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Abstract 7 

Investigators have recently introduced powerful methods for population genetic 8 

inference that rely on supervised machine learning from simulated data. Despite their 9 

performance advantages, these methods can fail when the simulated training data does 10 

not adequately resemble data from the real world. Here, we show that this “simulation 11 

mis-specification” problem can be framed as a “domain adaptation” problem, where a 12 

model learned from one data distribution is applied to a dataset drawn from a different 13 

distribution. By applying an established domain-adaptation technique based on a gradient 14 

reversal layer (GRL), originally introduced for image classification, we show that the 15 

effects of simulation mis-specification can be substantially mitigated.  We focus our 16 

analysis on two state-of-the-art deep-learning population genetic methods—SIA, which 17 

infers positive selection from features of the ancestral recombination graph (ARG), and 18 

ReLERNN, which infers recombination rates from genotype matrices. In the case of SIA, 19 

the domain adaptive framework also compensates for ARG inference error. Using the 20 

domain-adaptive SIA (dadaSIA) model, we estimate improved selection coefficients at 21 

selected loci in the 1000 Genomes CEU population. We anticipate that domain adaptation 22 

will prove to be widely applicable in the growing use of supervised machine learning in 23 

population genetics. 24 

Introduction 25 

 Advances in genome sequencing have allowed population genetic analyses to be 26 

applied to many thousands of individual genome sequences (Auton et al. 2015; Sudlow 27 

et al. 2015; Karczewski et al. 2020). Given adequately rigorous and scalable 28 

computational tools for analysis, these rich catalogs of genetic variation provide 29 

opportunities for addressing many important questions in areas such as human evolution, 30 

plant genetics, and the ecology of non-model organisms. Deep-learning methods, already 31 

well-established in other application areas (LeCun et al. 2015), have proven to be good 32 

matches for these analytical tasks and have recently been successfully applied to many 33 

problems in population genetics (Sheehan and Song 2016; Kern and Schrider 2018; 34 

Schrider and Kern 2018; Flagel et al. 2019; Torada et al. 2019; Adrion et al. 2020; Caldas 35 

et al. 2022; Hejase et al. 2022; Korfmann et al. 2023). 36 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 1, 2023. ; https://doi.org/10.1101/2023.03.01.529396doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.01.529396
http://creativecommons.org/licenses/by-nc/4.0/


2 

The key to the success of deep learning in population genetics has been the use 37 

of large amounts of simulated data for training. Under simplifying, yet largely realistic, 38 

assumptions, evolution plays by relatively straightforward rules. By exploiting these rules 39 

and advances in computing power, a new generation of computational simulators has 40 

made it possible to efficiently produce extremely large (virtually unlimited) quantities of 41 

perfectly labeled synthetic data across a wide range of evolutionary scenarios (Haller et 42 

al. 2019; Haller and Messer 2019; Baumdicker et al. 2022). This synthetic training data 43 

serves as the foundation of the new simulate-and-train paradigm of supervised machine 44 

learning for population genetics inference (Fig. 1A, Schrider and Kern 2018; Korfmann et 45 

al. 2023). 46 

 At the same time, this paradigm is highly dependent on well-specified models for 47 

simulation (Korfmann et al. 2023). If the simulation assumptions do not match the 48 

underlying generative process of the real data—that is, in the presence of simulation mis-49 

specification—the trained deep-learning model may reflect the biases in the simulated 50 

data and perform poorly on real data. Indeed, previous studies have shown that, despite 51 

being robust to mild to moderate levels of mis-specification, performance inevitably 52 

degrades when the mismatch becomes severe (Adrion et al. 2020; Hejase et al. 2022). 53 

In a typical workflow, key simulation parameters such as the mutation rate, 54 

recombination rate, and parameters of the demographic model are either estimated from 55 

the data or obtained from the literature (e.g. Tennessen et al. 2012) (Fig. 1A). Sometimes 56 

these parameters are allowed to vary during simulation, and sometimes investigators 57 

evaluate the sensitivity of predictions to departures from the assumed range, but there is 58 

typically no way to ensure that the ranges considered are adequately large. Moreover, 59 

these benchmarks do not usually account for under-parameterization of the demographic 60 

model. Particularly in the case of non-model organisms, the quality of the estimates can 61 

be further limited by the availability of data. Overall, some degree of mis-specification in 62 

the simulated training data is impossible to avoid. 63 

One way to mitigate the effects of simulation mis-specification would be to 64 

engineer a simulator to force the simulated data to be compatible with real data. For 65 

example, one could simulate from an overdispersed distribution of parameters followed 66 

by a rejection sampling step (based on summary statistics) as in Approximate Bayesian 67 

Computation (ABC) methods, or one could use a Generative Adversarial Network (GAN) 68 

(Wang et al. 2021) to mimic the real data. These methods tend to be costly, however. For 69 

example, ABC methods scale poorly with the number of summary statistics, and GANs 70 

are notoriously hard to train. 71 

Here we consider the alternative approach of adopting a deep-learning model that 72 

is explicitly designed to account for and mitigate the mismatch between simulated and 73 

real data (Fig. 1A). As it happens, the task of building well-performing models for a target 74 

dataset that has a different distribution from the training dataset is a well-studied problem 75 

known as  “domain adaptation” in the machine-learning literature (Csurka 2017; Wilson 76 
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and Cook 2020). A typical setting of interest for domain adaptation is image classification 77 

(Fig. 1B). For example, suppose a digit recognition model is needed for the Street View 78 

House Numbers (SVHN) dataset (the “target domain”), but abundant labeled training data 79 

is only available from the MNIST dataset of handwritten digits (the “source domain”). In 80 

this case, a method needs to train on one data set and perform well on another, despite 81 

systematic differences between the two data distributions. 82 

A variety of strategies for domain adaptation have been introduced.  Early methods 83 

focused on reweighting training instances (Shimodaira 2000; Dai et al. 2007) or explicitly 84 

manipulating a feature space through augmentation (Daumé III 2009), alignment 85 

(Fernando et al. 2013; Sun et al. 2016) or transformation (Pan et al. 2011). Alternatively, 86 

domain adaptation can be incorporated directly into the process of training a neural 87 

network (deep domain adaptation). Most recent methods of this kind share the common 88 

goal of learning a “domain-invariant” representation of the data through a feature extractor 89 

neural network, for example, by minimizing domain divergence (Rozantsev et al. 2019), 90 

by adversarial training (Ganin and Lempitsky 2014; Liu and Tuzel 2016) or through an 91 

auxiliary reconstruction task (Ghifary et al. 2016). Domain adaptation so far has been 92 

most widely applied in the fields of computer vision (e.g., using stock photos for semantic 93 

segmentation of real photos) and natural language processing (e.g., using Amazon 94 

product reviews for sentiment analysis of movies and TV shows) where large, 95 

heterogeneous datasets are common but producing labeled training examples can be 96 

labor intensive (Wilson and Cook 2020). More recently, deep domain adaptation has been 97 

used in regulatory genomics to enable cross-species transcription-factor-binding-site 98 

prediction (Cochran et al. 2022). 99 

In this work, we reframe the simulation mis-specification problem in population 100 

genetics as an unsupervised domain adaptation problem (unsupervised in the sense that 101 

data from the target domain is not labeled) (Fig. 1B). In particular, we use population-102 

genetic simulations to obtain large amounts of perfectly labeled training data in the source 103 

domain. We then seek to apply the trained model to unlabeled real data in the target 104 

domain. We use domain adaptation techniques to explicitly account for the mismatch 105 

between these two domains when training the model. 106 

To demonstrate the feasibility of this approach, we incorporated domain-adaptive 107 

neural network architecture into two published deep learning models for population 108 

genetic inference: 1) SIA (Hejase et al. 2022), which identifies selective sweeps based 109 

on the Ancestral Recombination Graph (ARG), and 2) ReLERNN (Adrion et al. 2020), 110 

which infers recombination rates from raw genotypic data. Through extensive simulation 111 

studies, we demonstrated that the domain adaptive versions of the models significantly 112 

outperformed the standard versions under realistic scenarios of simulation mis-113 

specification. Our domain-adaptive framework for utilizing mis-specified synthetic data for 114 

supervised learning opens the door to many more robust deep learning models for 115 

population genetic inference. 116 
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Results 117 

Experimental Design 118 

We created domain-adaptive versions of the SIA and ReLERNN models, each of 119 

which employed a gradient reversal layer (GRL) (Ganin and Lempitsky 2014) 120 

(Fig. 2A&B). As noted, the goal of domain adaptation is to establish a “domain-invariant” 121 

representation of the data (Fig. 1A). Our neural networks consist of two components: the 122 

original networks (in green and blue in Fig. 2A&B), which are applied to labeled examples 123 

from the “source” (simulated) domain; and alternative branches (in yellow in Fig. 2A&B), 124 

which use the same feature-extraction portions of the first networks but have the distinct 125 

goal of distinguishing data from the “source” (simulated) and “target” (real) domains (they 126 

are applied to both).  By reversing the gradient for the second branch, the GRL 127 

systematically undermines this secondary goal of distinguishing the two domains (Fig. 2, 128 

see Methods for details), and therefore promotes domain invariance in feature extraction.   129 

We designed two sets of benchmark experiments to assess the performance of 130 

the domain-adaptive models relative to the standard models. In both cases, we tested the 131 

methods using “real” data in the target domain that was actually generated by simulation, 132 

but included features not considered by the simpler simulator used for the source domain. 133 

In the first set of experiments, background selection was present in the target domain but 134 

not the source domain. In the second set of experiments, the demographic model used 135 

for the source domain was estimated from “real” data generated under a more complex 136 

demographic model and was therefore somewhat mis-specified (see Methods and Fig. 137 

S1A for details). Below we refer to these as the “background selection” and “demography 138 

mis-specification” experiments. 139 

Performance of Domain-Adaptive SIA Model 140 

We compared the performance of the domain-adaptive SIA (dadaSIA) model to 141 

that of the standard SIA model on held-out “real” data, considering both a classification 142 

(distinguishing selective sweeps from neutrality) and a regression (inferring selection 143 

coefficients) task. In all cases, we focused on a comparison of the domain-adaptive model 144 

to the standard case where a model is simply trained on data from the source domain 145 

and then applied to the target domain (“standard model”; Fig. 1C).  For additional context, 146 

we also considered the two cases where the training and testing domains matched 147 

(source-matched or target-matched; Fig. 1C)—although we note that these cases are not 148 

achievable with real data and provide only hypothetical upper bounds on performance. 149 

In both the background selection and demography mis-specification experiments, 150 

and in both the classification and regression tasks, the domain-adaptive SIA model 151 

substantially improved on the standard model (Fig. 3). Indeed, in all cases, the domain-152 

adaptive model (turquoise lines in Fig. 3A&C) nearly achieved the upper bound of the 153 
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hypothetical true model (dashed gray lines) and clearly outperformed the standard model 154 

(gold lines), suggesting that domain adaptation had largely “rescued” SIA from the effects 155 

of simulation mis-specification (see also Fig. S2C&D).  The standard model performed 156 

particularly poorly on the regression task (Fig. 3B&D), but the domain-adaptive model 157 

substantially improved on it, reducing both the absolute error as well as the upward bias 158 

of the estimation (Fig. S2C&D). 159 

The comparisons with the simulation benchmark and hypothetical true model were 160 

also informative in other ways.  Notice that performance in the simulation benchmark case 161 

was considerably better than that in all other cases, including the hypothetical true model.  162 

In our experiments, the ARG is “known” (fixed in simulation) in this case, whereas in the 163 

hypothetical true model it must be inferred.  Thus, the difference between these two cases 164 

represents a rough measure of the importance of ARG inference error (see Discussion).  165 

In addition, note that in many studies, benchmarking of population-genetic models is 166 

performed using the same, or similar, simulations as those used for training, as in with 167 

our hypothetical true model.  Thus, the difference between the hypothetical true model 168 

and the standard model is representative of the degree to which benchmarks of this kind 169 

may be overly optimistic about performance, depending on the degree to which the 170 

simulations are mis-specified. 171 

We further investigated the effect of imbalanced training data from the target 172 

domain on the performance of the domain-adaptive model in the context of sweep 173 

classification. Despite the ability to simulate perfectly class-balanced labeled data in the 174 

source domain, in practice we have no control over whether real data are balanced. Using 175 

simulations for the background selection mis-specification experiments, we tested the 176 

performance of the domain adaptive SIA model classifying sweeps when trained with 177 

unlabeled “real” data under different proportions of sweep vs. neutral examples. While a 178 

balanced dataset yielded the best performance, significantly skewed datasets (20% or 179 

80% sweep examples) still provided the domain adaptive model with reasonable 180 

improvement upon the standard model (Fig. S3).  181 

Performance of Domain-Adaptive ReLERNN Model 182 

We performed a parallel set of experiments with a domain-adaptive version of 183 

ReLERNN. In this case, the background selection experiment was essentially the same 184 

as for SIA, but we used a simpler design for the demography mis-specification 185 

experiment, following Adrion et al. (2020).  Briefly, the “real” (target domain) data was 186 

generated according to the out-of-Africa European demographic model estimated by 187 

Tennessen et al. (2012). By contrast, the simulated data for the source domain simply 188 

assumed a constant-sized panmictic population at equilibrium with 𝑁𝑒 =
𝜃̂𝑊

4𝜇
, where 𝜃̂𝑊 is 189 

the Watterson estimator obtained from the “real” data (see Methods for details).  190 
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Similar to our results for SIA, the domain-adaptive ReLERNN model both reduced 191 

the mean absolute error (MAE) and corrected for the downward bias in recombination-192 

rate estimates compared to the standard model (Fig. 4, Fig. S4). In the background-193 

selection experiment, the standard ReLERNN model performed quite well (Fig. 4A, S4A, 194 

MAE = 5.60 × 10−9), but the domain-adaptive ReLERNN model nonetheless further 195 

reduced the MAE to 4.41 × 10−9 (Fig. S4C, Welch’s t-test: 𝑛 = 25,000, 𝑡 = 31.0, 𝑝 <196 

10−208). The advantage of the domain-adaptive model was more apparent in the 197 

demography-mis-specification experiment (Fig. 4B, S4B), where it reduced the MAE from 198 

8.06 × 10−9 to 5.45 × 10−9 (Fig. S4D, Welch’s t-test, 𝑛 = 25,000, 𝑡 = 72.4, 𝑝 < 10−323). 199 

Notably, our results for the standard model in the demography-mis-specification 200 

experiment were highly similar to those reported by Adrion et al. (2020), including the 201 

approximate mean and range of the raw error (compare Fig. 4A from Adrion et al. 2020 202 

and Fig. S4D), as well as the downward bias. 203 

Interestingly, Adrion et al. (2020) observed that ReLERNN was sometimes more 204 

strongly influenced by demographic mis-specification than unsupervised methods such 205 

as LDhelmet, even though it still performed better in terms of absolute error. The addition 206 

of domain adaptation appears to considerably mitigate this susceptibility to demographic 207 

mis-specification, making an excellent method even stronger. 208 

Application of Domain-Adaptive SIA to Real Data 209 

In applications to real data, the true selection coefficient is not known, so it is 210 

impossible to perform a definitive comparison of methods.  Nevertheless, it can be 211 

informative to evaluate the degree to which alternative methods are concordant, 212 

especially with consideration of their relative performance in simulation studies. 213 

Toward this end, we re-applied our domain-adaptive SIA model (dadaSIA) to 214 

several loci in the human genome that we previously analyzed with SIA (Hejase et al. 215 

2022), using whole-genome sequence data from the 1000 Genomes CEU population 216 

(Auton et al. 2015; see Methods). The putative causal loci analyzed included single 217 

nucleotide polymorphisms (SNPs) at the LCT gene (Bersaglieri et al. 2004), one of the 218 

best-studied cases of selective sweeps in the human genome; at the disease-associated 219 

genes TCF7L2 (Lyssenko et al. 2007), ANKK1 (Spellicy et al. 2014) and FTO (Frayling 220 

et al. 2007); at the pigmentation genes KITLG (Sulem et al. 2007), ASIP (Eriksson et al. 221 

2010), TYR (Sulem et al. 2007; Eriksson et al. 2010), OCA2 (Han et al. 2008; Sturm et 222 

al. 2008), TYRP1 (Kenny et al. 2012) and TTC3 (Liu et al. 2010), which were also 223 

analyzed by Stern et al. (2019); and at the genes MC1R (Sulem et al. 2007; Han et al. 224 

2008) and ABCC11 (Yoshiura et al. 2006), where SIA reported novel signals of selection. 225 

We found that dadaSIA generally made similar predictions to SIA at these SNPs, 226 

but there were some notable differences.  The seven loci predicted by SIA to be sweeps 227 

were also predicted by dadaSIA to be sweeps (Table 1), although dadaSIA always 228 

reported higher confidence in these predictions (with probability of neutrality, 𝑃neu < 10−2 229 
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in all cases) than did SIA (𝑃neu up to 0.384 for TYR).  The five loci predicted by SIA not to 230 

be sweeps were also predicted by dadaSIA not to be sweeps (𝑃neu > 0.5). At LCT, the 231 

strongest sweep considered, the selection coefficient (s) estimated by dadaSIA remained 232 

very close to SIA’s previous estimate of s = 0.01 and also close to several prior estimates 233 

(Bersaglieri et al. 2004; Mathieson and Mathieson 2018; Mathieson 2020).  In all other 234 

cases, the estimate from SIA was somewhat revised by dadaSIA, generally by factors of 235 

about 2–3. Interestingly, in all of these cases except MC1R (a novel prediction by SIA), 236 

the revision was in the direction of at least some estimates previously reported in the 237 

literature, suggesting that simulation mis-specification may have contributed to 238 

discrepancies between SIA and previous methods.  Nevertheless, the estimates from 239 

dadaSIA generally remained closer to those from SIA than to previous estimates.  240 

Together, these observations suggest that the addition of domain adaptation does not 241 

radically alter SIA’s predictions for real data but may in some cases improve them. 242 

Discussion 243 

 Standard approaches to supervised machine learning rest on the assumption that 244 

the data they are used to analyze follow essentially the same distribution as the data used 245 

for training. In applications in population genetics, the training data are typically generated 246 

by simulation, leading to concerns about potential biases from simulation mis-247 

specification when supervised machine-learning methods are used in place of more 248 

traditional summary-statistic- or model-based methods (Caldas et al. 2022; Korfmann et 249 

al. 2023).  In this article, we have shown that techniques from the “domain adaptation” 250 

literature can effectively be used to address this problem.  In particular, we showed that 251 

the addition of a gradient reversal layer (GRL) to two recently developed deep-learning 252 

methods for population genetic analysis—SIA and ReLERNN—led to clear improvements 253 

in performance on “real” data that differed in subtle but important ways from the data used 254 

to train the models.  These improvements were observed both when the demographic 255 

models were mis-specified and when background selection was included in the 256 

simulations of “real” data but ignored in the training data. 257 

While we observed performance improvements in all of our experiments, they were 258 

especially pronounced in the case where SIA was used to predict specific selection 259 

coefficients, rather than simply to identify sweeps.  The standard model (with training on 260 

simulated data and testing on “real” data) performed particularly poorly in this regression 261 

setting and domain adaptation produced striking improvements (Fig. 3B&D). This 262 

selection-coefficient inference problem appears to be a harder task than either sweep 263 

classification or recombination-rate inference, and the performance in this case proves to 264 

be more sensitive to simulation mis-specification (cf. Fig. 3A&C). In general, we 265 

anticipate considerable differences across population-genetic applications in the value of 266 

domain adaptation, with some applications being more sensitive to simulation mis-267 
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specification and therefore more apt to benefit from domain adaptation, and others being 268 

less so. 269 

We also observed some interesting differences in the ways SIA and ReLERNN 270 

responded to domain adaptation. For example, the performance gap between the 271 

“simulation benchmark” (trained and tested on simulated data) and “hypothetical true” 272 

(trained and tested on real data) models was considerably greater for SIA than for 273 

ReLERNN (Figs. S2C&D, S4C&D). This difference appears to be driven by ARG 274 

inference, which is required by SIA in the hypothetical true case but not the simulation 275 

benchmark case, and for which no analog exists for ReLERNN.  For SIA, the uncertainty 276 

about genealogies given sequence data makes the prediction task fundamentally harder 277 

in the real world (target domain) than in simulation (source domain) (Fig. 1B). By contrast, 278 

ReLERNN does not depend on a similar inference task, and therefore the target and 279 

source domains are more or less symmetric. This same factor contributed to the much 280 

more dramatic drop in performance for SIA than ReLERNN under the “standard model,” 281 

where the model is trained on simulated data and naively applied to “real” data (Figs. 282 

3B&D, 4). At the same time, this property means that there is more potential for 283 

improvement from domain adaptation with SIA than with ReLERNN, as indeed we do 284 

observe (Figs. 3, 4, S2, S4). In effect, in the case of SIA, domain adaptation not only 285 

mitigates simulation mis-specification but also compensates for ARG inference error.  286 

More broadly, we expect domain adaptation to be especially effective in applications that 287 

depend not only on the simulated data itself but also on nontrivial inferences of latent 288 

quantities that are known for simulated but not real data. 289 

We used the domain-adaptive SIA model (dadaSIA) to re-analyze several loci in 290 

the human genome that we and others had previously studied. Overall, we found that 291 

dadaSIA made similar predictions to SIA at these loci, but it tended to exhibit higher 292 

confidence in its predictions, and, in some cases, it reported selection coefficients in 293 

better agreement with previous reports.  In particular, at KITLG, ASIP, TYR and OCA2, 294 

dadaSIA estimated higher selection coefficients than SIA. Given that previously reported 295 

estimates of s at these loci were also higher than the original SIA estimates, it seems 296 

likely that the original model was under-estimating s due, at least in part, to simulation 297 

mis-specification, and that dadaSIA has improved the estimates (Table 1). 298 

Although our experiments were limited to background selection and demographic 299 

mis-specification, we expect that the domain adaptation framework would also be 300 

effective in addressing many other forms of simulation mis-specification, involving factors 301 

such as mutation or recombination rates, or the presence of gene conversion. Another 302 

interesting application may be to use domain adaptation to accommodate admixed 303 

populations. Each ancestry component could be modeled as a distinct target domain 304 

using a multi-target domain adaptation technique (Isobe et al. 2021; Nguyen-Meidine et 305 

al. 2021; Roy et al. 2021). It is also worth noting that our experiments considered only 306 

one, rather simple, strategy for domain adaptation.  Since the GRL was proposed, several 307 
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other architectures for deep domain adaptation have achieved even better empirical 308 

performance on computer vision tasks (see: Papers with Code). Overall, there is rich 309 

potential for new work on domain adaptation to address a wide variety of model mis-310 

specification challenges in population genetic inference. 311 

Methods 312 

Methodological summary of unsupervised domain adaptation 313 

To build domain-adaptive versions of SIA and ReLERNN, we added a gradient 314 

reversal layer (GRL) to the neural network architecture for each model (Ganin and 315 

Lempitsky 2014). The GRL-containing networks consist of three components – a label 316 

predictor branch, a domain classifier branch and a feature extractor common to both 317 

branches (Fig. 2A&B). During the feedforward step, when data is fed to the neural 318 

network to obtain a prediction output, the GRL is inactive; it simply passes along any input 319 

to the next layer. However, during backpropagation, when the gradient of the loss function 320 

with respect to the weights of the network is calculated iteratively backward from the 321 

output layer, the GRL inverts the sign of any incoming gradient before passing it back to 322 

the previous layer. This operation has the effect of driving the feature extractor away from 323 

distinguishing the source and target domains, and consequently encourages it to extract 324 

“domain-invariant” features of the data. We implemented the GRLs in TensorFlow (v2.4.1) 325 

using the ‘tf.custom_gradient’ decorator. On top of each custom GRL, the rest of the 326 

model was built using the ‘tf.keras’ functional API (see the GitHub repository for details). 327 

All models were trained with the Adam optimizer using a batch size of 64.  For the 328 

domain-adaptive models, training consisted of both (1) feeding labeled data from the 329 

source domain through the label predictor and obtaining a label prediction loss; and (2) 330 

feeding a mixture of unlabeled data from both the source and target domains through the 331 

domain classifier, obtaining a domain classification loss (Fig. 2C). Training was 332 

accomplished using a custom data generator implemented with ‘tf.keras.utils.Sequence’. 333 

In this study, we simply assigned equal weights to the label-prediction and domain-334 

classification loss functions (following Ganin and Lempitsky 2014).  335 

 336 

Background selection experiment with SIA 337 

To assess the robustness of domain-adaptive SIA (dadaSIA) to background 338 

selection, we simulated labeled examples (250,000 neutral and 250,000 sweep) in the 339 

source domain under demographic equilibrium with 𝑁𝑒 = 10,000 and 𝜇 = 𝜌 = 1.25 ×340 

10−8/bp/gen. The sweep simulations consisted of 100kb chromosomal segments with a 341 

hard sweep at the central nucleotide having  selection coefficient 𝑠 ∈ [0.002, 0.01]. The 342 

unlabeled data in the target domain (with the exception of held-out test dataset with labels 343 

retained) were simulated in a similar fashion, albeit with a 10kb segment (“gene”) under 344 

purifying selection at the center of each 100kb chromosomal segment. All mutations in 345 

the central 10kb segment that arose during the forward stage of the simulations (in SLiM) 346 
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followed a DFE parameterized by a gamma distribution with a mean 𝑠̄ =  −0.03, a shape 347 

parameter 𝛼 = 0.2 and had dominance coefficient ℎ = 0.25 (Boyko et al. 2008). 348 

Simulations were performed in SLiM 3 (Haller et al. 2019; Haller and Messer 2019) 349 

followed by recapitation with msprime (Baumdicker et al. 2022). 350 

 351 

Demography mis-specification experiment with SIA 352 

In a second set of simulations, we gauged whether domain adaptation also 353 

protects SIA against demographic mis-specification. In this case, instead of specifying the 354 

degree of mis-specification a priori, we designed an end-to-end workflow that 355 

recapitulated how demographic mis-specification arises in a realistic population genetic 356 

analysis (Fig. S1A). First, we simulated “real” data (in the target domain) using an 357 

assumed demography (Fig. S1A, loosely based on the three-population model in 358 

Campagna et al. 2022). Similar to what one would do with actual sequence data, we then 359 

used the “real” samples to infer a demography with G-PhoCS (Gronau et al. 2011), 360 

pretending that the true demography and genealogies were unknown. As shown in Fig. 361 

S1A, the inferred demography was consequently somewhat mis-specified. This mis-362 

specified demographic model was then used to simulate labeled training data (in the 363 

source domain) for SIA. 364 

With the goal of using SIA to infer selection in population B, we simulated a soft 365 

sweep site at the center of a 100kb chromosomal segment with selection coefficient s ∈ 366 

[0.003, 0.02] and initial sweep frequency finit ∈ [0.01, 0.1], under positive selection only in 367 

population B. To improve computational efficiency, simulations were performed with a 368 

hybrid approach where the neutral demographic processes were simulated first with 369 

msprime (Baumdicker et al. 2022), followed by positive selection simulated with SLiM 3 370 

(Haller et al. 2019; Haller and Messer 2019). We produced 200,000 balanced (between 371 

neutral and sweep) simulations of “peudo-real” data, 10,000 of which were randomly held 372 

out as ground-truth test data for benchmarking with their labels preserved (Fig. S1A). The 373 

rest remained unlabeled. We preserved only the sequences and used Relate (Speidel et 374 

al. 2019) to infer the ARG of population B from the “real” data. For demographic inference, 375 

we randomly downsampled 10,000 5kb loci and analyzed them with G-PhoCS, keeping 376 

4 (diploid) individuals from population A and 16 (diploid) individuals each from populations 377 

B and C. We took the median of 90,000 MCMC samples (after 10,000 burn-in iterations) 378 

as the inferred demography (shown in Fig. S1A). The control file used to run G-PhoCS is 379 

available in the GitHub repository. We then simulated true genealogies of population B 380 

using the inferred demography, yielding 200,000 balanced samples with neutral/sweep 381 

and selection coefficient labels. All SIA models in this study used 64 diploid samples (128 382 

taxa). 383 

 384 

Genealogical features for the SIA model 385 
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For this study, we adopted a richer encoding of genealogies than the one used 386 

previously for SIA.  Instead of simply counting the lineages remaining in the genealogy at 387 

discrete time points (Hejase et al. 2022), we fully encoded the topology and branch 388 

lengths of the tree using the scheme introduced by (Kim et al. 2020). Under this scheme, 389 

a genealogy with n taxa is uniquely encoded by an (n-1) × (n-1) lower-triangular matrix F 390 

and a weight matrix W of the same shape. Each cell (i, j) of F records the lineage count 391 

between coalescent times 𝑡𝑛−𝑗 and 𝑡𝑛−1−𝑖, whereas each cell (i, j) of W records the 392 

corresponding interval between coalescent times, 𝑡𝑛−𝑗 − 𝑡𝑛−1−𝑖 (see Fig. S1B and Kim et 393 

al. 2020 for details). In addition, we used a third matrix R to identify the subtree carrying 394 

the derived alleles at the site of interest, following the same logic as F (see Fig. S1B for 395 

an example). The F, W and R matrices have the same shape and therefore can easily be 396 

stacked as input to a convolutional layer with three channels (Fig. 2A, 128 taxa yield a 397 

127 x 127 x 3 input tensor). 398 

 399 

Simulation study of recombination rate inference with ReLERNN 400 

We conducted two sets of simulation experiments to test the same two types of 401 

mis-specification as previously described for SIA. Each simulation consisted of 32 haploid 402 

samples of 300kb genomic segment with uniformly sampled mutation rate 𝜇 ∼403 

𝑈[1.875 × 10−8, 3.125 × 10−8] and recombination rate 𝜌 ∼ 𝑈[0, 6.25 × 10−8]. To test the 404 

effect of background selection, the labeled source domain data (with true values of ρ) 405 

were simulated under demographic equilibrium with 𝑁𝑒 = 10,000, whereas the unlabeled 406 

target domain data were simulated under the same demography, but with the central 407 

100kb region under purifying selection, as with SIA. To test the effect of demographic 408 

mis-specification, we conducted simulations similar to those of Adrion et al. (2020) where 409 

labeled source domain data were generated under demographic equilibrium (with 𝑁𝑒 =410 

6,000, calculated approximately by 
𝜃̂𝑊

4𝜇
 where 𝜃̂𝑊 was estimated from the target domain 411 

data) and unlabeled target domain data were generated under a European demography 412 

(Tennessen et al. 2012). For each domain, 500,000 simulations were generated with 413 

SLiM 3 (background selection experiment) or msprime (demography experiment), and 414 

partitioned following an 88%:2%:10% train-validation-test composition. We modified the 415 

ReLERNN model to be domain-adaptive (Fig. 2B) and used the simulated data to 416 

benchmark its performance against the original version of the model. 417 

 418 

Application of domain-adaptive SIA model to 1000 Genomes CEU population 419 

 Labeled training data (source domain) for SIA were simulated with discoal (Kern 420 

and Schrider 2016) under the Tennessen et al. (2012) European demographic model. 421 

Following Hejase et al. (2022), we simulated 500,000 100-kb regions of 198 haploid 422 

sequences. The per-base per-generation mutation rate (μ) and recombination rate (ρ) of 423 

each simulation were sampled uniformly from the interval [1.25 × 10−8, 2.5 × 10−8]; the 424 
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segregating frequency of the beneficial allele (f) was sampled uniformly from [0.05, 0.95]; 425 

the selection coefficient (s) was sampled from an equal mixture of a uniform and a log-426 

uniform distribution with the support [1 × 10−4, 2 × 10−2]. An additional 500,000 neutral 427 

regions were simulated to train the classification model, under the identical setup sans 428 

the positively selected site. 429 

We curated target domain data from the 1000 Genomes CEU population to train 430 

the domain-adaptive SIA model (dadaSIA). The genome was first divided into 2Mb 431 

windows 1,111 of which passed three data-quality filters: 1) contained at least 5,000 432 

variants, 2) at least 80% of these variants had ancestral allele information, and 3) at least 433 

60% of nucleotide sites in the window passed both the 1000 Genomes strict accessibility 434 

mask (Auton et al. 2015) and the deCODE recombination hotspot mask (standardized 435 

recombination rate > 10, Kong et al. 2010). We randomly sampled 1,000 variants from 436 

each of these 1,111 windows and extracted genealogical features at those variants from 437 

Relate-inferred ARGs (Speidel et al. 2019), yielding around 1 million samples that 438 

constituted the unlabeled target domain data. Finally, domain-adaptive SIA models for 439 

classifying sweeps and inferring selection coefficients were trained as described 440 

previously and applied to a collection of loci of interest (Table 1). 441 

Code Availability 442 

The code for this study is available in a GitHub repository at github.com/ziyimo/popgen-443 

dom-adapt. 444 
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Figures 621 

 

Figure 1. Unsupervised domain adaptation in the context of population genetic 622 

inference. A) A high-level overview of the supervised machine-learning approach for 623 

population genetic inference and how domain adaptation fits into the paradigm. B) 624 

Example formulations of the unsupervised domain adaptation problem with application to 625 

computer vision and population genetics. C) Four benchmarking scenarios considered in 626 

this study. Gold squares represent source domain data, blue circles represent target 627 

domain data and crosses (x) represent labels. 628 
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Figure 2. Neural network architecture for domain adaptation. The model 629 

architectures incorporating gradient reversal layers (GRLs) for A) SIA and B) ReLERNN. 630 

C) When training the networks, each minibatch of training data consists of two 631 

components: (1) labeled data from the source domain fed through the feature extractor 632 

and the label predictor; and (2) a mixture of unlabeled data from both the source and 633 

target domains fed through the feature extractor and the domain classifier.  The first 634 

component trains the model to perform its designated task.  However, the GRL inverts 635 

the loss function for the second component, discouraging the model from differentiating 636 

the two domains and leading to the extraction of “domain-invariant” features.  637 
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Figure 3. Performance of domain-adaptive SIA models. Results are shown from (A, 638 

B) the background-selection and (C, D) the demography-mis-specification experiments. 639 

(A, C) Precision-recall curves for sweep classification. (B, D) Contour plots summarizing 640 

true (horizontal axis) vs. inferred (vertical axis) selection coefficients (s) for the standard 641 

(gold) and domain adaptive (turquoise) models as evaluated on the held-out test dataset. 642 

The ridge along the horizontal axis of each contour is traced by a dashed line, 643 

representing the mode of the inferred value for each true value of s. Raw data underlying 644 

the contour plots are presented in Fig. S2. See Fig. 1C for definition of the model labels. 645 
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Figure 4. Performance of domain-adaptive ReLERNN models. Results are shown 646 

from (A) the background-selection and (B) the demography-mis-specification 647 

experiments. Each contour plot summarizes true (horizontal axis) vs. inferred (vertical 648 

axis) recombination rates (ρ) for the standard (gold) and domain adaptive (turquoise) 649 

models as evaluated on the held-out test dataset. The ridge along the horizontal axis of 650 

each contour is traced by a dashed line, representing the mode of the inferred value for 651 

each true value of ρ. Raw data underlying the contour plots are presented in Fig. S4. 652 

  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 1, 2023. ; https://doi.org/10.1101/2023.03.01.529396doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.01.529396
http://creativecommons.org/licenses/by-nc/4.0/


21 

Tables 653 

 

Table 1. Selection coefficients in the European population estimated by domain-654 

adaptive SIA compared to previous estimates 655 

Gene SNP 

Estimates of selection coefficient 

Domain-adaptive 
SIA Standard SIA* Previous estimates 

KITLG rs12821256 0.0035 0.0019 0.0161† 

ASIP rs619865 0.0057 0.0019 0.0974† 

TYR rs1393350 0.0028 0.0011 0.0112† 

OCA2 rs12913832 0.0093 0.0056 0.002†; 0.036‡ 

MC1R rs1805007 0.0027 0.0037 No selection§ 

ABCC11 rs17822931 0.0020 0.00035 ~ 0.01 in East Asian|| 

LCT rs4988235 0.0097 0.010 ~ 0.01¶ 

TYRP1 rs13289810 Pneu > 0.5 Pneu > 0.5 No selection† 

TTC3 rs1003719 Pneu > 0.5 Pneu > 0.5 No selection† 

TCF7L2 rs7903146 Pneu > 0.5 Pneu > 0.5 N/A 

ANKK1 rs1800497 Pneu > 0.5 Pneu > 0.5 N/A 

FTO rs9939609 Pneu > 0.5 Pneu > 0.5 N/A 

* Hejase et al. 2022 656 
† Stern et al. 2019 657 
‡ Wilde et al. 2014 658 
§ Harding et al. 2000 659 
|| Ohashi et al. 2011 660 
¶ Bersaglieri et al. 2004; Mathieson and Mathieson 2018; Mathieson 2020 661 
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