PE, described in
Section 6 below. Transfer learning can effectively
model small datasets in these settings by leveraging
large relevant datasets. In this work, we explore two
main types of transfer learning for the PE prediction
task: pretraining followed by linear probing or fine-
tuning, and joint training. Here, we explain these
techniques.

3.1. Pretraining followed by linear probing or
fine-tuning

When DL models are trained from scratch on small
datasets, it is difficult for them to learn all task-
relevant features, leading to poor performance. How-
ever, if there is a large related dataset, training on
that dataset prior to training on the small dataset
can help the model learn relevant features that are

1https://dreamchallenges.org/predicting-gene-expression/
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similar between the two datasets. This procedure is
called pretraining. The pretrained model can then be
further trained on the small dataset to learn which
of the features learned during pretraining are rele-
vant for the task at hand and and to modify their
weights as needed. This process is data-efficient, as
the model has learned most relevant features during
pretraining, and generally leads to better prediction
performance on the small dataset (e.g. Devlin et al.
(2018); Chen et al. (2020)).

There are two main transfer methods for training
on the small dataset after pretraining: linear prob-
ing and fine-tuning. Pretrained models generate an
embedding of the input before using this embedding
to make predictions for the pretraining task. Linear
probing freezes all weights of the pretrained model
and adds a trainable linear layer that is trained on
the small dataset to make predictions for the down-
stream task of interest using the input embeddings.
This training can be regularized using techniques
such as Lasso. Fine-tuning not only adds a trainable
output linear layer but also allows the weights of the
pretrained model to be updated when training on the
small dataset. Fine-tuning typically leads to better
predictions, but there are some instances where lin-
ear probing is better, such as when the small dataset
contains inputs that are out-of-distribution for the
pretrained model (Kumar et al., 2022).

3.2. Joint training
Another effective method to perform transfer learn-
ing is to jointly train a model on multiple related
datasets, some which are much larger than the tar-
get task. Joint training can be accomplished by hav-
ing a shared backbone network that outputs em-
beddings of the inputs. These embeddings are then
supplied to task-specific layers that output predic-
tions for all tasks. The motivation behind this ap-
proach is that the shared backbone network learns a
wide variety of features based on the larger datasets,
and these features can then be efficiently utilized by
the task-specific layers, even for tasks with small
training datasets. This method has also been shown
to improve prediction performance on the smaller
datasets (e.g. Yang et al. (2017)).
Performing multi-task learning (MTL):MTL

is required to pretrain or jointly train on multiple
tasks. We perform MTL using the torchmtl package
(Bock, 2020). A common backbone network is used
to embed inputs. The embeddings are then supplied

to task-specific linear layers that make task-specific
predictions. During training, each batch is composed
of samples for one task and we cycle through the
tasks while sampling batches in an epoch (batch-
level round-robin) which has been shown to be effec-
tive (Alayrac et al., 2022). Since the losses for each
task can be on different scales, we use Kendall et al.
(2018)’s method to learn weightings for each task’s
loss. The weighted sum of losses is then minimized
using an optimizer.

4. Promoter-driven expression datasets
used for benchmarking

To evaluate the approaches described in the previous
section for training effective PE predictors that lever-
age large related datasets using transfer learning, we
construct two benchmarking datasets. Although we
are primarily interested in the more natural data-
constrained setting where we have a small target PE
dataset, we also wish to evaluate various approaches
in the large dataset setting to determine if transfer
learning is beneficial in this setting. Thus, we use the
two PE datasets described in this section for bench-
marking - a small one with ∼ 17𝐾 measurements
that we collected from three cell lines, and a large
one with ∼ 750𝐾 measurements from an existing
MPRA performed in five cell lines. Models trained
using various strategies are ultimately evaluated in
terms of their effectiveness in modelling these two
datasets - they simultaneously predict PE (averaged
across replicates) in each cell line from the promoter
using different output heads.

4.1. Fluorescence dataset: small dataset quan-
tifying PE by measuring induced fluo-
rescence levels in a pooled screen (data-
constrained setting)

We collect a new relatively small PE dataset from 3
immune cell lines: Jurkat, K-562, and THP-1. These
specific cell lines are chosen because of their similar-
ity to primary cells, and because promoters designed
for these cell types could be useful for treating blood
cancers. Although PE is well-studied in K-562 cells,
with multiple MPRAs using K-562s (e.g. Ernst et al.
(2016); van Arensbergen et al. (2019)), there are no
large scale datasets that measure PE in Jurkats and
THP-1s. Thus, we use a pooled screen to measure
expression from a set of 20,000 promoters of length
250 base pairs (bp), limited by synthesis constraints
similar to a gene therapy setting. We choose our
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tested promoter sequences using heuristics designed
to maximize the number of differentially expressed
promoters. Briefly, ∼ 50% of the tested promoters are
derived from promoters of differentially expressed
endogenous genes (Class I). Another ∼ 40% are de-
signed by tiling known and de-novo motifs that were
discovered to be enriched in the promoters of dif-
ferentially expressed endogenous genes by HOMER
(Heinz et al., 2010), a motif detection tool (Class II).
The final ∼ 10% of promoters are derived from pro-
moters of highly expressed endogenous genes so that
our models can learn features of sequences that lead
to high expression across many cell types (Class III).
Each promoter is cloned upstream of a minimal

cytomegalovirus (CMV) promoter and the enhanced
green fluorescent protein (EGFP) reporter gene into a
lentiviral vector. The expression induced in each cell
line upon transduction is measured by the induced
fluorescence levels, and we collect two replicate mea-
surements of fluorescence. We get adequate data
from 17,104 promoters. For model training and eval-
utation, ∼ 70% of these promoters are included in the
training set, ∼ 10% in the validation set, and ∼ 20%

in the test set. The promoters in each set are strati-
fied by both promoter class and GC content. More
details about the experimental protocol (including
how we quantify expression strength) and promoter
selection are in Appendix A and B, respectively.

4.2. Malinois MPRA: large PE dataset derived
from an existing MPRA (large dataset set-
ting)

We use MPRA data from ENCODE (Gosai et al., 2023;
ENCODE Project Consortium, 2012) to create a large
PE dataset (Appendix C contains ENCODE acces-
sion numbers for this data). This data was collected
by a single lab using a uniform experimental pro-
tocol from five cell lines: GM12878, K562, HepG2,
SK-N-SH, and A549. We choose to use this data
as it contains a large number of high fidelity mea-
surements from a relatively large number of cell
lines. Moreover, a subset of this data has already
been used by Gosai et al. (2023) to train a PE predic-
tor called Malinois (hence, we refer to this dataset
as Malinois MPRA). The MPRA measures PE from
constructs containing 200bp long promoters that
are cloned upstream of a reporter gene and deliv-
ered to the aforementioned cell lines using tran-
sient transfection. PE is roughly computed as the
log

2 (

number of mRNA molecules produced
number of construct DNA copies )

. The promot-

ers are mostly human genomic segments containing
either the reference or alternate alleles for genomic
variants identified by UK Biobank (Sudlow et al.,
2015) and GTEx (GTEx Consortium, 2020). We ex-
tract 318734, 636185, 750298, 750084, and 318734 PE
measurements from GM12878, K562, HepG2, SK-N-
SH, and A549 cells respectively. Like Gosai et al.
(2023), we use sequences from chromosomes 7, and
13 for testing (∼ 13% of all sequences), those from
chromosomes 19, 21, and X for validation (∼ 7% of
all sequences), and all other sequences for training.

5. Model architectures for benchmark-
ing

We need effective model architectures to make the
best use of the available data. Here, we briefly de-
scribe the various model architectures that we bench-
mark and our rationale for choosing to benchmark
them. All models, except the motif occurrences-
based ones, are sequence-based, and take one-hot
encoded sequences as inputs. Models are described
in more detail in Appendix E.
MTLucifer: We propose a smaller

CNN+Transformer architecture inspired by
Enformer (Avsec et al., 2021) called MTLucifer.
Since promoters are relatively short sequences,
models such as Enformer that use pooling layers
in their CNNs could lose granular information
that might be important for modelling promoters.
Therefore, we choose to use 3 length-preserving
convolutional layers followed by 5 transformer
layers in MTLucifer. A [CLS] token embedding is
appended before the transformer layers and its final
embedding is used by the output layers to make
predictions.

Motif occurrences-based fully connected net-
works (FCN): To compare sequence-based mod-
elling strategies with more conventional strategies
that represent a sequence using handcrafted features,
we evaluate two FCNs (one with 4 layers and a larger
one with 6) that take vectors of known TF-binding
motif occurrences in the promoters as inputs.

CNNs: To evaluate if transformer layers are bene-
ficial for modelling PE, we benchmark 3 CNNs. The
first CNN uses 4 convolutional layers while the sec-
ond larger CNN uses 6 such layers. The last CNN is
a ResNet with 8 residual blocks. In all 3 CNNs, the
outputs of the convolutional layers are supplied to
fully connected layers that make predictions.
The next three sets of models are derived from
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recent work that also aimed to predict PE.We include
these models to evaluate their performance on the
benchmark datasets.
LegNets (Penzar et al., 2022): As mentioned in

Section 2, LegNets were the best predictors of PE in
yeast in the DREAM challenge. We benchmark two
LegNets - one with the same structure as the model
that won the challenge, and a larger one with more
filters in every convolutional layer.
MPRAnn (Agarwal et al., 2023): MPRAnn is a

recently proposed 4-layer CNN for modelling MPRA
data.
Malinois (Gosai et al., 2023): Malinois is a 3-

layer CNN that was used to model a portion of the
Malinois MPRA dataset that we use for benchmark-
ing.

DNABERT (Ji et al., 2021): DNABERT is a BERT
model (Devlin et al., 2018) trained using the human
genome. To evaluate whether MLM-based pretrain-
ing helps in modelling PE, we finetune DNABERT
on our benchmark datasets and evaluate its perfor-
mance.
Enformer (Avsec et al., 2021): Enformer is a

powerful CNN+Transformer-based gene expression
predictor trained using a large set of genomic and
epigenomic data, including endogenous gene expres-
sion data. Agarwal et al. (2023) showed that En-
former can be used to accurately model PE. We first
benchmark a randomly initialized Enformer model.
Then, we perform finetuning and linear probing on a
pretrained model. This allows us to simultaneously
study the merits of the architecture, and the effect
of pretraining.

6. Pretraining or joint training tasks
In the previous sections, we described the transfer
learningmethods we adopt, benchmark datasets, and
model architectures. DNABERT and Enformer are
trained using MLM and a large genomic dataset re-
spectively. Here, we identify four additional large
relevant genomic datasets that can be used for pre-
training or joint training. Crucially, these datasets
are much smaller than the datasets used to train
DNABERT and Enformer, making it feasible to per-
form pretraining on a limited compute budget. This
flexibility could allow us to easily explore alter-
nate architectures, hyperparameters, and modelling
frameworks. In our experiments, we train MTLucifer
models on these datasets to determine their useful-
ness for transfer learning. More details about some

tasks are in Appendix D and Supplementary Table
S.1 summarizes them.

RNA-sequencing (RNA-Seq) data: As endoge-
nous promoters play a crucial role in gene expression,
it might be useful to pretrain models on endogenous
expression data measured using RNA-seq in various
cell types. This should enable the model to learn
TF-binding motifs and their relative importances in
various cell types. Thus, we pretrain on three large
RNA-Seq datasets: LL-100 (Quentmeier et al., 2019),
CCLE (Barretina et al., 2012), and Roadmap (Kundaje
et al., 2015). LL-100, CCLE, and Roadmap contain
expression values from 100, 1408, and 56 cell lines,
respectively. From each dataset, we get expression
values in every cell line, as measured by TPM or
RPKM values. Then, we extract 250bp promoter re-
gions for every gene to input them to our models
and predict expression. Genes from distinct chro-
mosomes are used in the train, test, and validation
sets: ∼ 70%, ∼ 20% and ∼ 10% of the overall genes
are assigned to the train, test, and validation sets,
respectively.

ENCODE TF-binding ChIP-seq data: ChIP-seq
assays are used to discover genomic regions that
are bound by TFs, and pretraining on such data can
help models learn TF-binding sequence motifs. We
obtain ChIP-seq peaks and their corresponding se-
quences for 1363 cell types from ENCODE. Then,
we pretrain our models to predict whether a given
sequence contains a peak in each of the 1363 cell
types. The positive set for this classification task
consists of 600bp sequences centered at every peak.
In total, there are ∼ 3M peaks. The negative set is
built by sampling a dinucleotide shuffled sequence
for every positive sequence, similar to the approach
followed by Alipanahi et al. (2015) and Zeng et al.
(2016). Peaks (and their corresponding negative se-
quences) from distinct chromosomes are used in the
train, test, and validation sets with ∼ 66.8%, ∼ 23.6%,
and ∼ 9.6% of the peaks assigned to the train, test,
and validation sets, respectively.

Sharpr-MPRA data: MPRAs measure promoter-
driven expression induced by multiple promoters
in parallel and thus have high throughput. We hy-
pothesize that pretraining on MPRA data might be
very beneficial for our task because of the similar-
ity in experimental protocols - the main difference
being that our data measures expression induced
by stable transduction while MPRAs measure ex-
pression induced by transient transfection. The
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Sharpr-MPRA dataset (Ernst et al., 2016) measures
expression induced by ∼ 487K 145bp promoters in
K-562 and HepG2 cells. These promoters are derived
from DNase I peaks in K-562, HepG2, HUVEC, and
H1-hESC cells. Each promoter is cloned upstream
of a minimal TATA or strong SV40 promoter and
promoter-driven expression is measured for both
conditions. Two replicates of these measurements
are collected. Thus, there are 8 measurements per
promoter (2 cell lines, 2 downstream promoters, 2
replicates). This dataset was also modelled byMovva
et al. (2019), who include each promoter’s reverse
complement as an additional training example with
the same associated expression value. They also pre-
dict the average of the values from the two replicates,
leading to 12 outputs per input sequence. The ∼ 20K
sequences from chromosome 18 and the ∼ 30K se-
quences from chromosome 8 are used for testing
and validation, respectively. All other sequences are
used for training. We use their processed data and
modelling setup for pretraining.

SuRE MPRA data: SuRE (van Arensbergen et al.,
2017) is another MPRA that was scaled up by van
Arensbergen et al. (2019) to survey the genomes
of 4 individuals from 4 different populations. The
genomes of these individuals are broken into 150-
500bp fragments and each fragment is cloned into
a reporter plasmid. These sequence fragments can
drive expression and function as promoters in trans-
fected cells if the fragment contains a valid TSS.
∼ 2.4B and ∼ 1.2B fragments were found to be ex-
pressed in K-562 and HepG2 cells, respectively. Pre-
training on this large dataset allows our models to
learn about the structure of promoters and the ef-
fects of single nucleotide polymorphisms (SNPs) on
expression.

To the best of our knowledge, no other study has
used this data for pretraining. Since pretraining on
the full dataset is time-consuming due to its size, we
subsample it and create a classification task. Our sub-
sampling accounts for GC content to reduce any as-
sociated confounding. First, each tested sequence is
binned into 2 expression bins, one for K-562 and one
for HepG2. We define 5 bins for each cell based on
the number of reads associated with each sequence:
0, (0, 10], (10, 20], (20, 30] and 30+. Most sequences
have 0 reads and the number of sequences assigned
to each bin decreases with higher read counts. We
remove any sequences with ambiguous SNPs and
compute the GC content of each sequence. For each

individual, we compute a histogram of GC content
over all sequences from their genome, with a bin
width of 0.05. Then, for each individual and for each
combination of K-562 and HepG2 expression bins
(25 combinations), we subsample the individual’s
sequences in that bin combination while keeping
the GC content distribution as close as possible to
the overall GC content distribution. We aim to get
30K training sequences and 3K testing and valida-
tion sequences from each bin combination, reflecting
different levels of differential expression; however,
some bin combinations have fewer sequences. Ulti-
mately, we obtain ∼ 400 − 600K training sequences
per individual and ∼ 50 − 70K testing and validation
sequences. We create datasets for each individual
separately. Our models are pretrained to predict a
sequence’s K-562 and HepG2 expression bin in every
individual.

7. Results
Here we evaluate the model architectures, transfer
learning methods, and pretraining tasks described
above using our benchmarking datasets in both the
data constrained and large data settings. First, we
test the various model architectures by training ran-
domly initialized models from scratch using the
benchmarking datasets. Then, we evaluate the effi-
cacy of various transfer learning methods. Finally,
we demonstrate the usefulness of our trained models
in filtering out promoters with low expression, or
low PE, a task that is crucial for efficient promoter
design. In all our tables and figures, 𝑟 denotes the
Pearson correlation coefficient and 𝜌 denotes the
Spearman’s rank correlation coefficient between the
predictions and targets. Experimental hyperparame-
ters are detailed in Appendix E.

7.1. Evaluating model architectures
Before evaluating the benefits of transfer learning,
we first evaluate the effectiveness of modelling our
two PE datasets using each of the architectures men-
tioned in Section 5, without any pretraining. Ta-
bles 1 and 2 show our results on the fluorescence
(data-constrained setting) and Malinois MPRA (large
dataset setting) datasets respectively. From the ta-
bles, we see that MTLucifer is generally the best
performing architecture, producing the most ac-
curate predictions for most cells in both the data-
constrained and large dataset settings. The large
LegNet is also competitive, especially in the data-
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Model Class Number of Jurkat K-562 THP-1
parameters 𝑟 𝜌 𝑟 𝜌 𝑟 𝜌

MTLucifer 66.3M 0.6129 ± 0.0151 0.5713 ± 0.0171 0.5991 ± 0.0134 0.5844 ± 0.0117 0.5556 ± 0.0200 0.4745 ± 0.0122
Motif-based FCN 5.1M 0.4663 ± 0.0153 0.4536 ± 0.0136 0.4662 ± 0.0058 0.4757 ± 0.0129 0.4055 ± 0.0158 0.3785 ± 0.0142

Large motif-based FCN 38.1M 0.4583 ± 0.0177 0.4408 ± 0.0089 0.4576 ± 0.0115 0.4643 ± 0.0141 0.4011 ± 0.0146 0.3701 ± 0.0171
CNN 11.0M 0.5312 ± 0.0168 0.4608 ± 0.0126 0.5068 ± 0.0094 0.4765 ± 0.0065 0.4804 ± 0.0130 0.3802 ± 0.0096

Large CNN 21.5M 0.5485 ± 0.0106 0.4629 ± 0.0098 0.5212 ± 0.0123 0.4771 ± 0.0102 0.5064 ± 0.0170 0.3797 ± 0.0107
ResNet 114M 0.5243 ± 0.0176 0.4672 ± 0.0132 0.5097 ± 0.0185 0.4842 ± 0.0112 0.4716 ± 0.0237 0.3955 ± 0.0116
LegNet 1.8M 0.5729 ± 0.0164 0.5234 ± 0.0128 0.5551 ± 0.0158 0.5354 ± 0.0127 0.5035 ± 0.0215 0.4270 ± 0.0164

Large LegNet 33.1M 0.6156 ± 0.0071 0.5747 ± 0.0124 0.5876 ± 0.0176 0.5785 ± 0.0094 0.5490 ± 0.0174 0.4639 ± 0.0086
MPRAnn 807K 0.5578 ± 0.0131 0.5088 ± 0.0233 0.5366 ± 0.0129 0.5198 ± 0.0229 0.4860 ± 0.0152 0.4170 ± 0.0238
Malinois 4.1M 0.5025 ± 0.0196 0.4798 ± 0.0187 0.4900 ± 0.0191 0.4918 ± 0.0145 0.4338 ± 0.0292 0.3844 ± 0.0188

DNABERT (random initialization) 89.2M 0.5886 ± 0.0125 0.5492 ± 0.0113 0.5695 ± 0.0117 0.5480 ± 0.0117 0.5202 ± 0.0197 0.4538 ± 0.0130
Enformer (random initialization) 229M 0.5401 ± 0.0157 0.4959 ± 0.0339 0.5234 ± 0.0236 0.5039 ± 0.0271 0.5061 ± 0.0270 0.4118 ± 0.0355

Test Set Replicate Concordance 0.7900 ± 0.0271 0.7348 ± 0.0116 0.7267 ± 0.0247 0.6875 ± 0.0093 0.6561 ± 0.0423 0.4987 ± 0.0133

Table 1: Average prediction performance obtained using various model architectures when trained from scratch on
the fluorescence dataset. The mean and standard deviation are obtained by fitting 5 different models using 5 different
train, test and validation splits of the data.

Model Class Number of HepG2 K-562 SK-N-SH A549 GM12878
parameters 𝑟 𝜌 𝑟 𝜌 𝑟 𝜌 𝑟 𝜌 𝑟 𝜌

MTLucifer 66.3M 0.8102 0.7775 0.8068 0.7513 0.8055 0.7802 0.6919 0.6679 0.4429 0.4618
Motif-based FCN 5.1M 0.4039 0.2925 0.3562 0.2244 0.3944 0.3092 0.3409 0.2671 0.2181 0.1725

Large motif-based FCN 38.1M 0.3930 0.2941 0.3462 0.2246 0.3827 0.3094 0.3316 0.2637 0.2036 0.1811
CNN 11.0M 0.7474 0.6959 0.7294 0.6489 0.7543 0.7180 0.6324 0.5826 0.3949 0.3903

Large CNN 21.5M 0.7411 0.6895 0.7151 0.6318 0.7492 0.7139 0.6314 0.5926 0.3987 0.3953
ResNet 114M 0.7628 0.7114 0.7399 0.6635 0.7672 0.7358 0.6558 0.6140 0.3969 0.3920
LegNet 1.8M 0.7955 0.7500 0.7772 0.7156 0.7894 0.7561 0.6898 0.6493 0.4402 0.4404

Large LegNet 33.1M 0.8051 0.7595 0.7871 0.7278 0.7972 0.7592 0.6959 0.6571 0.4450 0.4464
MPRAnn 808K 0.5295 0.4556 0.4436 0.3594 0.5477 0.4870 0.3733 0.3608 0.1873 0.2011
Malinois 4.5M 0.7935 0.7633 0.7904 0.7401 0.7924 0.7687 0.6973 0.6720 0.4595 0.4882

DNABERT (random initialization) 89.2M 0.6516 0.6256 0.6046 0.5710 0.6638 0.6524 0.5327 0.5173 0.3469 0.3432
Enformer (random initialization) 229M 0.7152 0.6409 0.6700 0.5765 0.7158 0.6529 0.5779 0.5169 0.3644 0.3646

Table 2: Prediction performance obtained using various model architectures when trained from scratch on the
Malinois MPRA dataset.

constrained setting, and the Malinois model that was
proposed to model a subset of the Malinois MPRA
dataset produces good predictions for that dataset.
We can also conclude that sequence-based models
are superior to models that use handcrafted features
such as motif occurrence counts. Moreover, using
a CNN+Transformer instead of a CNN boosts per-
formance. Finally, the relatively poor performance
of a randomly initialized Enformer suggests that its
architecture is not naturally suited to model PE.

7.2. Evaluating transfer learning methods
Next, we systematically evaluate various transfer
learning-based training strategies. For evaluating
the usefulness of the datasets described in Section
6, we use the MTLucifer architecture since it had
the highest overall performance when trained from
scratch. We pretrain it using each of the tasks in
Section 6, and also using some combinations. Then,
we either perform linear probing or fine-tuning to
model the benchmark PE datasets. Similarly, we per-

form joint training by training on the various tasks
in addition to the benchmark tasks. To evaluate the
usefulness of existing pretrained models, we also
perform fine-tuning on Enformer and DNABERT.
Specifically for Enformer, to replicate the method
proposed by Agarwal et al. (2023), we try linear prob-
ing on its outputs using Lasso (Tibshirani, 1996).
Tables 3 and 4 present our results. When mod-

elling the fluorescence data, linear probing of En-
former using Lasso is the best performing method,
improving the 𝜌 by 24 − 27% when compared to
the best model that was trained from scratch. This
results highlights the importance of pretraining -
pretraining Enformer using a large genomic dataset
makes it the best PE predictor even though its archi-
tecture is not naturally suited for predicting PE, as
mentioned previously. We also see that fine-tuning
an MTLucifer model pretrained using other MPRA
datasets improves 𝜌 by 10−16%, demonstrating that
pretraining on these datasets is also useful for mod-
elling the fluorescence data. Moreover, pretraining

8

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 19, 2024. ; https://doi.org/10.1101/2023.02.24.529941doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.24.529941
http://creativecommons.org/licenses/by-nc-nd/4.0/


Strategies for effectively modelling promoter-driven gene expression using transfer learning

on this data takes 33 hours on a single Nvidia A40
GPU and training Enformer takes 3 days on 64 TPU
v3 cores (Avsec et al., 2021). Therefore, pretraining
on the existing MPRA data is much more compute-
efficient and enables us to try different architectures,
hyperparameters, and modelling frameworks if nec-
essary, while still being assured of good downstream
performance.
When modelling the Malinois MPRA data and

operating in the large dataset setting, we notice
more modest performance gains from transfer learn-
ing. Here, the best performing method pretrains an
MTLucifer model on the Sharpr-MPRA dataset be-
fore fine-tuning it on the Malinois MPRA data, and
improves the 𝜌 by up to 2% compared to training
from scratch.

We also notice some instances of negative transfer
(performance drops when using a pretrained model
vs. a randomly initialized one) such as when we pre-
train on RNA-Seq data, highlighting the importance
of carefully validating the usefulness of pretraining
on a certain dataset.
The smaller fluorescence dataset used to evalu-

ate approaches in the data-constrained setting and
the larger Malinois MPRA dataset used to evaluate
approaches in the large dataset setting differ in the
experimental assay used to collect the data and also
in the composition of the tested sequences. To show
that our results in the data-constrained setting hold
when using either type of data, in Appendix F, we
benchmark the various architectures and transfer
learning approaches on a subsampled version of the
Malinois MPRA dataset whose training set is similar
in size to the training set of the fluorescence dataset.
We obtain results that are similar to those obtained
using the fluorescence dataset, confirming that the
size of the training dataset is the main determinant
of relative performances.

In conclusion, transfer learning largely improves
PE prediction performance but the improvement is
more pronounced in the data-constrained setting.

7.3. Detecting low PE promoters
Detecting low PE sequences is crucial for efficient
promoter design - we want to avoid testing se-
quences that have low expression in the target cells
since they are unsuitable for gene therapies. To de-
termine whether transfer learning helps in detecting
such sequences, we create a binary classification task
using the fluorescence data - each promoter is as-

signed three binary labels indicating whether its PE
was above the median PE in each of the three cell
types. We then build three models to perform this
task - an MTLucifer model trained from scratch, a
fine-tuned Enformer model, and a fine-tuned MTLu-
cifer model that was pretrained on the SuRE and
Sharpr-MPRA data.

Our results are presented in Table 5. The benefits
of transfer learning are clear - fine-tuning Enformer
improves overall prediction accuracy by 7−8%when
compared to training from scratch. More interest-
ingly, when we analyze highly and lowly expressed
promoters for each cell type (defined as the top and
bottom 10%iles of promoters, respectively), we find
that fine-tuned Enformer significantly increases pre-
diction accuracy on lowly expressed promoters (by
15−21%), while maintaining high accuracy on highly
expressed promoters. This indicates that the per-
formance gains obtained by pretraining can greatly
improve our ability to filter out lowly expressed pro-
moters.

8. Conclusion
We identify several transfer learning approaches
to effectively model PE. We propose two bench-
mark datasets to analyze the effectiveness of var-
ious approaches in modelling PE in data-constrained
and large dataset settings. When we evalu-
ate models trained from scratch, MTLucifer, a
CNN+Transformer model we propose, generally has
the best performance in both settings. Moreover,
when we employ transfer learning, we notice signif-
icant increases in prediction performance compared
to training from scratch. In the data-constrained set-
ting, we see an improvement of 24 − 27%, obtained
by performing linear probing on Enformer (Avsec
et al., 2021) outputs using Lasso. We also identify
a more compute-efficient pretraining approach that
improves performance by 10 − 16% - it pretrains an
MTLucifer model on SuRE and Sharpr-MPRA data
(existing PE data) before fine-tuning it on the bench-
mark dataset. In the large dataset setting, we see
modest gains of up to 2% using the best approach
that pretrains an MTLucifer model on the Sharpr-
MPRA dataset before fine-tuning it on the bench-
marking dataset. Finally, we show the utility of our
accurate PE predictors in identifying undesirable
low expression promoters - a fine-tuned Enformer
model can filter out low expression promoters with
15 − 21% higher accuracy that the best model that
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Model Class Pretraining or Joint Training Tasks Transfer Method Jurkat K-562 THP-1
𝑟 𝜌 𝑟 𝜌 𝑟 𝜌

MTLucifer - Training from scratch 0.6129 ± 0.0151 0.5713 ± 0.0171 0.5991 ± 0.0134 0.5844 ± 0.0117 0.5556 ± 0.0200 0.4745 ± 0.0122
MTLucifer All RNA-Seq Joint training 0.6252 ± 0.0101 0.5681 ± 0.0174 0.6143 ± 0.0101 0.5866 ± 0.0086 0.5703 ± 0.0166 0.4650 ± 0.0146
MTLucifer ENCODE TF-binding ChIP-seq Joint training 0.6114 ± 0.0129 0.5592 ± 0.0145 0.5952 ± 0.0159 0.5704 ± 0.0210 0.5524 ± 0.0166 0.4575 ± 0.0065
MTLucifer Sharpr-MPRA Joint training 0.6078 ± 0.0059 0.5546 ± 0.0183 0.5896 ± 0.0087 0.5719 ± 0.0125 0.5519 ± 0.0164 0.4652 ± 0.0112
MTLucifer SuRE MPRA Joint training 0.6529 ± 0.0030 0.6270 ± 0.0063 0.6410 ± 0.0104 0.6442 ± 0.0090 0.5798 ± 0.0149 0.5033 ± 0.0092
MTLucifer Sharpr, SuRE MPRA Joint training 0.6561 ± 0.0118 0.6235 ± 0.0124 0.6419 ± 0.0090 0.6398 ± 0.0103 0.5796 ± 0.0181 0.4979 ± 0.0169
MTLucifer All RNA-Seq Fine-tuning 0.6021 ± 0.0077 0.5675 ± 0.0141 0.5939 ± 0.0175 0.5858 ± 0.0141 0.5381 ± 0.0198 0.4645 ± 0.0079
MTLucifer ENCODE TF-binding ChIP-seq Fine-tuning 0.6431 ± 0.0123 0.5955 ± 0.0072 0.6303 ± 0.0099 0.6155 ± 0.0059 0.5716 ± 0.0204 0.4694 ± 0.0142
MTLucifer Sharpr-MPRA Fine-tuning 0.6297 ± 0.0104 0.5835 ± 0.0070 0.6151 ± 0.0066 0.6026 ± 0.0044 0.5723 ± 0.0178 0.4733 ± 0.0156
MTLucifer SuRE MPRA Fine-tuning 0.6924 ± 0.0069 0.6599 ± 0.0049 0.6796 ± 0.0096 0.6745 ± 0.0028 0.6159 ± 0.0147 0.5149 ± 0.0126
MTLucifer Sharpr, SuRE MPRA Fine-tuning 0.6891 ± 0.0084 0.6534 ± 0.0100 0.6804 ± 0.0116 0.6787 ± 0.0028 0.6181 ± 0.0169 0.5261 ± 0.0103
MTLucifer All RNA-Seq Linear probing 0.5090 ± 0.0136 0.4603 ± 0.0118 0.5005 ± 0.0188 0.4839 ± 0.0114 0.4641 ± 0.0177 0.3984 ± 0.0080
MTLucifer ENCODE TF-binding ChIP-seq Linear probing 0.5132 ± 0.0190 0.4840 ± 0.0186 0.5044 ± 0.0190 0.5084 ± 0.01570 0.4511 ± 0.0286 0.4020 ± 0.0282
MTLucifer Sharpr-MPRA Linear probing 0.5685 ± 0.0061 0.5318 ± 0.0087 0.5625 ± 0.0104 0.5598 ± 0.0129 0.5028 ± 0.0119 0.4370 ± 0.0030
MTLucifer SuRE MPRA Linear probing 0.6563 ± 0.0141 0.6310 ± 0.0107 0.6538 ± 0.0133 0.6571 ± 0.0085 0.5784 ± 0.0212 0.5039 ± 0.0063
MTLucifer Sharpr, SuRE MPRA Linear probing 0.6552 ± 0.0024 0.6226 ± 0.0058 0.6550 ± 0.0126 0.6529 ± 0.0035 0.5852 ± 0.0152 0.5112 ± 0.0103
DNABERT Human Genome MLM Fine-tuning 0.5880 ± 0.0152 0.5324 ± 0.0179 0.5726 ± 0.0178 0.5538 ± 0.0117 0.5253 ± 0.0282 0.4310 ± 0.0076
Enformer Variety of genomic and epigenomic data Fine-tuning 0.7593 ± 0.0068 0.7032 ± 0.0067 0.7395 ± 0.0094 0.7071 ± 0.0112 0.6985 ± 0.0152 0.5662 ± 0.0098
Enformer Variety of genomic and epigenomic data Linear probing with Lasso 0.7592 ± 0.0088 0.7251 ± 0.0040 0.7511 ± 0.0141 0.7374 ± 0.0105 0.6983 ± 0.0188 0.5872 ± 0.0060

Mean increase in performance of best-performing method vs. training from scratch 23.89% 26.92% 25.37% 26.18% 25.72% 23.75%
Test Set Replicate Concordance 0.7900 ± 0.0271 0.7348 ± 0.0116 0.7267 ± 0.0247 0.6875 ± 0.0093 0.6561 ± 0.0423 0.4987 ± 0.0133

Table 3: Average prediction performances obtained using various training strategies when used to model the
fluorescence dataset. The mean and standard deviation is computed by fitting 5 different models using 5 different
train, test and validation splits of the data.

Model Class Pretraining or Joint Training Tasks Transfer Method HepG2 K-562 SK-N-SH A549 GM12878
𝑟 𝜌 𝑟 𝜌 𝑟 𝜌 𝑟 𝜌 𝑟 𝜌

MTLucifer - Training from scratch 0.8102 0.7775 0.8068 0.7513 0.8055 0.7802 0.6919 0.6679 0.4429 0.4618
MTLucifer All RNA-Seq Joint training 0.7298 0.6886 0.6965 0.6410 0.7307 0.7047 0.6124 0.5831 0.3865 0.3884
MTLucifer ENCODE TF-binding ChIP-seq Joint training 0.7448 0.7009 0.7247 0.6513 0.7493 0.7161 0.6296 0.5944 0.3969 0.4018
MTLucifer Sharpr-MPRA Joint training 0.8110 0.7785 0.8021 0.7468 0.8002 0.7784 0.7033 0.6783 0.4505 0.4644
MTLucifer SuRE MPRA Joint training 0.8230 0.7866 0.8139 0.7510 0.8120 0.7842 0.7125 0.6812 0.4616 0.4693
MTLucifer Sharpr, SuRE MPRA Joint training 0.8164 0.7842 0.8127 0.7553 0.8081 0.7791 0.7060 0.6746 0.4567 0.4656
MTLucifer All RNA-Seq Fine-tuning 0.8055 0.7717 0.7983 0.7446 0.7991 0.7712 0.6982 0.6682 0.4407 0.4503
MTLucifer ENCODE TF-binding ChIP-seq Fine-tuning 0.8093 0.7776 0.8051 0.7499 0.8017 0.7751 0.7026 0.6751 0.4394 0.4551
MTLucifer Sharpr-MPRA Fine-tuning 0.8160 0.7872 0.8077 0.7518 0.8083 0.7881 0.7069 0.6833 0.4394 0.4555
MTLucifer SuRE MPRA Fine-tuning 0.8114 0.7791 0.8036 0.7469 0.8018 0.7816 0.6920 0.6762 0.4285 0.4463
MTLucifer Sharpr, SuRE MPRA Fine-tuning 0.8067 0.7750 0.7922 0.7441 0.7995 0.7706 0.6928 0.6713 0.4459 0.4610
MTLucifer All RNA-Seq Linear probing 0.4900 0.4419 0.3930 0.3446 0.5178 0.4943 0.3347 0.3514 0.2289 0.2545
MTLucifer ENCODE TF-binding ChIP-seq Linear probing 0.5105 0.4605 0.4487 0.3607 0.5246 0.4829 0.3889 0.3827 0.2398 0.2779
MTLucifer Sharpr-MPRA Linear probing 0.6367 0.5493 0.5569 0.4542 0.6377 0.5808 0.5018 0.4597 0.2893 0.2940
MTLucifer SuRE MPRA Linear probing 0.7161 0.6309 0.6793 0.5729 0.7104 0.6400 0.6026 0.5109 0.3681 0.3448
MTLucifer Sharpr, SuRE MPRA Linear probing 0.7209 0.6400 0.6790 0.5810 0.7150 0.6561 0.6102 0.5515 0.3649 0.3544
DNABERT Human Genome MLM Fine-tuning 0.7618 0.7275 0.7491 0.6990 0.7602 0.7362 0.6484 0.6235 0.4125 0.4259
Enformer Variety of genomic and epigenomic data Fine-tuning 0.8257 0.7682 0.8115 0.7285 0.8199 0.7745 0.7218 0.6682 0.4479 0.4527
Enformer Variety of genomic and epigenomic data Linear probing with Lasso 0.7506 0.6587 0.7157 0.5866 0.7614 0.6861 0.6494 0.5752 0.3942 0.3847

Mean increase in performance of best-performing method vs. training from scratch 1.91% 1.25% 0.88% 0.53% 1.79% 1.01% 4.32% 2.30% 4.22% 1.62%

Table 4: Prediction performances obtained using various training strategies when used to model the Malinois MPRA
dataset.

Metric Performance of MTLucifer model Performance of fine-tuned MTLucifer model Performance of fine-tuned Enformer model Increase in performance of best-performing method
trained from scratch pretrained on SuRE and Sharpr-MPRA data vs. training from scratch

Overall Accuracy Jurkat 0.7204 ± 0.0147 0.7513 ± 0.0117 0.7757 ± 0.0095 7.68%
Overall Accuracy K-562 0.7288 ± 0.0085 0.7732 ± 0.0070 0.7788 ± 0.0039 6.86%
Overall Accuracy THP-1 0.6714 ± 0.0104 0.7033 ± 0.0078 0.7166 ± 0.0062 6.73%

Top 10%ile Accuracy Jurkat 0.9083 ± 0.0319 0.9512 ± 0.0114 0.9530 ± 0.0109 4.92%
Top 10%ile Accuracy K-562 0.9137 ± 0.0136 0.9649 ± 0.0226 0.9524 ± 0.0038 5.60%
Top 10%ile Accuracy THP-1 0.8988 ± 0.0437 0.9351 ± 0.0099 0.9274 ± 0.0144 4.04%

Bottom 10%ile Accuracy Jurkat 0.7577 ± 0.0276 0.7988 ± 0.0532 0.8851 ± 0.0246 16.81%
Bottom 10%ile Accuracy K-562 0.7631 ± 0.0364 0.8214 ± 0.0409 0.8804 ± 0.0298 15.37%
Bottom 10%ile Accuracy THP-1 0.6530 ± 0.0879 0.7065 ± 0.0419 0.7964 ± 0.0293 21.96%

Table 5: Performance of models on the binary classification task constructed using the fluorescence datasets. The
mean and standard deviation is computed by fitting 5 different models using 5 different train, test and validation splits
of the fluorescence dataset.

was trained from scratch, further highlighting the
utility of transfer learning. Our methods and results
are useful for modelling any PE dataset, and future
work can use our benchmarks to evaluate novel ap-
proaches against existing ones.
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A. Experimental methods
A.1. Library cloning
The promoter library was synthesized by Twist Biosciences in a pooled fashion using microarray sythethesis.
25bp overhangs were added to each 250bp promoter sequence to allow for PCR amplification and Golden
Gate assembly (5’-TAGTCGGCTAGATGCGTCTCCTACG(Nx250)GGTACGAGACGACTGTCTTTCCCCT-
3’). 20ng of the oligopool was PCR amplified in a 50µL reaction using 1.5µL of of each 10µM primer
(TAGTCGGCTAGATGCGTCTCC and AGGGGAAAGACAGTCGTCTCG), and 25µL KAPA HiFi HotStart
ReadyMix (Roche KK2602). The thermocycling protocol was 98°C for 3 minutes followed by 12 cycles of 98°C
for 20s, 69°C for 15s, 72°C for 15s with a final extension at 72°C for 1 minute. 1µL of the reaction was analyzed
by gel electrophoresis, and a single band was visualized at 300bp. The remainder of the reaction was purified
using DNA Clean & Concentrator-5 (Zymo D4004) and eluted in 12µL of nuclease-free H2O. The amplified
oligopool was then cloned into a 3rd generation lentiviral vector immediately upstream of a minimal CMV
promoter driving the expression of enhanced green fluorescent protein (EGFP) using a 25µL Golden Gate
reaction containing 250ng backbone plasmid, 2X molar of the purified oligopool, 1µL Esp3I (Thermo Fisher
FD0454), 1µL T4 DNA ligase (NEB M0202L, 400U/µL) and 2.5µL T4 ligase buffer (NEB B0202S). After an
initial 5 minute digestion at 37°C, 30 cycles of 37°C digestion and 16°C ligation were followed by 20 minutes
of ligation at 16°C, 30 minutes of digestion at 37°C and 20 minutes of heat-inactivation at 80°C. The reaction
was purified using DNA Clean & Concentrator-5 (Zymo D4004) and eluted in 6µL of nuclease-free H2O.
2µL were transformed into Endura electrocompetent cells (Biosearch Technologies 60242-2) following the
manufacturer’s protocol. After recovery, the cells were plated on a single large 245mm x 245mm LB plate
with carbenicillin, and serial dilutions were plated on standard sized plates up to 1:1×106 to assess library
coverage. After overnight incubation at 30°C, colonies were counted on the dilution plates to assure a library
coverage of at least 30X. Colonies from the large plate were scraped into liquid suspension and collected into
a 50mL conical tube before the plasmid pool was prepared using NucleoBond Xtra Midi EF (Macherey-Nagel
740420). Subsequent analysis of the plasmid pool using gel electrophoresis confirmed a homogenously sized
plasmid species that was not digestible with Esp3I (Thermo Fisher FD0454).

A.2. Cell lines and culture conditions
Jurkat, K-562, and THP-1 cells were obtained from American Type Culture Collection (TIB-152, CCL-243, and
TIB-202) and grown in RPMI + GlutaMAX (Gibco 61870036) supplemented with 10% FBS (Gibco 26140079),
1x penicillin/streptomycin (Gibco 15140122), 1mM sodium pyruvate (Gibco 11360070) and 10mM HEPES
(Gibco 15630080). Jurkat and K-562 cells were generally maintained between 1×105-1×106 cells/mL, and
THP-1 wells were maintained between 2×105-1×106 cells/mL. All suspension cell lines were split every 2-4
days by counting cell density and diluting cells into a new flask with fresh medium warmed to 37°C. Lenti-X
293T cells were attained from Takara Bio (632180) and grown in DMEM, high glucose, pyruvate (Gibco
11995065) supplemented with 10% FBS (Gibco 26140079) and 1x penicillin/streptomycin (Gibco 15140122).
Lenti-X cells were split every 2-4 days by aspirating medium, treating with TrypLE Express (Gibco 12604021),
and reseeding cells into a new flask with fresh medium warmed to 37°C. Incubator conditions were kept at
37°C, 5% CO2 and >90% RH. All cell lines were routinely tested for mycoplasma contamination every 2-4
months with MycoStrip mycoplasma detection kit (InvivoGen rep-mysnc-100).

A.3. Lentiviral production and titration
Large scale lentiviral production was performed in Lenti-X cells by polyethylenimine (PEI, Polysciences
23966) transfection into confluent T225 flasks containing DMEM, high glucose, pyruvate (Gibco 11995065)
supplemented with 10% FBS (Gibco 26140079) and 10mM HEPES (Gibco 15630080). 40µg of DNA were
transfected into each flask using 2nd generation packaging plasmids pMD2.G (Addgene #12259) and psPAX2
(Addgene #12260) along with the lentiviral plasmid pool at a mass ratio of 1:2:4. After 72 hours of incuba-
tion, lentiviral particles were concentrated 10X using Lenti-X Concentrator (Takara Bio 631232) per the
manufacturer’s instructions, and single use aliquots were frozen at -80°C. Functional titration of each batch
of lentivirus was performed in Jurkat, K-562, and THP-1 cells by transducing 4×104 cells via 90 minute
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spinfection at 1000g and 32°C in 96 well plates with 8µg/mL polybrene (Millipore TR-1003-G). At least five
serial dilutions of lentivirus were used, and transductions were performed in quadruplicate. After overnight
incubation, media containing lentivirus was removed and replaced with fresh media with and without
2µg/mL puromycin (Gibco A1113803). After five days of selection, cell survival in each well was quantified
on a Tecan Spark plate reader using CellTiter-Glo 2.0 Cell Viability Assay (Promega G9242), and percent
survival was calculated as the ratio of luminescence in the presence versus absence of puromycin for each
lentiviral dilution. Finally, functional lentiviral titer was calculated for all dilutions with 5-30% survival and
averaged for each cell line.

A.4. High-throughput measurements of promoter activity
8×107 Jurkat, K-562, or THP-1 cells were transduced in duplicate via 90 minute spinfection at 1000g and 32°C
in 50mL conical tubes with 8×106 infection units (IUs) of virus and 8µg/mL polybrene (Millipore TR-1003-G)
for a multiplicity of infection (MOI) of 0.1 and a library coverage of 400X. After transfer to T225 flasks and
overnight incubation, media containing lentivirus was removed and replaced with fresh media containing
2µg/mL puromycin (Gibco A1113803). After five days of selection, cells were expanded a further 2-10 days
in the absence of puromycin to dilute dead cells and attain at least 4×107 cells (2000X coverage) for sorting.
Selected cells were sorted into four 25% bins of EGFP fluorescence using a BD FACSAria Fusion Special
Order Research Product. At least 2×107 total cells were sorted for a library coverage of 1000X. Cells from
each bin were pelleted, and the supernatant was removed for short-term storage at -20°C.

A.5. Library preparation and sequencing
Genomic DNA was extracted from sorted cell pellets using Quick-DNA Midiprep Plus Kit (Zymo D4075)
using the manufacterer’s instructions. Next generation sequencing (NGS) libraries were prepared using two
consecutive PCR steps. In PCR1, the promoters contained in each sorted bin were amplified from the total
amount of corresponding genomic DNA using 4µL of each 100µM primer and 400µL NEBNext Ultra II Q5
Master Mix (NEB M0544X). Each 800µL reaction was divided into 8×100µL reactions in a 96 well PCR plate
before thermocycling at 98°C for 30s, followed by 20 cycles of 98°C for 10s, 63°C for 30s and 65°C for 45s,
with a final extension at 65°C for 5 minutes. All eight completed reactions for each bin were combined into
a single tube and vortexed thoroughly before 50µL were purified using a 0.7X AMPure XP bead cleanup
(Beckman Coulter A63881). Sequencing adapters and barcodes were then added to the promoter amplicons
in PCR2 by combining 2µL of purified PCR1, 2µL of index primers at 10µM each and 25µL NEBNext Ultra II
Q5 Master Mix (NEB M0544X). The 50µL reaction was thermocycled at 98°C for 30s, followed by 7 cycles of
98°C for 10s and 65°C for 75s, with a final extension at 65°C for 5 minutes. The PCR2 products were run on
a 2% agarose gel, and each produced a single 428bp band, which was extracted using Monarch DNA Gel
Extraction Kit (NEB T1020L). Gel-extracted PCR2 products from each bin were then quantified by Qubit
1X dsDNA HS Assay (Thermo Fisher Q33231) and pooled at equimolar ratios before requantification with
Qubit and fragment analysis with Agilent 2100 Bioanalyzer using the High Sensitivity DNA Kit (Agilent
Technologies 50674626). Prepared libraries were loaded onto the Illumina NextSeq 2000 at 750-850pM and
sequenced using 300 cycle v3 kits with P1 or P2 flow cells (Illumina 20050264 and 20046813) to attain at
least 1000X sequencing coverage for each replicate.

A.6. Sequencing analysis
Raw BCL files were converted to fastq files and demultiplexed with bcl-convert v4.0.3 (Illumina). Paired-end
reads were trimmed, merged and filtered using fastp (Chen et al., 2018) followed by dereplication and
counting with seqfu (Telatin et al., 2021). Only reads with zero mismatches to a promoter in our library were
counted, and only promoters with at least five reads in each replicate across all cell lines were considered in
downstream analyses.

A.7. Quantifying expression strength of promoters
The expression strength of each promoter was calculated as the log (base 2) ratio of reads in the highest
quartile EGFP bin to the lowest quartile EGFP bin after adding one read to each bin, and the average
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expression strength (across the two replicates) was calculated for each promoter in each cell line.

B. Generation of promoter sequences for the experimental dataset
We constructed a promoter library for the experiments described above, which was then used to train and
fine-tune our models, containing the following types of sequences.

B.1. Class I (9991 promoters)
These promoters were extracted from the promoters of endogenous differentially expressed (DE) genes.
Gene expression data from LL-100 (Quentmeier et al., 2019) and CCLE (Barretina et al., 2012) were used
to identify DE genes. Although we measure expression in Jurkat, K-562 and THP-1 cells, the cell types
used for this DE analysis were Jurkat, THP-1 and NK-92. We later switched from NK-92s to K-562s due to
experimental difficulties. DE genes were identified by DESeq2 (Love et al., 2014). Briefly, for each of the
three cell lines, we identified a set of “globally" up/down-regulated genes that were up/down-regulated
in that cell line and related cell lines (other immune cells of the same type), when compared to all other
cell lines. For each of the three cell lines, we also identified a set of “locally" up/down-regulated genes that
were up/down-regulated in that cell line and related cell lines when compared to the other two chosen cell
lines and cell lines related to them. For each cell line, we took the intersection of its globally and locally
up/down-regulated genes and considered the 1111 top DE genes per cell line (711 up-regulated and 400
down-regulated). Following the rationale from Appendix D.1, we extracted three 250bp promoter sequences
for every gene – [TSS - 300bp, TSS - 50bp), [TSS - 100bp, TSS + 150bp), and [TSS + 100bp, TSS + 350bp) – to
get a total of 3333 promoters per cell line and 9991 promoters overall (after removing duplicates) to test in
our experiments.

B.2. Class II (7998 promoters)
Promoters in this class were constructed using HOMER (Heinz et al., 2010), a motif detection tool. We
supplied the DE genes identified above for the Class I promoters to HOMER, analyzing the [TSS - 300bp,
TSS + 50bp] regions of these genes to identify enriched motifs. HOMER identifies two types of enriched
motifs, known motifs (which we obtained from Vierstra et al. (2020)) and de-novo motifs. We identified
known motifs that were enriched with q-values less than 0.05 and de-novo motifs that were enriched with
p-values less than 1e-10. For each cell type, we then generated 2666 promoters, 1500 using motifs enriched
in that cell type’s upregulated genes and 1166 using a mix of motifs enriched in that cell type’s upregulated
genes and motifs enriched in the other two cell types’ downregulated genes. To generate the promoters, we
inserted up to 18 randomly sampled motifs from the above set into an endogenous promoter segment, ([TSS
- 100bp, TSS + 150bp)) from an upregulated gene in NK-92s. The exact inserted sequence for each motif was
obtained by sampling from its PWM. This process resulted in inserting more than 100bp of motifs into the
original 250bp endogenous promoter segment for ∼ 77% of the Class II promoters.

B.3. Class III (2011 promoters)
Finally, we extracted sequences from the promoters of endogenous highly expressed genes, which were
chosen as follows:

1. 1004 genes with the lowest coefficient of variation in their TPM values across all cell lines in the CCLE
dataset (restricted to those with a TPM of at least 1).

2. 1007 genes that were up-regulated in all three of the selected cell lines (and related cell lines) vs. all
other cell lines in the CCLE dataset, identified using DESeq.

We used the [TSS - 100bp, TSS + 150bp) regions of these genes as 250bp promoter sequences to test in our
experiments.
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C. ENCODE accession numbers for the large MPRA dataset we use for evaluation
PE measurements are extracted from element quantification files that derive from count files bearing the
following ENCODE accession numbers: ENCFF996ECA, ENCFF018AMJ, ENCFF345ASG, ENCFF970OLE,
ENCFF318XMJ, ENCFF821XQZ, ENCFF358MBK, ENCFF379XWL, ENCFF774CHX, ENCFF138DJM,
ENCFF277DDE, ENCFF334EKU, ENCFF857FQR, ENCFF259NMG, ENCFF477LDL, ENCFF484JFE,
ENCFF227KRF, ENCFF102ZVT, ENCFF418GRL, ENCFF333BAD, ENCFF307HBZ, ENCFF771HPB,
ENCFF359KJL, ENCFF035HKU, ENCFF759PPO, ENCFF705AES, ENCFF256WKS, ENCFF352JAC,
ENCFF147SMK, ENCFF311DJW, ENCFF350IJA, ENCFF815ORW, ENCFF402GOL, ENCFF865LNO,
ENCFF755GRH, ENCFF440YVF, ENCFF703OIL, ENCFF927USI, ENCFF476FXK, ENCFF742ENC,
ENCFF112HAT, ENCFF792IHA, ENCFF267VJ. These files were chosen because Gosai et al. (2023)’s
lab collected this data and use a subset of these for training PE predictors.
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D. Additional details about pretraining or joint training tasks
D.1. RNA-seq data
Here, we describe extraction of expression values, and the promoter regions used as inputs to the models
during pretraining. TPM values for CCLE and RPKM values from Roadmap are obtained from their respective
websites. TPM values for LL-100 are obtained by processing the published raw reads using a standard
pipeline (Patel et al., 2022). We filter out any genes that have mean TPM or RPKM values less than 1. Then,
we extract three 250bp regions of the promoter for every gene: [TSS - 300bp, TSS - 50bp), [TSS - 100bp, TSS
+ 150bp), and [TSS + 100bp, TSS + 350bp), which are used to predict expression in every cell line. These
regions are chosen by fitting an Xpresso model (Agarwal and Shendure, 2020) to predict median expression
across all Roadmap cell lines from various 250bp windows within the TSS ± 1000bp region. We find that the
highest prediction performance is obtained using windows within the TSS ± 300bp region. Thus, we choose
three 250bp windows covering this region. During training, each promoter sequence window is treated as a
separate example with the same associated target expression values. During testing, the predictions for the
three windows are averaged to get the final prediction for the gene. We find that this approach yields better
fine-tuning and joint training performance compared to using a single large input region such as TSS ±

1500bp.

D.2. ENCODE TF-binding ChIP-seq data
The process we use to extract peaks is described in this section. We obtain peak calls (narrow peaks) from
1645 TF-binding ChIP-seq datasets from ENCODE that do not have any major quality issues (list of datasets
is available in the code repository). Peaks that have a q-value greater than 0.05 are filtered out, and the 1363
cell types with at least 1000 peaks after q-value-based filtering are retained. Because many peaks are very
close to each other, we merge peaks that occur within 100bp of each other and create a new unified peak at
the mean of the individual peaks’ positions. This unified peak is annotated as being a peak in all datasets
from which the individual peaks originated.

D.3. Summary of datasets

Dataset Assay Sequence used to train models Size
Promoter-driven

Expression

LL-100 RNA-seq of 100 blood cancer cell lines [TSS - 300 bp, TSS - 50 bp), [TSS - 100 bp, TSS + 150 bp),
and [TSS + 100 bp, TSS + 350 bp)

14,969 ✗

CCLE RNA-seq of 1408 cancer cell lines [TSS - 300 bp, TSS - 50 bp), [TSS - 100 bp, TSS + 150 bp),
and [TSS + 100 bp, TSS + 350 bp)

13,831 ✗

Roadmap RNA-seq of 56 cell lines [TSS - 300 bp, TSS - 50 bp), [TSS - 100 bp, TSS + 150 bp),
and [TSS + 100 bp, TSS + 350 bp)

14,209 ✗

Sharpr MPRA MPRA in K-562 and HepG2 145 bp sequences whose expression was measured ∼950K ✓

SuRE MPRA MPRA in K-562 and HepG2 100-500 bp sequences whose expression was measured ∼2.5M
(subsampled)

✓

ENCODE
TF-binding

ChIP-seq data
1363 ChIP-seq datasets from diverse cells

+ve set: 600 bp sequence centered at
avg position of nearby peaks

-ve set: dinucleotide shuffled +ve sequences
∼6M N/A

Table S.1: Summary of datasets from Section 6
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E. Modelling details
E.1. Details of the architectures of various models
E.1.1. MTLucifer
The MTLucifer model has 3 length-preserving (thus, stride is 1) 1D-convolutional layers followed by 5
transformer layers. The convolutional layers have 256, 512, and 1024 filters of size 5 and use GELU activation
(Hendrycks and Gimpel, 2016). After each convolutional layer, we apply a group normalization layer (Wu
and He, 2018) with each group comprising 16 channels. The transformer layers have 1024 embedding
dimensions, 8 attention heads, and their multi-layer perceptrons have 4096 hidden units. We also use rotary
embeddings (Su et al., 2024) with 512 dimensions in each transformer. We apply dropout (Srivastava et al.,
2014) to all layers with the dropout probability set to 0.1.

E.1.2. Motif occurrences-based FCNs
The smaller motif occurrences-based FCN has 4 layers. We use FIMO (Grant et al., 2011) to extract the
number of occurrences of 693 clustered TF-binding motifs (Vierstra et al., 2020) in the sequences (FIMO is
run with default arguments and we retain detected motif occurrences with q-value < 0.1). Vectors containing
these occurrence counts for all motifs are input to the FCN. Then, 4 fully connected layers with 2048, 1024,
1024 and 512 neurons are applied to get embeddings for each input (each layer except the last uses ReLU
activation). These embeddings are then used by a linear output layer to make the PE predictions.
The larger motif occurrences-based FCN is very similar to the smaller one but has 6 layers with 2048,

4096, 4096, 2048, 1024, and 1024 neurons in the 6 layers.

E.1.3. CNNs
The smaller CNN has 4 convolutional layers followed by 2 fully connected layers. One-hot encoded sequences
are fed as inputs to the network. Then 4 1D length preserving convolutional layers with 512, 768, 768
and 1024 filters of size 5 are applied. Two 1D max pooling layers of size 5 are applied between the second
and third layer, and after the last layer. The outputs of the CNN are flattened and passed through 2 fully
connected layers with 2048 neurons (and with ReLU activation) and 1024 neurons. The final outputs of this
network are then used by a linear output layer to make the PE predictions.
The larger CNN has 6 convolutional layers followed by 2 fully connected layers. The 6 1D length

preserving convolutional layers have 512, 768, 768, 1024, 1024, and 1024 filters of size 5. Three 1D max
pooling layers of size 5 are applied between the second and third layer, between the fourth and fifth layer,
and after the last layer. Again, the outputs of the CNN are flattened and supplied to 2 fully connected layers
with 2048 neurons (with ReLU activation) and 1024 neurons. The final outputs are again used by a linear
output layer to predict PE.
Note that all convolutional layers in the above CNNs use GELU activation and are followed by group

norm (each group has 16 channels) and dropout (0.1 dropout probability) layers.
The ResNet we benchmark has 8 residual blocks. One-hot encoded sequences are first input to a 1D

convolutional layer with 512 filters of size 5. Then, 8 standard residual blocks with 512, 512, 768, 768, 1024,
1024, 2048, and 2048 1D filters of size 5 are applied. Adaptive average pooling is performed over the length
dimension of the final outputs of the residual blocks and supplied to a fully connected layer with 1024
neurons. Finally, the outputs of this layer are used by a linear output layer to predict PE.

E.1.4. LegNets
LegNet implementation with the same structure as the model that won the DREAM challenge:
The model was constructed using the code provided by Penzar et al. (2022). One-hot encoded sequences are
input to the model and the outputs of the final convolutional block are extracted. Adaptive average pooling
is then performed over the length dimension of the outputs. Finally, the outputs after pooling are used by a
linear output layer to predict PE.
Large LegNet with additional filters: We modified the previous LegNet model by increasing the

number of filters in the convolutional blocks to 1024, 512, 512, 256, 256, 256, and 256 (from 256, 128, 128, 64,
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64, 64, and 64).

E.1.5. DNABERT
For fine-tuning DNABERT, we obtain the pretrained model provided by Ji et al. (2021). During fine-tuning,
we append a [CLS] token to the tokenized sequences input to the model and use its final embedding to
predict PE using a linear output layer.

E.1.6. Enformer
We use a Pytorch port2 of the original Enformer model published by Avsec et al. (2021) for all experiments.
In general, we supply the input sequence to Enformer and get sequence embeddings from its last transformer
layer. To aggregate information over the full sequence length, we perform attention pooling and thus get
the final sequence embedding. This embedding is then supplied to linear output layers to predict PE.

To perform linear probing of Enformer outputs using Lasso, we first get Enformer outputs from both the
human and mouse heads. Then, we flatten these outputs across the length dimension and fit separate Lasso
models for each cell type in the PE dataset being modelled using scikit-learn (Pedregosa et al., 2011). The
optimal regularization hyperparameter 𝛼 is chosen from the set {1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1, 10} based on
the loss on the validation set. Other hyperparameters are left at their default values.

E.2. Hyperparameters
1. All models are implemented using PyTorch.
2. We use a cluster consisting of GPU-enabled nodes to train our models. The nodes either use Nvidia

TITAN RTXs, A40s or V100s.
3. Unless otherwise stated, all models are trained using the AdawW optimizer (Loshchilov and Hutter,

2017).
4. For regression-based pretraining tasks from Section 6, we Z-score all target values before fitting models.
5. When training from scratch to model the fluorescence data, we generally use a 1e-5 learning rate, 1e-4

weight decay and 96 batch size. Models are trained for a maximum of 50 epochs but if the average
Spearman’s rank correlation coefficient of the validation set does not improve for 5 epochs, we stop
training. We change our hyperparameters in the following cases:

• When training DNABERT from scratch (i.e. random initialization), we use a batch size of 64 due
to GPU memory constraints.

• While training LegNets, we employ the optimizer (AdamW) and scheduler (One Cycle Learning
Rate Policy (Smith and Topin, 2019)) used by Penzar et al. (2022) to train LegNet models for the
DREAM challenge. For the smaller LegNet, we use 0.005 learning rate, 0.01 weight decay and
1024 batch size. For the larger one, we use 0.005 learning rate, 0.01 weight decay and 192 batch
size. The scheduler uses the same hyperparameters as those used by Penzar et al. (2022).

• When training MPRAnn, we employ the optimizer (Adam) and hyperparameters used by Agarwal
et al. (2023) i.e. 0.001 learning rate and batch size of 32.

• When training Malinois, we employ the optimizer (AdamW) and scheduler (cosine annealing witg
warm restarts) used by Gosai et al. (2023). As prescribed by them, we use a 0.0032658700881052086
learning rate and 0.0003438210249762151 weight decay. We use a batch size of 512 and train
for a maximum of 200 epochs but if the average Spearman’s rank correlation coefficient of the
validation set does not improve for 30 epochs, we stop training.

• When training Enformer from scratch (i.e. random initialization), we use a 5e-4 learning rate,
5e-4 weight decay and 96 batch size. We note that using a higher learning rate led to training
instability.

6. When training from scratch to model the Malinois MPRA data, we generally use a 1e-4 learning rate,
1e-4 weight decay and 96 batch size. Models are trained for a maximum of 50 epochs but if the average

2https://github.com/lucidrains/enformer-pytorch

21

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 19, 2024. ; https://doi.org/10.1101/2023.02.24.529941doi: bioRxiv preprint 

https://github.com/lucidrains/enformer-pytorch
https://doi.org/10.1101/2023.02.24.529941
http://creativecommons.org/licenses/by-nc-nd/4.0/


Strategies for effectively modelling promoter-driven gene expression using transfer learning

Spearman’s rank correlation coefficient of the validation set does not improve for 5 epochs, we stop
training. We change our hyperparameters in the following cases:

• When training DNABERT from scratch (i.e. random initialization), we use a 1e-5 learning rate
and a batch size of 64 due to GPU memory constraints.

• While training LegNets, we employ the optimizer (AdamW) and scheduler (One Cycle Learning
Rate Policy (Smith and Topin, 2019)) used by Penzar et al. (2022) to train LegNet models for the
DREAM challenge. For the smaller LegNet, we use 0.05 learning rate, 0.01 weight decay and 1024
batch size. For the larger one, we use 0.01 learning rate, 0.01 weight decay and 192 batch size.
The scheduler uses the same hyperparameters as those used by Penzar et al. (2022).

• When training MPRAnn, we employ the optimizer (Adam) and hyperparameters used by Agarwal
et al. (2023) i.e. 0.001 learning rate and batch size of 32.

• When training Malinois, we employ the optimizer (AdamW) and scheduler (cosine annealing witg
warm restarts) used by Gosai et al. (2023). As prescribed by them, we use a 0.0032658700881052086
learning rate, 0.0003438210249762151 weight decay and a batch size of 1076. We train for a
maximum of 200 epochs but if the average Spearman’s rank correlation coefficient of the validation
set does not improve for 30 epochs, we stop training.

7. When pretraining MTLucifer on the tasks from Section 6, we use a 1e-5 learning rate and 1e-4 weight
decay. We train for 50 epochs and stop training if the overall validation loss does not improve for 5
epochs. We use the following batch sizes due to GPU memory constraints:

• RNA-seq: 96
• ENCODE TF-binding ChIP-seq: 32
• Sharpr-MPRA: 96
• SuRE: 24
• SuRE, Sharpr-MPRA: 24

8. When we fine-tune the pretrained MTLucifer models on the fluorescence data, we use a 1e-5 learning
rate, 1e-4 weight decay and a batch size of 96. Models are trained for a maximum of 50 epochs but if
the average Spearman’s rank correlation coefficient of the validation set does not improve for 5 epochs,
we stop training.

9. When we perform linear probing of the pretrained MTLucifer models on the fluorescence data, we
use a 1e-3 learning rate, 1e-4 weight decay and a batch size of 96. Models are trained for a maximum
of 50 epochs but if the average Spearman’s rank correlation coefficient of the validation set does not
improve for 5 epochs, we stop training.

10. When jointly training MTLucifer on the tasks from Section 6 and the fluorescence dataset, we use
a 1e-5 learning rate and 1e-4 weight decay. We train for 50 epochs and stop training if the average
Spearman’s rank correlation coefficient of the fluorescence dataset’s validation set does not improve
for 5 epochs. We use the following batch sizes due to GPU memory constraints:

• RNA-seq: 32
• ENCODE TF-binding ChIP-seq: 32
• Sharpr-MPRA: 64
• SuRE: 12
• SuRE, Sharpr-MPRA: 12

11. When we fine-tune pretrained DNABERT on the fluorescence data, we use a 1e-5 learning rate, 1e-4
weight decay and a batch size of 64. Models are trained for a maximum of 50 epochs but if the average
Spearman’s rank correlation coefficient of the validation set does not improve for 5 epochs, we stop
training.

12. When we fine-tune pretrained Enformer on the fluorescence data, we use a 1e-3 learning rate, 5e-4
weight decay and a batch size of 96. Models are trained for a maximum of 50 epochs but if the average
Spearman’s rank correlation coefficient of the validation set does not improve for 5 epochs, we stop
training.
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13. When we fine-tune the pretrained MTLucifer models on the Malinois MPRA data, we use a 1e-4 learning
rate, 1e-4 weight decay and a batch size of 96. Models are trained for a maximum of 50 epochs but if
the average Spearman’s rank correlation coefficient of the validation set does not improve for 5 epochs,
we stop training.

14. When we perform linear probing of the pretrained MTLucifer models on the fluorescence data, we
use a 1e-3 learning rate, 1e-4 weight decay and a batch size of 96. Models are trained for a maximum
of 50 epochs but if the average Spearman’s rank correlation coefficient of the validation set does not
improve for 5 epochs, we stop training.

15. When jointly training MTLucifer on the tasks from Section 6 and the Malinois MPRA dataset, we use
a 1e-4 learning rate and 1e-4 weight decay. We train for 50 epochs and stop training if the average
Spearman’s rank correlation coefficient of the fluorescence dataset’s validation set does not improve
for 5 epochs. We use the following batch sizes due to GPU memory constraints:

• RNA-seq: 32
• ENCODE TF-binding ChIP-seq: 32
• Sharpr-MPRA: 64
• SuRE: 8
• SuRE, Sharpr-MPRA: 8

16. When we fine-tune pretrained DNABERT on the Malinois MPRA data, we use a 1e-5 learning rate,
1e-4 weight decay and a batch size of 64. Models are trained for a maximum of 50 epochs but if the
average Spearman’s rank correlation coefficient of the validation set does not improve for 5 epochs, we
stop training.

17. When we fine-tune pretrained Enformer on the Malinois MPRA data, we use a 1e-4 learning rate, 1e-4
weight decay and a batch size of 96. Models are trained for a maximum of 50 epochs but if the average
Spearman’s rank correlation coefficient of the validation set does not improve for 5 epochs, we stop
training.
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F. Benchmarking using subsampled Malinois MPRA data
We create a smaller subsampled Malinois MPRA dataset by subsampling the training set to 15,000 examples
(with expression measurements in all 5 cell types) to roughly match the size of the fluorescence dataset while
keeping the full validation and test sets. The subsampling is performed while keeping the proportion of
sequences from each chromosome in the train set constant. The performances of various model architectures
when trained from scratch are presented in Table S.2 and the performances of various transfer learning
approaches are presented in Table S.3. We see that MTLucifer is still the best architecture when trained from
scratch. When we use transfer learning, we see a substantial improvement in performance - fine-tuning
Enformer improves performance by 26-51% when compared to the best model that was trained from scratch.
When using the fluorescence dataset, this approach was only slightly worse than performing linear probing
on Enformer predictions using a Lasso regression model. We also observe that pretraining MTLucifer on the
MPRA data before fine-tuning it is the second best approach. In conclusion, these trends are very similar to
those we observe when using the small fluorescence dataset, showing that the size of the training dataset is
the main determinant of relative performances.

Model Class Number of HepG2 K-562 SK-N-SH A549 GM12878
parameters 𝑟 𝜌 𝑟 𝜌 𝑟 𝜌 𝑟 𝜌 𝑟 𝜌

MTLucifer 66.3M 0.4876 0.4948 0.4715 0.4613 0.5044 0.5644 0.4308 0.4089 0.2883 0.2883
Motif-based FCN 5.1M 0.2930 0.2454 0.2834 0.2046 0.2826 0.2611 0.2650 0.2299 0.1675 0.1724

Large motif-based FCN 38.1M 0.2984 0.2433 0.2925 0.2066 0.2862 0.2601 0.2703 0.2265 0.1726 0.1721
CNN 11.0M 0.4016 0.3998 0.3769 0.3577 0.4236 0.4659 0.3419 0.3253 0.2212 0.2308

Large CNN 21.5M 0.3897 0.3797 0.3592 0.3107 0.4020 0.4241 0.3302 0.2830 0.2171 0.2204
ResNet 114M 0.3719 0.3577 0.3415 0.3052 0.3693 0.3978 0.2993 0.2769 0.1870 0.2187
LegNet 1.8M 0.4729 0.4426 0.4766 0.4219 0.4762 0.5025 0.4205 0.3912 0.2064 0.2121

Large LegNet 33.1M 0.4817 0.4456 0.5122 0.4538 0.4871 0.5184 0.4868 0.4382 0.2716 0.3012
MPRAnn 808K 0.3526 0.3624 0.3316 0.3175 0.3495 0.4039 0.2939 0.3105 0.1493 0.1716
Malinois 4.5M 0.3337 0.3471 0.3227 0.3204 0.3650 0.3943 0.3116 0.2809 0.1921 0.1836

DNABERT (random initialization) 89.2M 0.4458 0.4272 0.4323 0.4007 0.4556 0.4675 0.3988 0.3660 0.2268 0.2474
Enformer (random initialization) 229M 0.3709 0.2616 0.3846 0.2877 0.3437 0.2141 0.3710 0.3558 0.2024 0.2315

Table S.2: Prediction performance obtained using various model architectures when trained from scratch on the
subsampled Malinois MPRA dataset.

Model Class Pretraining or Joint Training Tasks Transfer Method HepG2 K-562 SK-N-SH A549 GM12878
𝑟 𝜌 𝑟 𝜌 𝑟 𝜌 𝑟 𝜌 𝑟 𝜌

MTLucifer - Training from scratch 0.4876 0.4948 0.4715 0.4613 0.5044 0.5644 0.4308 0.4089 0.2883 0.2883
MTLucifer All RNA-Seq Joint training 0.4802 0.4790 0.4577 0.4346 0.5026 0.5584 0.4355 0.4167 0.2857 0.2732
MTLucifer ENCODE TF-binding ChIP-seq Joint training 0.4982 0.4961 0.4949 0.4561 0.5037 0.5500 0.4509 0.4377 0.2857 0.2955
MTLucifer Sharpr-MPRA Joint training 0.4896 0.4912 0.4683 0.4455 0.5050 0.5569 0.4374 0.4141 0.2724 0.2709
MTLucifer SuRE MPRA Joint training 0.5756 0.5435 0.5993 0.5250 0.5870 0.5996 0.5618 0.4933 0.3499 0.3403
MTLucifer Sharpr, SuRE MPRA Joint training 0.5581 0.5334 0.5644 0.4998 0.5683 0.5891 0.5290 0.4909 0.3141 0.3169
MTLucifer All RNA-Seq Fine-tuning 0.4854 0.4832 0.4809 0.4555 0.5083 0.5562 0.4429 0.4167 0.2936 0.2860
MTLucifer ENCODE TF-binding ChIP-seq Fine-tuning 0.5350 0.5255 0.5451 0.4943 0.5488 0.5833 0.5078 0.4783 0.3073 0.3055
MTLucifer Sharpr-MPRA Fine-tuning 0.5398 0.4984 0.5344 0.4541 0.5410 0.5520 0.5093 0.4542 0.2975 0.2927
MTLucifer SuRE MPRA Fine-tuning 0.6302 0.6005 0.6460 0.5867 0.6203 0.6307 0.5938 0.5352 0.3698 0.3569
MTLucifer Sharpr, SuRE MPRA Fine-tuning 0.6450 0.6098 0.6652 0.5973 0.6419 0.6464 0.6123 0.5567 0.3781 0.3680
MTLucifer All RNA-Seq Linear probing 0.3919 0.4001 0.3652 0.3491 0.4199 0.4782 0.3359 0.3460 0.2252 0.2467
MTLucifer ENCODE TF-binding ChIP-seq Linear probing 0.4217 0.4071 0.4183 0.3726 0.4328 0.4454 0.3878 0.3737 0.2476 0.2726
MTLucifer Sharpr-MPRA Linear probing 0.5111 0.4658 0.4940 0.4106 0.5057 0.5064 0.4546 0.4045 0.2616 0.2583
MTLucifer SuRE MPRA Linear probing 0.6179 0.5657 0.6480 0.5579 0.6102 0.5899 0.5907 0.4919 0.3549 0.3167
MTLucifer Sharpr, SuRE MPRA Linear probing 0.6278 0.5879 0.6491 0.5756 0.6181 0.6144 0.5897 0.5220 0.3538 0.3408
DNABERT Human Genome MLM Fine-tuning 0.3625 0.3421 0.3309 0.2814 0.3783 0.3843 0.3158 0.2791 0.1962 0.1899
Enformer Variety of genomic and epigenomic data Fine-tuning 0.7274 0.6888 0.7622 0.6871 0.7095 0.7103 0.6714 0.6192 0.4094 0.4347
Enformer Variety of genomic and epigenomic data Linear probing with Lasso 0.5973 0.5369 0.6261 0.4960 0.6065 0.5803 0.5771 0.4778 0.3411 0.3226

Mean increase in performance of best-performing method vs. training from scratch 49.18% 39.21% 61.65% 48.95% 40.66% 25.85% 55.85% 51.43% 42.00% 50.78%

Table S.3: Prediction performances obtained using various training strategies when used to model the subsampled
Malinois MPRA dataset.
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