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Abstract

A central aim of genome-wide association studies (GWASs) is to estimate direct genetic effects: the
causal effects on an individual’s phenotype of the alleles that they carry. However, estimates of direct
effects can be subject to genetic and environmental confounding, and can also absorb the ‘indirect’
genetic effects of relatives’ genotypes. Recently, an important development in controlling for these
confounds has been the use of within-family GWASs, which, because of the randomness of Mendelian
segregation within pedigrees, are often interpreted as producing unbiased estimates of direct effects.
Here, we present a general theoretical analysis of the influence of confounding in standard population-
based and within-family GWASs. We show that, contrary to common interpretation, family-based
estimates of direct effects can be biased by genetic confounding. In humans, such biases will often
be small per-locus, but can be compounded when effect size estimates are used in polygenic scores.
We illustrate the influence of genetic confounding on population- and family-based estimates of direct
effects using models of assortative mating, population stratification, and stabilizing selection on GWAS
traits. We further show how family-based estimates of indirect genetic effects, based on comparisons
of parentally transmitted and untransmitted alleles, can suffer substantial genetic confounding. In
addition to known biases that can arise in family-based GWASs when interactions between family
members are ignored, we show that biases can also arise from gene-by-environment (G×E) interactions
when parental genotypes are not distributed identically across interacting environmental and genetic
backgrounds. We conclude that, while family-based studies have placed GWAS estimation on a more
rigorous footing, they carry subtle issues of interpretation that arise from confounding and interactions.
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1 Introduction1

Genome-wide association studies (GWASs) have identified thousands of genetic variants that are associ-2

ated with a wide variety of traits in humans. In the standard ‘population-based’ approach, the GWAS is3

conducted on a set of ‘unrelated’ individuals. The associations that are detected can arise when a variant4

causally affects the trait or when it is in tight physical linkage with causal variants nearby.5

Central to the aims of GWASs is the estimation of variants’ effect sizes on traits of interest. These effect6

size estimates are important for identifying and prioritizing variants and implicated genes for functional7

followup, and may be used to form statistical predictors of trait values or to understand the causal or8

mechanistic role of genetic variation in traits. Understanding sources of error and bias in GWAS effect9

size estimates is therefore crucial.10

The interpretation of GWAS effect size estimates is complicated by four broad factors (Vilhjálmsson11

and Nordborg 2013; Young et al. 2019). First, the causal pathways from an allele to phenotypic variation12

need not reside in the individuals who enrolled in the GWAS, but can also reflect causal effects on13

the individual’s environment of the genotypes of their siblings, parents, other ancestors, and neighbors14

(indirect genetic effects, or dynastic effects; Wolf et al. 1998). Second, a phenotypic association can15

result from correlations between the allele and environmental causes of trait variation (environmental16

confounding; Lander and Schork 1994). Third, a phenotypic association can be generated at a locus if17

it is genetically correlated with causal loci outside of its immediate genomic region (genetic confounding;18

Vilhjálmsson and Nordborg 2013). Fourth, an allele’s effect on a trait might depend on the environment19

and the allele’s genetic background (gene-by-environment and gene-by-gene interactions, or G×E and20

G×G; Freeman 1973; Marchini et al. 2005; Gauderman et al. 2017).21

Since our primary interest here will be genetic confounding, we briefly describe some potential sources22

of the long-range allelic associations that drive it: population structure, assortative mating, and selection23

on the GWAS trait.24

Population structure leads to genetic correlations across the genome when allele frequencies differ25

across populations or geographic regions: sampled individuals from particular populations are likely to26

carry, across their genomes, alleles that are common in those populations, which induces correlations27

among these alleles, potentially across large genomic distances. Such genetic correlations persist even28

after the populations mix, as alleles that were more common in a particular source population retain their29

association until uncoupled by recombination.30

Assortative mating brings alleles with the same directional effect on a trait (or on multiple traits,31

in the case of cross-trait assortative mating) together in mates, and therefore bundles these alleles in32

offspring and subsequent generations. This bundling manifests as positive genetic correlations among33

alleles with the same directional effect (Wright 1921; Crow and Felsenstein 1968), which can confound34

effect size estimates in a GWAS on the trait.35

Finally, natural selection on a GWAS trait can result in genetic correlations by favoring certain36

combinations of trait-increasing and trait-decreasing alleles. A form of selection that is expected to be37

common for many traits of interest is stabilizing selection, which penalizes deviations from an optimal trait38

value. By favoring compensating combinations of trait-increasing and trait-decreasing alleles, stabilizing39

selection generates negative correlations among alleles with the same directional effect (Bulmer 1971,40

1974), and therefore can confound effect size estimates in a GWAS performed on the trait under selection41

or on a genetically correlated trait.42

The potential for dynastic, environmental, and genetic confounds to bias GWAS effect size estimates43

has long been recognized (Lander and Schork 1994; Ewens and Spielman 1995), and so a major focus44

of the literature has been to develop methods to control for these confounds (Pritchard and Rosenberg45
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1999; Price et al. 2010). Standard approaches include using estimates of genetic relatedness as covariates46

in GWAS regressions (Price et al. 2006; Yang et al. 2014) or downstream analyses such as LD-Score47

regression (Bulik-Sullivan et al. 2015a,b; Bulik-Sullivan 2015). Such methods aim to control for both48

environmental and genetic confounding, but do so imperfectly (e.g., Berg et al. 2019; Sohail et al. 2019).49

Further, it is often unclear what features of genetic stratification are being addressed (Vilhjálmsson and50

Nordborg 2013; Young et al. 2019): assortative mating in particular may not be well accounted for by51

these methods (Border et al. 2022b). Moreover, in reality, there is no bright line separating dynastic,52

environmental, and genetic confounding.53

One promising way forward is to estimate allelic effects within families, either by comparing the54

separate associations of parentally transmitted and untransmitted alleles with trait values in the offspring55

(Spielman et al. 1993; Allison 1997; Eaves et al. 2014; Weiner et al. 2017; Kong et al. 2018), or by56

associating differences in siblings’ trait values with differences in the alleles they inherited from their57

parents (Abecasis et al. 2000; Visscher et al. 2006; Lee et al. 2018). The idea is that, by controlling for58

parental genotypes, within-family association studies control for both environmental stratification and59

indirect/dynastic effects, while Mendelian segregation randomizes alleles across genetic backgrounds. In60

principle, this allows the ‘direct genetic effect’ of an allele—the causal effect of an allele carried by an61

individual on their trait value—to be estimated. Recognizing that a variant detected in a GWAS will62

usually not itself be causal for the trait variation but instead will only be correlated with true causal63

variants, the direct effect of a genotyped variant is usually interpreted as reflecting the direct causal64

effects of nearby loci that are genetically correlated with the focal locus (Young et al. 2019)—but not the65

effects of more distant loci that might also be genetically correlated with the focal genotyped locus (e.g.,66

because of population structure or assortative mating).67

Consistent with both the presence of substantial confounds in some population-based GWASs and the68

mitigation of these confounds in within-family GWASs, family-based estimates of direct effect sizes and69

aggregate quantities based on these estimates (e.g., SNP-based heritabilities) are substantially smaller70

than population GWAS estimates for a number of traits, most notably social and behavioural traits (Lee71

et al. 2018; Selzam et al. 2019; Mostafavi et al. 2020; Howe et al. 2022; Young et al. 2022). Likewise,72

estimates of genetic correlations between traits are sometimes substantially reduced when calculated using73

direct effect estimates from within-family GWASs (e.g. Howe et al. 2022). While some of these findings74

could reflect the contribution of indirect genetic effects to population GWASs, it is also likely that, at least75

for some traits, standard controls for population stratification in population GWASs have been insufficient76

(Berg et al. 2019; Sohail et al. 2019; Young et al. 2022; Okbay et al. 2022; Nivard et al. 2022; Border et al.77

2022a).78

Our aim in this paper is to study a general model of confounding in GWASs, to generate clear intuition79

for its influence on estimates of effect sizes in both population- and family-based designs. A number of80

the issues that we analyze have previously been raised, particularly in the context of population-based81

GWASs (e.g., Rosenberg and Nordborg 2006; Platt et al. 2010; Vilhjálmsson and Nordborg 2013; Young82

et al. 2019); here, we analyze them in a common framework that allows for comparison of multiple sources83

of confounding in both population and family-based GWASs. There is a large literature on GWASs in84

non-human organisms (e.g., Atwell et al. 2010; Hayes and Goddard 2010; Peiffer et al. 2014; Josephs et al.85

2017). However, although the results and intuition that we derive here apply equally well to human and86

non-human GWASs, we shall interpret them primarily from the perspective of human GWASs, in which87

the inability to experimentally randomize environments, together with the small effects that investigators88

hope to detect, makes confounding a particular concern.89

Our first focus is on confounding—and genetic confounding in particular—in the absence of G×E and90

G×G interactions. To better understand the differences between population and within-family GWASs,91
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we first study a general model of genetic confounding in the absence of G×E and G×G interactions.92

We derive expressions for estimators of direct effects in both population and within-family GWASs, as93

functions of the true direct and indirect effects at a locus and the genetic confounds induced by other94

loci. In doing so, we find that family-based estimates of direct effects are in fact susceptible to genetic95

confounding, contrary to standard interpretation. Reassuringly, in many of the models we consider,96

the resulting biases are likely to be small in humans. We also address a related case: family-based97

GWAS designs that consider transmitted and untransmitted parental alleles and in which the indirect (or98

‘dynastic’) effect of an allele is estimated from its association with the offspring’s phenotype when carried99

by the parent but not transmitted to the offspring. We show that this estimator of indirect effects can be100

substantially biased by genetic and environmental confounds, in a similar way to population estimates of101

direct effects. Next, we consider various sources of genetic confounding—assortative mating, population102

structure, and stabilizing selection on GWAS traits— and how they influence estimates of direct effects103

in both population and within-family GWASs.104

We then turn to sibling indirect effects, which are known to bias estimates of direct effects in sibling-105

based GWASs (Young et al. 2019, 2022). We characterize this bias in a simple model, and contrast it to106

the bias caused by sibling indirect effects in a population GWAS.107

Finally, we consider G×E and G×G interactions, showing how their presence can bias population and108

family-based estimates of direct genetic effects in contrasting ways, complicating the interpretation of109

family-based estimates.110

2 Effect size estimates in association study designs111

Our primary focus will be on how genetic confounding can bias the estimation of direct genetic effects.112

These genetic confounds are due to associations between a genotyped variant at a GWAS locus and113

causal variants at other loci. As we will see, two kinds of association must be distinguished: cis-linkage114

disequilibrium (cis-LD) and trans-linkage disequilibrium (trans-LD). Genetic variants A and B are in115

positive cis-LD if, when an individual inherits A from a given parent, the individual is disproportionately116

likely to inherit B from that parent (Fig. 1A). A and B are in positive trans-LD if, when an individual117

inherits A from one parent, the individual is disproportionately likely to inherit B from the other parent118

(Fig. 1B). These covariances have also been called gametic and non-gametic LD, respectively (e.g. Weir119

2008). To quantify the degrees of cis-LD and trans-LD, we denote by Dij and D̃ij the allelic covariances120

between focal variants at loci i and j in cis and in trans, and we denote by rij and r̃ij the analogous121

allelic correlation coefficients. For some of our results, it will be important to distinguish the LD present122

in the sample on which the association study is performed and the LD present among the parents of the123

sample.124

Consider a trait Y influenced by genetic variants at a set of polymorphic loci L, each of which segregates125

for two alleles. For ease of interpretation, and without loss of generality, we designate the ‘focal’ allele at126

locus l ∈ L to be the allele that directly increases the trait value, and we denote by pl the frequency of127

this allele. Allelic effects are assumed to be additive within and across loci, such that the trait value of128

an individual can be written129

Y = Y ∗ +
∑
l∈L

glα
d
l︸ ︷︷ ︸

direct effects

+
∑
l∈L

(
gml + gfl

)
αi
l︸ ︷︷ ︸

indirect effects

+ϵ. (1)130

Here, gl, g
m
l , and gfl are the numbers (0, 1, or 2) of focal alleles carried at locus l by the individual, their131

mother, and their father respectively, αd
l > 0 is the direct effect of the focal allele at l, and αi

l is its132
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indirect effect via the maternal and paternal genotypes. (For simplicity, we assume that indirect effects133

via the maternal and paternal genotypes are equal; this assumption is relaxed in Appendix A1.) ϵ is the134

environmental noise, with E[ϵ] = 0, and Y ∗ is the expected trait value of the offspring of parents who135

carry only trait-decreasing alleles.136
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Figure 1: The influence of cis- and trans-LD on effect size estimates in population-based and within-family
association studies. (A) The focal allele at an association study locus (solid red square) is in positive cis-LD with
trait-increasing alleles at other loci (solid black squares) if it is disproportionately likely to be found alongside them
on an individual’s maternally or paternally inherited genome. (B) The focal allele at the study locus is in positive
trans-LD with trait-increasing alleles at other loci if it is disproportionately likely to be found across from them
on the maternally and paternally inherited genomes. (C,D) In a population association study, both positive cis-
and trans-LD between the focal allele at the study locus and trait-increasing alleles anywhere else in the genome—
either on the same chromosome as the study locus or on different chromosomes—generate a spuriously high effect
size estimate at the study locus. (E,F) In a sibling association study, a trait-increasing allele causes a spuriously
increased effect size estimate at the study locus if the parent is a coupling double heterozygote for the focal and
trait-increasing alleles, having inherited them from the same parent (E), but a spuriously decreased estimate if the
parent is a repulsion double heterozygote, having inherited them from different parents (F). These biases arise only
if the trait-affecting locus is on the same chromosome as the focal study locus. The net bias depends on the relative
frequencies of coupling and repulsion double heterozygotes in the parents, which depends on the difference in the
degrees of cis- and trans-LD.
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2.1 Population-based association studies137

The variants at a genotyped locus will usually not themselves have causal effects on the trait, but will138

instead be in cis-LD with—and thus ‘tag’—causal variants at nearby loci. Thus, we typically think of the139

association at a focal genotyped locus as reflecting the direct contributions of a relatively small number of140

tightly linked loci, Llocal, found within tens or perhaps hundreds of kb from the focal locus (Pritchard and141

Przeworski 2001). Under the additive model, therefore, the standard interpretation is that a population142

association study performed at a focal genotyped locus λ provides an estimate of the quantity143

αλ =
1

pλ(1 − pλ)

∑
l∈Llocal

Dλlα
d
l , (2)144

where pλ is the frequency of the focal allele at λ, and Dλl is the degree of cis-LD between the focal allele145

at λ and a causal allele at a nearby locus l ∈ Llocal. It is reasonable to think of this quantity as the146

‘direct effect’ tagged by the focal variant at the genotyped locus λ: in the absence of confounding, it can147

be interpreted as the average phenotypic effect of randomly choosing a non-focal allele in the population148

and swapping it for a focal allele, where in this hypothetical swap, the causal alleles near the locus are149

included. For concreteness, we assume some fixed Llocal in our analyses, but in practice researchers seldom150

have a pre-defined number of ‘local’ SNPs in mind.151

Effect size estimation in a population GWAS is complicated by the presence of environmental and152

genetic stratification. Under the model in Eq. (1), if we perform a standard population association study153

at locus λ, the estimated effect of the focal allele on the trait Y is154

α̂pop
λ =

2

Vλ

( ∑
l∈Llocal

Dλlα
d
l +

∑
l∈L\Llocal

Dλlα
d
l +

∑
l∈L

D̃λlα
d
l︸ ︷︷ ︸

genetic confounds, direct

+
∑
l∈L

[
D′

λl + D̃′
λl + 2D̃λl

]
αi
l︸ ︷︷ ︸

genetic confounds, indirect

+
1

2
Cov(gλ, ϵ)︸ ︷︷ ︸

environmental
confound

)
,

(3)

155

156

where, of the cis- and trans-LD terms, Dλl and D̃λl are defined in the GWAS sample while D′
λl and D̃′

λl are157

defined in their parents (Appendix A1.2). Vλ is the genotypic variance at λ, equal to 2pλ(1− pλ)(1 +Fλ)158

where Fλ is Wright’s coefficient of inbreeding at λ.159

The environmental confound is Cov(gλ, ϵ)/Vλ; all non-local cis- and trans-LD terms in the study160

sample (Dλl and D̃λl, l /∈ Llocal) are direct genetic confounds (Fig. 1C,D); and all cis- and trans-LD161

terms among parents of sampled individuals (D′
λl and D̃′

λl), together with all trans-LD terms in the study162

sample (D̃λl), are indirect genetic confounds.163

The direct genetic confounds arise because an allele carried by an offspring at λ is correlated with164

the alleles that they carry at other loci l ∈ L (via Dλl and D̃λl) that directly affect the trait value. The165

indirect genetic confounds arise because an allele carried by the offspring at λ—say, the maternal allele—is166

correlated with alleles carried by the offspring’s mother at other loci (D′
λl and D̃′

λl) and alleles carried by167

their father (as reflected by the trans-LD in the offspring, D̃λl). These alleles in the parents can indirectly168

affect the offspring’s trait value.169

Thus, as is now well appreciated, population-based GWASs potentially suffer from many types of170

confounds (Vilhjálmsson and Nordborg 2013; Young et al. 2019). In practice, they can be reduced by171

including principal components—which capture genome-wide relatedness among GWAS participants—172

as regressors in a GWAS, or by using relatedness matrices in mixed models (Price et al. 2006; Yang173

et al. 2014). However, it is often unclear exactly what these methods control for in a given application174
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(Vilhjálmsson and Nordborg 2013; Young et al. 2019), and they have been shown to be inadequate in175

important cases (e.g., Berg et al. 2019; Sohail et al. 2019). When principal components (or other controls)176

fail to account fully for stratification, then Eq. (3) can be interpreted as a decomposition of the remaining,177

uncontrolled-for confounding in the GWAS.1178

2.2 Within-family association studies179

The two within-family association study designs that we consider are parent-offspring GWASs and sibling180

GWASs. Other designs have been proposed to control for genetic and environmental confounding in the181

estimation of aggregate quantities such as heritability (e.g., Young et al. 2018a), but our primary focus is182

on the estimation of single-marker effect sizes. We do later turn to the interpretation of polygenic score183

regressions within families.184

Estimates of direct genetic effects. Parent-offspring studies can be used to estimate trait associa-185

tions separately for parentally transmitted and untransmitted variants at a locus λ, α̂
(T)
λ and α̂

(U)
λ , by186

regressing the trait value Y on the transmitted and untransmitted genotypes, gTλ and gUλ (Kong et al.187

2018). The aim is often to estimate the direct effect of a variant, α̂d
λ, as the difference between these two188

estimates:189

α̂d,T-U
λ = α̂

(T)
λ − α̂

(U)
λ . (4)190

A second aim is to treat α̂
(U)
λ as an estimate of the indirect, or family, effect of the variant. We return to191

this second aim later.192

In Appendix A1.4, we show that, in the absence of interactions between parental and offspring geno-193

types, the estimate of the direct effect of a variant at locus λ in a parent-offspring study is194

α̂d,T-U
λ = α̂

(T)
λ − α̂

(U)
λ =

2

Vλ

∑
l∈L

(1 − 2cλl)
(
D′

λl − D̃′
λl

)
αd
l (5)195

≈ 2

Vλ

( ∑
l∈Llocal

D′
λlα

d
l +

∑
l∈L\Llocal

(1 − 2cλl)
(
D′

λl − D̃′
λl

)
αd
l︸ ︷︷ ︸

genetic confounds, direct

)
, (6)196

197

where cλl is the sex-averaged recombination rate between λ and l. The cis- and trans-LD terms D′
λl and198

D̃′
λl are measured in the parents.199

Similarly, an estimate of the direct effect can be obtained from pairs of siblings by regressing the200

differences in their phenotypes on the differences in their genotypes at the focal locus λ. In the presence201

of genetic confounds, this procedure yields a similar estimate to Eq. (6):202

α̂d,sib
λ ≈ 2

Hλ

( ∑
l∈Llocal

D′
λlα

d
l +

∑
l∈L\Llocal

(1 − 2cλl)
(
D′

λl − D̃′
λl

)
αd
l︸ ︷︷ ︸

genetic confounds, direct

)
, (7)203

1By the Frisch-Waugh-Lovell theorem (Greene 2018, pg. 36), Eq. (3) is the estimate one obtains by first regressing both
the trait and the focal-locus genotype on the PCs, collecting the residuals from these regressions (which can be thought of
as trait and focal-locus genotype values stripped of whatever signal the PCs captured), and regressing the residuals from the
trait regression on the residuals from the genotype regression.
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where Hλ is the fraction of parents who are heterozygous at locus λ (Appendix A1.3). An assumption in204

sibling GWASs is that an offspring’s phenotype is not influenced by the genotypes of their siblings—i.e.,205

that there are no sibling indirect genetic effects. We consider violations of this assumption later.206

In Eqs. (6) and (7), there is no environmental confound, because family-based GWASs successfully207

randomize the environments of family members with respect to within-family genetic transmission.208

The derivations above further show that, while population association studies are biased by sums of209

trans- and cis-LD between the focal locus and all causal loci (Eq. 3), within-family association studies are210

instead biased by differences between trans- and cis-LD, and moreover, that the biases in within-family211

studies are driven only by LD between the focal locus and causal loci on the same chromosome (cλl < 1/2).212

To provide an intuition for this result, we focus our discussion on a sibling association study performed213

at λ; the intuition is identical for the analogous parent-offspring study.214

Because the difference between two siblings in their maternally inherited genotypes is independent215

of the difference in their paternally inherited genotypes, we may consider maternal and paternal trans-216

missions separately in studying how a locus l ∈ L can confound effect size estimation at λ in a sibling217

association study. We will phrase our discussion in terms of maternal transmission.218

For effect size estimation at λ to be genetically confounded by maternal transmission at a distant219

locus l, the mother must be heterozygous at both loci. For if she were homozygous at l, then maternal220

transmission at l could not contribute to any trait differences between her offspring, while if she were221

homozygous at λ, maternal transmission would not result in genetic variation among her offspring at222

λ with which trait variation could be associated. Therefore, we restrict our focus to mothers who are223

heterozygous at both λ and l, or ‘double heterozygotes’. Two kinds exist (Fig. 1E,F): coupling double224

heterozygotes who carry the focal alleles at λ and l on the same haploid genome (‘in cis’), and repulsion225

double heterozygotes who carry them on separate haploid genomes (‘in trans’).226

We first consider the case where the recombination rate between λ and l is small (cλl ≪ 1/2). In227

this case, if the mother is a coupling double heterozygote, then her offspring will tend to inherit either228

both or neither of the focal alleles at λ and l (Fig. 1E). Therefore, if one sibling inherits the focal allele229

at λ and another does not, the first sibling will tend to inherit the focal (trait-increasing, as we have230

defined it) allele at l and the second sibling will not, so that the effect of locus l positively confounds the231

association between λ and the trait (Fig. 1E). If the mother is instead a repulsion double heterozygote,232

then her offspring will tend to inherit either the focal allele at λ or the focal allele at l, but not both233

(Fig. 1F). In this case, if one sibling inherits the focal allele at λ and another does not, the second sibling234

will tend to inherit the focal (trait-increasing) allele at l and the first sibling will not, so that the effect of235

locus l negatively confounds the association between λ and the trait (Fig. 1F). When λ and l are linked,236

therefore, the way in which l genetically confounds the effect size estimate at λ depends, positively or237

negatively, on whether the fraction of coupling double heterozygotes among parents is greater or smaller,238

respectively, than the fraction of repulsion double heterozygotes.239

In contrast, if λ and l are unlinked (cλl = 1/2), then transmissions from coupling and repulsion double240

heterozygote parents are equal, and so l cannot confound estimates at λ (Fig. 1E,F). Put differently,241

meiosis in double heterozygotes fully randomizes joint allelic transmissions at λ and l, with offspring242

equally likely to inherit any possible combination of alleles at the two loci.243

Therefore, only linked loci l can confound a family-based association study at λ, and they do so in244

proportion to (i) how small the recombination rate between λ and l is, and (ii) the difference between the245

fractions of parents who are coupling and repulsion double heterozygotes at λ and l. Accordingly, if we246

write these fractions of parents as Hcoup
λl and Hrep

λl , then D′
λl − D̃′

λl = (Hcoup
λl −Hrep

λl )/2, and so Eq. (7)247
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(and Eq. 6) can be rewritten in terms of the relative frequencies of the two kinds of double-heterozygotes:248

α̂d,sib
λ ≈ 2

Hλ

( ∑
l∈Llocal

D′
λlα

d
l +

∑
l∈L\Llocal

(
1

2
− cλl

)(
Hcoup

λl −Hrep
λl

)
αd
l

)
.249

In a species with many chromosomes, such as humans, for a given locus, there will be many more250

unlinked loci than linked loci. Therefore, the set of loci that can confound a family-based association251

study at a given locus will be much smaller than the set of loci that can confound a population association252

study at the locus. It will often be the case, therefore, that biases in the estimation of direct genetic effects253

will be smaller in family-based studies than in population studies, a point that we explore below when254

we consider sources of genetic confounding.255

Estimates of indirect genetic effects. We now return to the regression of the trait on the untrans-256

mitted genotype in parent-offspring GWASs, α̂
(U)
λ , which has sometimes been treated as an estimate of the257

indirect effect α̂i
λ. Assuming equal indirect effects via maternal and paternal genotypes (an assumption258

that we relax in Appendix A1.4),259

α̂i
λ = α̂

(U)
λ =

2

Vλ

( ∑
l∈Llocal

D′
λlα

i
l︸ ︷︷ ︸

local indirect effect

+
∑
l∈L

(
D′

λlcλl + D̃′
λl(1 − cλl) + D̃λl

)
αd
l︸ ︷︷ ︸

genetic confounds, direct

260

+
∑

l∈L\Llocal

D′
λlα

i
l +
∑
l∈L

(
D̃′

λl + 2D̃λl

)
αi
l︸ ︷︷ ︸

genetic confounds, indirect

+
1

2
Cov

(
gUλ , ϵ

)
︸ ︷︷ ︸
environmental

confound

)
. (8)261

262

The direct genetic confound reflects associations of the untransmitted alleles at the focal locus with alleles263

that are transmitted to the offspring at causal loci l ∈ L and which directly affect the offspring’s trait264

value (via αd
l ). These associations are due to covariances among alleles in each parental genome (D′

λl265

and D̃′
λl) and across the parental genomes (reflected as trans-LD in the offspring, D̃λl). The indirect266

genetic confound reflects associations of the untransmitted alleles to alleles at other loci in the parents,267

which can indirectly affect the offspring trait value (via αi
l). Finally, unlike in family-based estimates of268

direct genetic effects (Eqs. 6 and 7), family-based estimates of indirect effects suffer from environmental269

confounding, in the same way that population GWASs do (Eq. 3).270

Therefore, estimating the indirect effect by regressing the trait value on the untransmitted genotype is271

highly susceptible to environmental confounding as well as both direct and indirect genetic confounding, in272

a similar way to estimating the direct effect via a population-based association study (Shen and Feldman273

2020). Adjustments for assortative mating in particular have been included in some PGS-based analyses274

of indirect effects (e.g., Kong et al. 2018; Young et al. 2022). However, it is not clear how robust these275

adjustments are in the presence of multiple forms of confounding.276

2.3 Polygenic scores and their phenotypic associations277

A current drawback to family-based GWASs is that sample sizes are often small, limiting power to esti-278

mate direct genetic effects. Because of this limitation, instead of estimating per-locus effect sizes in family279

designs, investigators often measure the within-family phenotypic association of a combined linear predic-280

tor, a polygenic score (PGS), constructed using effect size estimates across many loci from a population281
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GWAS. In the sibling-based version of this study design, the difference in siblings’ population-based PGSs282

is regressed on their difference in phenotypes (e.g., Lee et al. 2018; Selzam et al. 2019). In parent-offspring283

designs, the population-based PGSs constructed separately for transmitted and untransmitted alleles are284

used as linear predictors of the offspring’s phenotype, and the difference in their slopes in this regression285

is estimated (e.g., Kong et al. 2018; Okbay et al. 2022).286

When such PGS regressions are used within families for the same phenotype as the population GWAS,287

a non-zero slope of the PGS is usually interpreted as reflecting the fact that the PGS—despite having been288

calculated from a population GWAS and therefore subject to many potential confounds—nevertheless does289

capture the direct genetic effects of alleles. When the PGS for one phenotype is regressed within families290

on the value of another phenotype, non-zero slopes are often interpreted as evidence that direct genetic291

effects on the two phenotypes are causally related, for example through pleiotropic effects of the alleles292

involved.293

Suppose that we have performed a population GWAS for trait 1, generating effect size estimates α̂λ294

at a set of genotyped loci λ ∈ Λ. To construct a PGS for trait 1, these effect size estimates are used as295

weights in a linear sum across an individual’s genotype:296

PGS 1 =
∑
λ∈Λ

gλα̂
pop
λ . (9)297

In a sibling-based study (the results and intuition below will be the same for a parent-offspring study),298

the difference between siblings’ trait-1 PGSs, ∆PGS 1, is regressed on the difference in their values for299

trait 2, ∆Y2 (note that trait 2 could be the same as trait 1). If L is the set of loci that causally underlie300

variation in trait 2, and βl are the true effects of variants at these loci on trait 2, then the numerator of301

the slope in this regression can be written as302

Cov (∆PGS 1,∆Y2) = 2
∑
λ∈Λ

∑
l∈L

(1 − 2cλl)
(
D′

λl − D̃′
λl

)
α̂pop
λ βl (10)303

(see Appendix A2). Note that, while the population-based effect size estimates α̂λ depend on cis- and304

trans-LD, as detailed by Eq. (3), the patterns of LD may differ from those in the family study (the305

D′
λl − D̃′

λl term in Eq. 10) if the population- and family-based studies differ in relevant aspects of sample306

composition.307

The intuition for Eq. (10) is similar to that for the single-locus effect size estimate in a sibling GWAS308

(Eq. 7). The numerator of the difference in slopes of transmitted and untransmitted PGSs in a parent-309

offspring design takes a similar form to Eq. (10).310

In the absence of confounding and under some simplifying assumptions, the sibling PGS covariance311

measures the contribution of each locus included in the PGS to the additive genic covariance between312

traits 1 and 2 that is tagged by the genotyped variants included in the PGS (see Eq. A.23 in Appendix313

A2). Under these assumptions, the sibling PGS slope therefore does provide a measure of the underlying314

pleiotropy between the traits.315

Interpretation of the sibling PGS slopes is more complicated in the presence of genetic confounding316

(see Eq. A.22 in Appendix A2), which is absorbed into the effect size estimates α̂pop
λ (Eq. 3) so that the317

PGS applies a potentially strange set of weights to the genotyped loci it includes. (A related problem318

occurs when indirect genetic effects absorbed by the population-based PGS change the interpretation of319

within-family PGS slopes—see Trejo and Domingue (2018); Fletcher et al. (2021).) A non-zero sibling320

PGS slope still establishes that the trait-1 PGS loci are in systematic signed intra-chromosomal LD with321

loci that causally affect trait 2. However, it no longer necessarily implies that traits 1 and 2 are causally322
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related via pleiotropy, for two reasons. To understand these reasons, suppose that the causal loci for traits323

1 and 2 are distinct, i.e., that there is in fact no pleiotropy. First, a SNP included in the trait-1 PGS324

could tag local variants that causally affect trait 1 but which are also, via sources of confounding such as325

cross-trait assortative mating, in systematic long-range LD with variants on the same chromosome that326

causally affect trait 2. Such SNPs will be predictive of sibling differences in trait 2, even though they327

locally tag only trait-1 causal variants. Second, LD between variants on the same or distinct chromosomes328

that are causal for trait 1 and trait 2 will cause some SNPs that locally tag trait-2 causal variants to be329

significantly associated with trait 1 in a population GWAS, and therefore to be included in the trait-1330

PGS. These SNPs, since they tag trait-2 causal variants, will be predictive of sibling differences in trait331

2.332

In summary, in the presence of confounding, non-zero sibling PGS slopes cannot be viewed as de facto333

evidence for causal relationships between traits.334

3 Sources of genetic confounding in association studies335

As we have seen, genetic confounding of association studies depends, in ways that vary across study336

designs, on levels of non-local cis- and trans-LD between the study locus and loci that influence the337

study trait. Below, we consider various processes that give rise to non-local cis- and trans-LD, and338

their likely impact on the different association study designs. We focus our attention on the potential339

for these sources of LD to confound measurement of several key metrics. First, the average deviation340

of the estimated effect size from its true value, E [α̂λ − αλ]. This measure indicates if effect sizes are341

systematically overestimated or underestimated because of genetic confounding. Second, the average342

squared effect size estimate, weighted by heterozygosity: E
[
2pλ(1 − pλ)α̂2

λ

]
. This quantity is related to343

important measures such as the genetic variance and SNP-based heritability (Bulik-Sullivan et al. 2015b).344

It is also directly related to the variance of effect size estimates, and therefore captures the additional345

noise that genetic confounding creates in effect size estimation at a given locus. Finally, if GWASs have346

been performed on more than one trait, the covariance across loci of the effect size estimates for two347

traits may be of interest. This covariance is determined by the average heterozygosity-weighted product348

E
[
2pλ(1 − pλ)α̂λβ̂λ

]
, where α̂λ and β̂λ are the effect size estimates at locus λ for traits 1 and 2.349

In what follows, for simplicity, we ignore indirect effects and assume that there is no environmental350

confounding (i.e., no correlation between genotypes and the environmental effects ϵ). For each of the351

sources of genetic confounding that we consider, we calculate the three measures listed above both an-352

alytically and in whole-genome simulations carried out in SLiM 4.0 (Haller and Messer 2019). In our353

simulations, we use two recombination maps: (i) for illustrative purposes, a simple hypothetical map354

where the genome lies along a single chromosome of length 1 Morgan, and (ii) the human linkage map355

generated by Kong et al. (2010). A more detailed description of the simulations can be found in the356

Methods, and code is available at github.com/cveller/confoundedGWAS.357

3.1 Assortative mating358

Assortative mating is the tendency for mating pairs to be correlated for particular traits—either the359

same trait (same-trait assortative mating) or distinct traits (cross-trait assortative mating). For example,360

humans are known to exhibit same-trait assortative mating for height and cross-trait assortative mating361

for educational attainment and height (amongst many other examples, reviewed in Horwitz and Keller362

2022; Border et al. 2022a). Assortative mating generates both cis- and trans-LD: It generates positive363
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trans-LD among trait-increasing alleles because genetic correlations between mates translate to genetic364

correlations between maternally and paternally inherited genomes, and it generates positive cis-LD among365

trait-increasing alleles because, over generations, recombination converts trans-LD into cis-LD (Crow and366

Felsenstein 1968). (In some cases, assortative mating can generate cis-LD by mechanisms additional to367

recombination—see Veller et al. 2020.)368

Constant-strength assortative mating. If the strength of assortative mating (measured by the phe-369

notypic correlation among mates ρ) is constant over time, and there are no other sources of genetic370

confounding such as population structure, then, for a given pair of loci l, l′ ∈ L, the positive cis-LD Dll′371

will initially be smaller than the positive trans-LD D̃ll′ , but will gradually grow towards an equilibrium372

value equal to the trans-LD (D∗
ll′ = D̃∗

ll′); in this equilibrium, assortative mating generates new cis-LD at373

the same rate as old cis-LD is destroyed by recombination (Crow and Felsenstein 1968, Appendix A3.1).374

Therefore, in a population GWAS, effect size estimates will initially be biased upwards because of375

positive trans-LD, and the magnitude of the bias will grow over time as positive cis-LD too is generated376

from this trans-LD (Eq. 3; Fig. 2). In contrast, in a family-based GWAS, effect size estimates will initially377

be biased downwards because the positive trans-LD exceeds the positive cis-LD (Eqs. 6 and 7; Fig. 2).378

However, as the cis-LD grows over time towards the value of the trans-LD, the magnitude of the downward379

bias will shrink, and, in equilibrium, the family-based GWAS will not be confounded by assortative mating380

(Fig. 2).381

Under certain simplifying assumptions, we can calculate the average bias that assortative mating382

induces in a population GWAS in equilibrium, in the absence of other sources of genetic confounding such383

as population structure (Appendix A3.1). In the case of same-trait assortative mating, effect size estimates384
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Figure 2: Assortative mating systematically biases effect size estimation in population and within-family GWASs,
although the bias in within-family GWASs is expected usually to be small. Here, cross-trait assortative mating
between traits 1 and 2 occurs for the first 19 generations, after which mating is random. Assortative mating is
sex-asymmetric, with strength ρ = 0.2. Distinct sets of loci underlie variation in trait 1 and 2, with effect sizes
at causal loci normalized to 1. Plotted are average estimated effects of the focal alleles at loci causal for trait 1
in population and within-family GWASs on trait 2, for a hypothetical genome with one chromosome of length 1
Morgan (A) and for humans (B). Since the traits have distinct genetic bases, the true effects on trait 2 of the alleles
at trait-1 loci are zero. The horizontal lines at 0.1 are a theoretical ‘first-order’ approximation of the asymptotic bias
in a population GWAS (Appendix A3.1). Profiles are averages across 10,000 replicate simulation trials. Simulation
details can be found in the Methods.
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are inflated by an average factor of approximately h2ρ/(1 − h2ρ), where ρ is the phenotypic correlation385

among mates and h2 is the trait heritability (for similar calculations, see Yengo et al. 2018; Border et al.386

2022b). In the case of cross-trait assortative mating, if assortative mating is directional/asymmetric387

with respect to sex—i.e., the correlation ρ is between female trait 1 and male trait 2—then assortative388

mating generates spurious associations between trait 1 and alleles that affect trait 2 (and vice versa). If389

the loci underlying the two traits are distinct, then, in equilibrium, the spurious effect size estimate at390

non-causal loci is approximately h2ρ/2 times the effect at causal loci, assuming the traits to have the391

same heritabilities and genetic architectures (horizontal dahsed line in Fig. 2). If cross-trait assortative392

mating is bi-directional/symmetric with respect to sex, then, in equilibrium, the average spurious effect393

size estimate at non-causal loci is approximately h2ρ times the effect at causal loci. Upward biases in394

effect size estimates at causal loci are also expected under cross-trait assortative mating, but these are395

second-order relative to the biases at non-causal loci (Fig. S1).396

The systematic over- and under-estimation of effect sizes that assortative mating induces in population397

and family-based GWASs, respectively, will also affect our second measure of interest, the heterozygosity-398

weighted average squared effect size estimate E
[
2pλ(1 − pλ)α̂2

λ

]
(and therefore also downstream quantities399

such as SNP heritabilities). In a population GWAS, the presence of trans-LD and the gradual creation of400

cis-LD under assortative mating will increase the biases in effect size estimates over time (Fig. 2), which401

will concomitantly increase the average value of α̂2
λ (Fig. 3; also see Border et al. 2022b). Moreover, cross-402

trait assortative mating will generate signals of genetic correlations among traits even in the absence403

of any pleiotropic effects of underlying variants (Border et al. 2022a). In a family-based GWAS, the404

temporary attenuation of effect size estimates owing to a transient excess of trans-LD over cis-LD under405

assortative mating will lead to a similar attenuation in the average squared effect size estimate (Fig. 3),406

although, like the bias in effect size estimates themselves, this attenuation is expected to be small in407
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Figure 3: The impact of assortative mating on the average squared effect size estimate in population and within-
family GWASs. Same-trait assortative mating of strength ρ = 0.2 occurs in generations 0–19; mating is random
before and after this period. Under random mating, the average squared effect size estimates exceed the true average
squared effect size (yellow line) because random drift generates chance local LD with causal alleles that inflates
the variance of effect size estimation (e.g. Bulik-Sullivan et al. 2015b). The magnitude of this variance inflation
depends on the GWAS design and sample size, and the effect of assortative mating and its cessation should be
judged in reference to it. To guide the eye in this judgment, the faint horizontal lines show the average squared
effect size estimate in the last 20 generations of the initial burn-in period of random mating. Profiles are averages
across 10,000 replicate simulation trials. Simulation details can be found in the Methods.
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humans (Fig. 3B).408

As shown by Border et al. (2022a,b), the effects of assortative mating on estimates of heritability and409

genetic correlations described above are not well controlled for by LD Score regression (Bulik-Sullivan410

et al. 2015a,b). The LD score of a variant proxies the amount of local causal variation the SNP tags, but411

because assortative mating generates long-range signed LD among causal variants, it causes local causal412

variants to be in long-range signed LD with other causal variants throughout the genome. Therefore,413

the slope of the LD score regression absorbs the effects of assortative mating, causing its estimates of414

heritability and of the degree of pleiotropy to be inflated.415

Historical assortative mating. If, at some point in time, assortative mating for traits ceases and mat-416

ing becomes random with respect to those traits, the positive trans-LD that was present under assortative417

mating will immediately disappear, leaving only the positive cis-LD that had built up; this cis-LD will418

then be gradually eroded by recombination. If equilibrium had been attained under assortative mating,419

the cis-LD would have grown to match the per-generation trans-LD. Therefore, in the first generation420

after assortative mating ceases, the upward bias in population GWAS effect size estimates would halve421

as the trans-LD disappears (Eq. 3); the bias would then shrink gradually to zero as the cis-LD erodes422

(Fig. 2). A similar pattern will be observed for the heterozygosity-weighted average value of α̂2
λ in the423

population GWAS, which eventually returns to its equilibrium level under random mating (Fig. 3).424

In contrast, with the disappearance of the positive trans-LD but the persistence of positive cis-LD,425

the bias in family-based effect size estimates will suddenly become positive once assortative mating ceases426

(having temporarily been negative under assortative mating before equilibrium was attained); this bias too427

will then gradually shrink to zero as recombination erodes the remaining cis-LD (Fig. 2). Concomitantly,428

the average squared effect size estimate in the family GWAS will suddenly increase when assortative429

mating ceases, after which it too will gradually return to its equilibrium value under random mating430

(Fig. 3).431

Assortative mating between traits with different genetic architectures. An important practical432

question is how genetic confounding affects the GWAS loci we prioritize for functional follow-up and for433

use in the construction of polygenic scores. SNPs are usually prioritized on the basis of their GWAS434

p-value, which is proportional to the estimated variance explained by a SNP, 2pλ(1 − pλ)α̂2
λ (where pλ is435

the minor allele frequency). The results above assume, in the case of cross-trait assortative mating, that436

the traits involved have similar genetic architectures (distribution of pl and αl at causal loci, and the total437

number of causal loci). In that case, if there is no pleiotropy between the traits, then while SNPs that438

tag trait-1 causal loci are predictive of the value of trait 2 owing to LD between trait-1 and trait-2 causal439

loci, we nonetheless expect the SNPs that tag trait-2 causal loci to be better predictors of trait 2, such440

that GWAS investigators would primarily pick out SNPs tagging trait-2 causal loci for prioritization and441

use in polygenic scores.442

However, analysis of human GWASs suggests that quantitative traits can have widely different genetic443

architectures, with, in particular, substantial differences in the effective numbers of causal loci involved444

and in the distribution of minor allele frequencies (Simons et al. 2022, and references therein). If two445

traits with distinct genetic bases show cross-trait assortative mating, but trait 1 has a denser genetic446

architecture (fewer causal loci) than trait 2, then the genetic signal of assortative mating—systematic447

LD between trait-1 and trait-2 causal loci—will be more heavily loaded per-locus onto trait-1 loci than448

onto trait-2 loci. In a GWAS on trait 2, this will inflate the magnitude of spurious effect size estimates449

at SNPs that tag trait-1 loci relative to effect size estimates at SNPs that tag causal trait-2 loci. In450
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Appendix A3.1, we quantify this effect, showing that, in a population GWAS for trait 2, the average451

magnitude of spurious effect size estimates at trait-1 loci is proportional to
√
|L2|/|L1|, where |L1| and452

|L2| are the numbers of loci underlying variation in traits 1 and 2 respectively. Thus, when trait 1 has453

a denser genetic architecture than trait 2 (|L2|/|L1| is large), the magnitudes of effect size estimates at454

non-causal trait-1 loci could substantially overlap with those at causal trait-2 loci (as illustrated in Fig. 4),455

potentially causing part of the apparent, mappable genetic architecture of the trait-2 GWAS to actually456

tag trait-1 loci.457

3.2 Population structure458

When a population GWAS draws samples from individuals of dissimilar ancestries, differences in the459

distribution of causal genotypes, and potentially of environmental exposures, can confound the association460

study (Lander and Schork 1994; Vilhjálmsson and Nordborg 2013). Correcting for confounds due to461

population structure has therefore been an important pursuit in the GWAS literature (Spielman et al.462

1993; Pritchard et al. 2000; Price et al. 2010).463

For concreteness, consider a simple model where two populations diverged recently, with no subsequent464

gene flow between them. Genetic drift—and possibly selection—in the two populations will have led to465

allele frequency differences between them at individual loci. If allele frequencies have diverged at both466
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ns

ity loci causal for trait 2 (GWAS trait)

loci causal for trait 1, under random 
mating  (               95th percentile)

loci causal for trait 1, after 20 gens
of assortative mating with trait 2

mean values

in GWAS on trait 2

Figure 4: Cross trait assortative mating for traits with different genetic architectures can generate large spurious
effect size estimates in population GWASs. Here, the traits have equal heritability, but the number of loci con-
tributing variation to trait 1 is ten-fold smaller than that for trait 2. Shown, for a population GWAS on trait 2, are
estimated distributions of the magnitude of effect size estimates at loci causal for trait 2 (grey) and at loci causal
for trait 1 (greens), under random mating (light green) and after 20 generations of cross-trait assortative mating
(sex-asymmetric, of strength ρ = 0.2) for traits 1 and 2 (dark green). Although the true effects of trait-1 loci on
trait 2 are zero in these simulations (no pleiotropy), there is sampling noise in effect size estimation at trait-1 loci
under random mating (light green line), so that the mean magnitude of effect size estimates is shifted away from
zero (light green dot; dashed line displays 95th percentile under random mating). Under assortative mating, the
magnitudes of the spurious effect size estimates at trait-1 loci shift significantly rightward (dark green line), coming
to overlap substantially with the distribution of effect size estimate magnitudes at causal trait-2 loci (grey line;
the distribution for trait-2 loci does not appreciably differ under random and assortative mating). Densities are
estimated from pooled effect size estimates from 1,000 replicate simulations. Simulation details in Methods.
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a genotyped study locus and at loci that causally influence the study trait, these frequency differences467

will manifest as linkage disequilibria between the study locus and the causal loci in a sample taken across468

both populations, even if the loci are not in LD within either population. Specifically, if the frequencies469

of the focal allele at a given locus k are p
(1)
k and p

(2)
k in populations 1 and 2, then the cis-LD between the470

focal alleles at the association study locus λ and a causal locus l is471

D
(S)
λl =

1

4

(
p
(1)
λ − p

(2)
λ

)(
p
(1)
l − p

(2)
l

)
(11)472

in a sample that weights the two populations equally, with the superscript (S) denoting that this LD is473

due to stratification. The trans-LD takes exactly the same form: D̃
(S)
λl = D

(S)
λl . From Eq. (3), locus l474

therefore confounds estimation of the direct effect at λ in a population GWAS, by an amount proportional475

to476

2
(
D

(S)
λl + D̃

(S)
λl

)
αd
l =

(
p
(1)
λ − p

(2)
λ

)(
p
(1)
l − p

(2)
l

)
αd
l . (12)477

These genetic confounds are in addition to environmental confounding that would arise if the environments478

of the two populations alter their average trait values by different amounts.479

In contrast, estimates of direct effects obtained from within-family association studies are not genet-480

ically confounded, because cis- and trans-LD are equal (Eqs. 6 and 7). Another way of seeing this is to481

consider that, by controlling for family, within-family GWASs control for the population, and in the sce-482

nario considered, by construction, there are no within-population LDs to confound effect size estimation.483

Allele frequency divergence due to drift. How do the confounds introduced by population structure484

affect the first of our measures of interest, the average deviation of effect size estimates from their true485

values? The answer depends on the source of allele frequency differences between the two populations. If486

the differences are due to neutral genetic drift, they will be independent of each other (assuming causal487

loci are sufficiently widely spaced) and independent of the direction and size of effects at individual488

loci. Therefore, the LD induced by these allele frequency differences will, on average, not bias effect size489

estimates in a population GWAS:490

E
[(

p
(1)
λ − p

(2)
λ

)(
p
(1)
l − p

(2)
l

)
αd
l

]
= E

[
p
(1)
λ − p

(2)
λ

]
E
[
p
(1)
l − p

(2)
l

]
E
[
αd
l

]
= 0, (13)491

since E
[
p
(1)
k − p

(2)
k

]
= 0 at any locus k.492

However, the LD induced by population structure will inflate the average squared effect size estimate,493

and by extension the variance of effect size estimates (Fig. 5). In Appendix A3.2, we quantify this effect for494

the same simple case of two separate populations. We find that the average squared effect size estimate in495

a population GWAS is an increasing function of the divergence between the two populations (as measured496

by FST ), the number of loci contributing variation to the study trait, and the true average squared effect497

size per locus (see also Rosenberg and Nordborg 2006; Lee and Lee 2023a).498

In contrast, because effect size estimates from within-family GWASs are not confounded in this model499

of isolated populations, the average squared effect size estimate will not differ substantially from its500

expectation in an unstructured population (Fig. 5).501

While we have focused on a simple model of two isolated populations, the result that within-family502

association studies are not confounded holds for other kinds of population structure as well. Specifically,503

we may be concerned that a population GWAS suffers from genetic confounding along some given axis504

of population stratification. However, the family-based estimates will be unbiased by confounding along505

such an axis if the maternal and paternal genotypes at each locus are exchangeable with respect to each506
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other along this axis (Appendix A3.2). This requirement will be met in expectation under many models507

of local genetic drift in discrete populations or along geographic gradients. However, as we will shortly508

argue, migration and admixture introduce further complications.509

Allele frequency divergence due to selection or phenotype-biased migration. Selection and510

phenotype-biased migration can also generate allele frequency differences among populations (for a re-511

view of phenotype-biased migration, see Edelaar and Bolnick 2012). Unlike genetic drift, both of these512

forces can lead to systematic directional associations between effect sizes and changes in allele frequencies513

between populations. For example, if selection has favored alleles that increase the trait in population 1514

but not in population 2, then515

E
[(

p
(1)
l − p

(2)
l

)
αd
l

]
> 0. (14)516

as directional selection causes systematic changes in allele frequencies across the loci l underlying variation517

in the trait under selection (e.g., Hayward and Sella 2022). Importantly, this form of selection can occur518

even if the mean phenotype of the two populations does not change (Harpak and Przeworski 2021; Yair519

and Coop 2022). Similarly, phenotype-biased migration, where, say, individuals with a higher value of520

the phenotype tend to migrate from population 2 to population 1, can also create a positive association521

between effect sizes and allele frequency differences (Eq. 14).522

Unlike the case of neutral genetic drift in the two populations, where the sign of the LD between523

two alleles is independent of their effect sizes, the effect-size-correlated associations driven by selection524
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Figure 5: The impact of population structure and admixture on the average squared effect size estimate in
population and within-family GWASs. Here, two populations are isolated until generation 0, at which point they
mix in equal proportions. Initial allele frequencies are chosen independently for the two populations, such that allele
frequency differences between the populations resemble those that would accumulate over time via random drift.
As in Fig. 3, the equilibrium value of the mean squared effect size estimate under random mating is greater than
the true mean squared effect size, in both the population and within-family GWAS, owing to linkage disequilibria
among causal alleles that arise due to drift. This explains why, in the insets, the blue (population) and red (within-
family) profiles do not shrink all the way down to the yellow (true) line after admixture, when mating is random.
Note too the difference in scale of the y-axes in the insets: the return to equilibrium is much more rapid under
the human genetic map than for a hypothetical genome of one chromosome of length 1 Morgan, since, with more
recombination, the ancestry-based linkage disequilibria are broken down more rapidly. Profiles are averages across
10,000 replicate simulation trials. Simulation details can be found in the Methods.
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or phenotype-biased migration can add up across loci, and thus lead to substantial, systematic biases in525

estimates of allelic effect sizes. This systematic genetic confounding would also substantially inflate the526

average squared effect size estimate and thus measures of the genetic variance tagged by SNPs.527

In addition, these systematic sources of genetic confounding can generate genetic correlations between528

traits with no overlap in their sets of casual loci—i.e., with no pleiotropic relationship. This will occur if529

two traits have both experienced selection or biased migration along the same axis. To take a concrete530

example, if people tend to migrate to cities in part based on traits 1 and 2, then these traits will become531

genetically correlated. If this axis is explicitly included as a covariate in the GWAS, then its influence532

on estimates of heritability and genetic correlations will be removed. However, its influence will not be533

removed by inclusion of genetic principal components or the relatedness matrix, if this axis (here, city534

vs. non-city) is not a major determinant of genome-wide relatedness at non-causal loci (Vilhjálmsson and535

Nordborg 2013). Nor will LD score regression control for this influence, as the selection- or migration-536

driven differentiation of a variant along the axis will be correlated with the extent to which it tags537

long-range causal variants involved in either trait. This effect on LD score regression is similar to that538

discussed above for assortative mating (Border et al. 2022a,b). Thus, like assortative mating, selection and539

phenotype-biased migration along unaccounted-for axes of population stratification can generate genetic540

correlations between traits. These selection- and migration-driven correlations should not necessarily541

be viewed as spurious, since genetic correlations should include those that arise from systematic long-542

range LD, but they complicate the interpretation of population-level genetic correlations as evidence for543

pleiotropy.544

Again, these issues largely vanish in family-based studies, although phenotype-biased migration can545

cause transient differences in cis- and trans-LD that lead to biases in family-based estimates of direct546

effects (Eqs. 6 and 7).547

3.3 Admixture548

When populations that have previously been separated come into contact, alleles from the same ancestral549

population remain associated with each other in the admixed population until they are dissociated by550

recombination. If allele frequencies had diverged between the ancestral populations, this ‘ancestry disequi-551

librium’ can translate to cis-LD between loci affecting a trait (Nei and Li 1973), potentially confounding552

GWASs performed in the admixed population. More generally, long range LD will be an issue when there553

is genetic stratification and ongoing migration between somewhat genetically distinct groups.554

For concreteness, we again consider a simple model where two populations have been separated for555

some time, allowing allele frequencies to diverge between them. The populations then come into contact556

and admix in the proportions A and 1 − A. We assume that mating is random with respect to ancestry557

in the admixed population.558

Suppose that, just before admixture, the frequencies of the focal allele at a given locus k were p
(1)
k559

and p
(2)
k in the two populations. Then the initial degree of cis-LD between loci λ and l in the admixed560

population is given by Eq. (11), weighted by the proportions in which the populations admix:561

D
(A)
λl,0 = A(1 −A)

(
p
(1)
λ − p

(2)
λ

)(
p
(1)
l − p

(2)
l

)
; (15)562

see, e.g., Pfaff et al. (2001). This cis-LD subsequently decays at a rate cλl per generation, so that, t563

generations after admixture,564

D
(A)
λl,t = D

(A)
λl,0(1 − cλl)

t = A(1 −A)
(
p
(1)
λ − p

(2)
λ

)(
p
(1)
l − p

(2)
l

)
(1 − cλl)

t. (16)565
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Because we assume that mating is random in the admixed population, the trans-LD is zero in every566

generation after admixture: D̃
(A)
λl,t = 0. Note that the decay of cis-LD in an admixed population will be567

slowed if individuals mate assortatively by ancestry, because the trans-LD generated by assortative mating568

is continually converted by recombination to new cis-LD (as in our assortative mating model above; see569

Zaitlen et al. (2017) for more discussion of this point in the context of population admixture).570

Allele frequency divergence due to drift. How do these patterns of LD affect a population GWAS?571

If allele frequency differences between populations arose from neutral drift, they will be independent572

of effect sizes at causal loci and across loci, and therefore will not contribute, on average, a systematic573

directional bias to effect size estimates. However, they will inflate the average squared effect size estimate,574

by a smaller amount than for a population GWAS performed when the populations were still separated575

(because of the elimination of trans-LD under random mating in the admixed population). Moreover, this576

amount will decline in the generations after admixture as the remaining cis-LD is eroded by recombination577

(Eq. 16; Fig. 5). We quantify these effects in Appendix A3.3 (see also Pfaff et al. 2001; Rosenberg and578

Nordborg 2006; Zaitlen et al. 2014; Lee and Lee 2023b).579

Although within-family GWASs were not genetically confounded when the populations were separate580

(because cis- and trans-LDs were equal, as discussed above), they become genetically confounded in the581

admixed population, as all trans-LD is eliminated by random mating in the admixed population, leaving582

an excess of cis-LD relative to trans-LD that biases effect size estimates (Eqs. 6 and 7). As in the case583

of the population GWAS, these biases will be zero on average if allele frequency differences between the584

ancestral populations were due to drift. However, after admixture, they will still inflate the average585

squared effect size estimate (and thus the variance of effect size estimates), which will thereafter decline586

in subsequent generations as the cis-LD is gradually broken down by recombination (Eq. 16; Fig. 5).587

In comparing the average squared effect size estimate in a population and a family-based GWAS, we588

observe that the value in the population GWAS rapidly declines to approximately the same level as the589

value in the within-family GWAS, despite the former having started at a much higher level in the initial590

admixed population (Fig. 5). The explanation is that LD between unlinked loci confounds effect size591

estimation in the population GWAS but not the within-family GWAS, such that (i) the average squared592

effect size estimate from the population GWAS is initially much higher than that from a within-family593

GWAS, because it is inflated by LD between many more pairs of loci, and (ii) the average squared effect594

size estimate from the population GWAS declines more rapidly, because LD between unlinked loci is595

broken down more rapidly than LD between linked loci.596

Allele frequency divergence due to selection or phenotype-biased migration. In addition to597

drift, and as discussed above, selection and phenotype-biased migration can generate systematic, signed598

(effect-size correlated) LD, which would lead to systematic cis-LD in the descendent admixed population.599

These would lead to larger inflations of genetic variance and genetic correlations than would be expected600

had allele frequency divergence between the ancestral populations been due to drift alone, and would601

complicate interpretations of genetic correlations as being due to pleiotropy. Moreoever, if the admixed602

population is more than a few generations old such that LD between unlinked loci but not linked loci603

has largely been broken down, then population- and family-based estimates of these quantities might be604

similar.605

Spurious genetic correlations due to confounding in population-based PGSs. Factors other606

than selection and phenotype-biased migration can also generate non-pleiotropic genetic correlation signals607
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in family-based studies of admixed populations. In fact, the use of confounded population GWAS effect608

sizes can be sufficient. As an example of the confounding of genetic correlations in admixed populations609

due to a confounded GWAS for one trait, consider the GIANT-GWAS height polygenic score. Owing to610

confounding within Europe (Berg et al. 2019; Sohail et al. 2019), the height PGS showed large differences611

between Northern Europeans and sets of individuals sampled in other locations, such as the African 1000612

genomes samples (Martin et al. 2017). This confounding generated a spurious, systematic correlation613

between height effect sizes and allele frequency differences across populations, with height-increasing614

alleles that are more common among Northern Europeans being assigned larger effects (Berg et al. 2019).615

As a result, in a PGS constructed from these effect size estimates, larger PGS values are predictive of616

greater North European ancestry. Now imagine a sibling-based study performed in a sample with recently617

admixed ‘European’ and ‘non-European’ ancestry—African Americans, for example. An individual with618

a larger value than their sibling for the GIANT height PGS will, on average, carry more ‘European’619

ancestry. In African Americans, there will also be a systematic association of lighter skin pigmentation620

with recent ‘European’ ancestry, and selection on skin pigmentation will have driven a signed difference621

in allele frequencies between European and West African ancestors. Putting these observations together,622

the GIANT height PGS, being predictive of the degree of European ancestry, may well be predictive of623

skin pigmentation differences between African American sibling pairs (Eq. 10), leading to the naive and624

incorrect conclusion that height and skin colour are causally linked. In reality, this result would reflect625

the fact that alleles predicted to increase height and alleles that affect skin color are in systematic effect-626

signed admixture LD, as in Eq. (15), as a consequence of stratification-biased effect size estimates from627

the GIANT European GWAS.628

3.4 Stabilizing selection629

Stabilizing selection—selection against deviations from an optimal phenotypic value—is thought to be630

common (Sella and Barton 2019), and has recently been argued to be consistent with the genetic archi-631

tectures of many human traits (Simons et al. 2022). By disfavoring individuals with too many or too632

few trait-increasing alleles, stabilizing selection generates negative cis-LD among alleles with the same633

directional effect on the trait (Bulmer 1971). Thus, stabilizing selection will attenuate GWAS effect size634

estimates at genotyped loci that tag these causal loci.635

To quantify these biases, we consider the model of Bulmer (1971, 1974), in which a large number636

of loci contribute to variation in a trait under stabilizing selection, with the population having adapted637

such that the mean trait value is equal to the optimum. Under this model, stabilizing selection rapidly638

reduces variance in the trait by generating negative cis-LD among trait-increasing alleles. If we make639

the simplifying assumption that all loci have equal effect sizes, then the equilibrium reduction in trait640

variance, −d∗ (where d∗ < 0), can be calculated as a function of the genic variance Vg, the environmental641

noise VE , the strength of stabilizing selection VS/VP (scaled according to the phenotypic variance VP ),642

and the harmonic mean recombination rate, c̄h, among loci underlying variation in the trait (Bulmer643

1974; Appendix A3.4).644

Under these same assumptions, we calculate in Appendix A3.4 the average per-locus attenuation645

bias in effect size estimates induced by stabilizing selection, (αl − α̂l)/αl. In a population GWAS, this646

attenuation bias is approximately647

αl − α̂pop
l

αl
= −d∗

Vg
.648
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In a within-family GWAS, the average proportionate bias is approximately649

αl − α̂fam
l

αl
= −d∗(1 − 2c̄h)

Vg
;650

i.e., smaller than in a population GWAS by a factor of 1 − 2c̄h.651

Thus, the bias in effect size estimation can be calculated given estimates of the phenotypic variance and652

heritability of the trait, the harmonic mean recombination rate, and the strength of stabilizing selection653

(Appendix A3.4). In the Methods, making some simplifying assumptions about the genetic architecture654

of the trait in question, we calculate an approximate value c̄h ≈ 0.464 for humans. Using this value,655

Fig. 6 shows the average proportionate reduction in GWAS effect size estimates for various strengths of656

stabilizing selection and heritabilities of the trait. The range of selection strengths was chosen to match657

that inferred for human traits by Sanjak et al. (2018).658

Attenuation of effect size estimates is larger if stabilizing selection is stronger or if the trait is more659

heritable. Taking height as an example, heritability is ∼0.8, VP ≈ 7cm2, and Sanjak et al. (2018) estimate660

a sex-averaged strength of stabilizing selection of VS/VP ≈ 30. From these values, we calculate that a661

population GWAS would systematically underestimate effect sizes at loci that causally influence height662

by about 3% on average, in the absence of other sources of LD (Fig. 6A). More generally, within the663

range of reasonable strengths of stabilizing selection inferred by Sanjak et al. (2018), we calculate average664

attenutations of population-based effect size estimates of up to 5% for highly heritable traits (h2 ≈ 1)665

under strong stabilizing selection (VS/VP ≈ 20), down to 0.25% for less heritable traits (h2 ≈ 0.4) under666

weak stabilizing selection (VS/VP ≈ 170) (Fig. 6A).667

Given the estimate c̄h ∼ 0.464, the proportionate bias that stabilizing selection induces in within-668

family GWASs is expected to be a fraction 1 − 2c̄h ≈ 7% that in population-based GWASs. Thus, for669

height, a within-family GWAS would underestimate effect sizes by only about 0.2% on average (Fig. 6B).670
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Figure 6: Stabilizing selection attenutates GWAS effect size estimates. The calculations displayed here assume
that genetic variation in the trait is contributed by 1,000 loci of equal effect spaced evenly along the human genome.
Stabilizing selection is stronger if the width of the selection function scaled by the phenotypic variance, VS/VP , is
smaller. The placement of the point for human height assumes a heritability of 0.8 and a strength of stabilizing
selection of VS/VP = 30, as estimated by Sanjak et al. (2018). Details of these calculations can be found in Appendix
A3.4. Note the different scales of the y-axes in A and B.

21

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 27, 2023. ; https://doi.org/10.1101/2023.02.26.530052doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.26.530052
http://creativecommons.org/licenses/by/4.0/


The quantitative importance of these biases will vary by application. In situations where the goal671

is gene discovery, for example, 5% reductions in effect size estimates are unlikely to flip the statistical672

significance of variants with large effects on a trait. However, the attenuations in effect size estimates673

caused by stabilizing selection are systematic across loci, and therefore could substantially affect aggregate674

quantities based on these estimates. For example, the range of average reductions in population effect675

size estimates calculated above for human traits would translate to reductions in naive estimates of SNP-676

based heritabilities of between 0.5% and 10% (∼6% in the case of height). If effect sizes are estimated by677

within-family GWAS, on the other hand, the reductions in these SNP-based heritability estimates would678

be much smaller.679

As a further example, by generating negative LD between alleles with the same directional effect680

on the trait, the impact of stabilizing selection opposes, and therefore masks, the genetic impact of681

assortative mating (Brown et al. 2016). A practical consequence is that stabilizing selection will tend to682

attenuate estimates of the strength of assortative mating based on GWAS effect sizes, which often use683

cross-chromosome correlations of polygenic scores (e.g., Yengo et al. 2018; Yamamoto et al. 2023). In684

humans, the phenotypic correlation among mates for height has been measured at about ∼0.25 (Stulp685

et al. 2017). In Appendix A3.4, we calculate that estimates of this correlation based on cross-chromosome686

correlations in PGSs will be biased downwards by about 20%, to ∼0.20, because of stabilizing selection on687

height. Were assortative mating weaker, or stabilizing selection stronger, the genetic impact of assortative688

mating would be masked to an even greater extent (Appendix A3.4).689

As in our analysis of assortative mating above, if stabilizing selection ceases in some generation, the690

negative LD that built up during the period of stabilizing selection will decay over subsequent generations,691

rapidly for pairs of loci on different chromosomes and more slowly for linked pairs of loci. Patterns of692

selection on human traits have changed over time—for example, the strength of stabilizing selection on693

birth weight has relaxed (Ulizzi and Terrenato 1987). In general, therefore, patterns of confounding reflect694

a composite of contemporary and historic processes.695

3.5 Sibling indirect effects696

Indirect effects of siblings’ genotypes on each other’s phenotypes are known to be a potential source of697

bias in sibling-based GWASs (Fletcher et al. 2021; Young et al. 2022), and can be measured and corrected698

only if, in addition to sibling genotypes, parental genotypes are also available (Kong et al. 2018; Young699

et al. 2022). To generate intuition for their impact on GWASs, we consider a simple model of indirect700

sibling effects in the absence of G×E interactions and other confounding effects, focusing on a single-locus701

model for simplicity. We suppose that the indirect effect of an individual’s phenotype on their sibling’s702

phenotype is β, so that the phenotypes of two siblings i and j can be written703

Yi = Y ∗ + αgi + βYj + ϵi,704

Yj = Y ∗ + αgj + βYi + ϵj . (17)705
706

Taking their difference and rearranging, we find that707

∆Y =
α

1 + β
∆g +

1

1 + β
∆ϵ. (18)708

Therefore, in the absence of genetic confounding and G×E interactions, a sibling-based association study709

would return an effect size estimate of710

α̂sib =
α

1 + β
(19)711

22

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 27, 2023. ; https://doi.org/10.1101/2023.02.26.530052doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.26.530052
http://creativecommons.org/licenses/by/4.0/


on average. Thus, if sibling indirect effects are synergistic (β > 0), they lead to underestimation of the712

direct genetic effect at the locus. In contrast, if sibling indirect effects are antagonistic (β < 0), they lead713

to overestimation of the direct genetic effect.714

How would a population GWAS be affected by the same sibling indirect effects? Sibling i’s phenotype715

can be written716

Yi = Y ∗ + αgi + βYj + ϵi,717

= Y ∗ + αgi + β (Y ∗ + αgj + βYi + ϵj) + ϵi718

⇒ Yi =
1

1 − β2
(Y ∗∗ + αgi + αβgj + ϵi + βϵj) , (20)719

720

where Y ∗∗ = (1 + β)Y ∗. Therefore, if we were to randomly choose one sibling from each sibship and721

estimate the effect size at the locus using a population association study across families, we would obtain722

723

α̂pop =
Cov (gi, Yi)

Var (gi)
=

1

1 − β2

(
α + αβrsibsg

)
, (21)724

where rsibsg = Cov(gi, gj)/Var(gi) is the genotypic correlation between sibs at the locus. Sibling indirect725

effects alter the effect size estimate in a population GWAS via two channels. The first is through the726

factor 1/(1−β2) in Eq. (21), which reflects second-order feedbacks of an individual’s phenotype on itself,727

via the sibling. Since 1/(1 − β2) > 1, these feedbacks act to exacerbate the effects of causal alleles. For728

example, if sibling indirect effects are antagonistic (β < 0), then a sibling with a large trait value will tend729

to indirectly reduce the trait value of their sibling, which in turn will indirectly further increase the trait730

value of the focal individual. This channel therefore pushes population GWASs towards overestimating731

the magnitude of direct genetic effects.732

The other channel by which sibling indirect effects can influence a population GWAS is driven by the733

genotypic correlation among siblings, and is easiest to understand if we assume that sibling indirect effects734

are weak (β2 ≪ 1). In this case, α̂pop ≈ α+αβrsibsg . Since the genotypic correlation rsibsg > 0, this channel735

of sibling indirect effects has the opposite effect to the one it has on a sibling GWAS: if sibling indirect736

effects are synergistic (β > 0), the population GWAS overestimates the direct genetic effect at the locus,737

while if sibling indirect effects are antagonistic (β < 0), the population GWAS underestimates the direct738

genetic effect. The reason for this difference is that a sibling GWAS is based on siblings whose genotypes739

differ at the focal locus, and whose genotypic values are therefore anticorrelated. If sibling indirect effects740

are synergistic (β > 0), they will tend to attenuate the phenotypic differences between such siblings, and741

therefore attenuate effect size estimates. In contrast, because siblings’ genotypes are positively correlated742

across the entire population, synergistic sibling indirect effects (β > 0) will tend to exacerbate phenotypic743

differences across families, leading a population GWAS to overestimate effect sizes.744

3.6 Gene-environment (GxE) and gene-gene (GxG) interactions745

Up to this point, we have assumed that alleles’ direct effects do not vary across environments or genetic746

backgrounds. To generate intuition for the influence of G×E (and G×G) interactions on population747

and family-based GWAS designs, we restrict our focus to a single causal locus, assuming no genetic748

confounding and no indirect effects of siblings. To incorporate G×E interactions, we allow the effect size749

of the alleles at the locus to depend on the family environment. The phenotype of individual i in family750

f is751

Yi = Y ∗ + (α + αf + αi) gi + ϵf + ϵi, (22)752
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where we arbitrarily define αf and αi such that their population means are zero: E [αf ] = E [αi] = 0. α is753

then the average causal effect of the allele were it randomized across individuals from different families in754

our sample. αf is the deviation of this effect in family f due to their environment, and αi is an individual755

deviation which we assume to be independent of i’s genotype; both αf and αi can be thought of as random756

slopes in a mixed model. Note that αf can reflect the interaction of alleles with the family’s external757

environment (as we have framed it here) or with the family’s genetic background (a G×G interaction).758

If we perform a sibling GWAS by taking pairs of full siblings i and j in family f and regressing759

the difference in their phenotypes ∆Yf = Yi − Yj on the difference in their genotypes at the focal locus760

∆gf = gi − gj , we obtain an effect size estimate761

α̂sib = α + E [αf | parent heterozygous] , (23)762

where the second term—the deviation of the family-based estimate α̂sib from α—is the average family763

deviation conditional on a parent being heterozygous at the focal locus (Appendix A4). The intuition is764

that, because only heterozygous parents contribute the genetic variation among siblings on which our effect765

size estimate is based, if these heterozygous parents are non-randomly distributed across environments,766

then the family-based GWAS samples values from a distribution of family effects αf that is different to767

the overall population distribution.768

We can compare this estimate from a sibling GWAS to one from a population GWAS, again under769

the assumption of no genetic confounding or indirect effects from siblings:770

α̂pop ≈ α + (1 − 2p)(1 − 2F )E [αf | gi = 1] + 2(p + (1 − 2p)F )E [αf | gi = 2] (24)771

where p is the frequency of the focal variant and F is the inbreeding coefficient at the locus (Appendix772

A4). The approximation holds if F is small. Note that Eq. (24) conditions on the number of focal alleles773

carried by the sampled individual, whereas Eq. (23) conditions instead on the parental genotype.774

Like the family-based estimate, the population-based effect size estimate is distorted when heterozy-775

gotes are not randomly distributed over family backgrounds (E [αf | gi = 1] ̸= 0) as well as when homozy-776

gotes are not randomly distributed across family backgrounds (when E [αf | gi = 2] ̸= 0). Thus, effect777

size estimates from both family- and population-GWAS can differ from the genetic effects that would778

be estimated if genotypes were randomly distributed across interacting family backgrounds, and these779

distortions will in general not be the same aross population and family-based study designs.780

As noted above, because of current sample size constraints in family-based studies, a common strategy781

is to calculate the association of population-based PGSs and phenotypic differences among family mem-782

bers. In the absence of confounding, it is clear from Eq. (10) that the influence of G×E interactions on the783

covariance of sibling differences in PGSs and trait values would depend on the average value of α̂sibα̂pop
784

across loci. Thus the slope of the PGS in this regression could be affected if, on average, the alleles at785

casual loci tagged by genotyped variants in the PGS are more often found in environments that suppress786

(or enhance) their effects. G×E interactions across many loci have been suggested by some recent studies787

(Mostafavi et al. 2020; Zhu et al. 2022), but their quantitative impact on differences between population788

and family-based GWASs remains unknown.789

An allele’s effect could also systematically differ across families (αf ) if it is involved in epistatic790

interactions with alleles at other loci in the genome (G×G). By analogy to our G×E model above,791

epistatic interactions would lead to biases in family-based GWASs if parents who are heterozygous at the792

focal study locus tend to have systematically different genotypes at loci that interact epistatically with793

the focal locus, relative to the population distribution of such genetic backgrounds.794

Up to this point, we have also ignored parent-offspring interactions as a possible source of bias in795

family-based studies. Following the the same logic above, interactions between parents’ and offsprings’796

24

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 27, 2023. ; https://doi.org/10.1101/2023.02.26.530052doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.26.530052
http://creativecommons.org/licenses/by/4.0/


alleles will result in family GWAS estimates that are the average effect of the focal allele in an offspring797

conditional on the genetic background of a heterozygous parent. Thus, again, a non-random distribution798

of genetic backgrounds in heterozygous parents is a potential source of bias.799

One way that heterozygous parents might exhibit a non-random distribution of genetic backgrounds800

is via trait-based assortative mating, which could therefore modify the way that epistasis and parent-801

offspring interactions influence effect size estimation in a family-based GWAS relative to a population802

GWAS and relative to the true average population effect.803

A final, overarching complication is that the individuals participating in a population GWAS are not a804

random subset of the population(s) from which they are drawn (Fry et al. 2017; Pirastu et al. 2021; Tyrrell805

et al. 2021), and families enrolled in GWASs can be even less representative of the population as a whole806

(Mostafavi et al. 2020; Benonisdottir and Kong 2022). These participation biases can potentially lead to807

systematic differences between the distributions of genotypes and interacting environments experienced808

by the population, the GWAS sample, and participants in a family-based study.809

4 Discussion810

It has long been recognized that population GWASs in humans can be biased by environmental and811

genetic confounding (Lander and Schork 1994; Vilhjálmsson and Nordborg 2013). Currently, population812

GWASs attempt to control for these confounds by focusing on sets of individuals that are genetically more813

similar and by controlling for population stratification. However, these controls are imperfect and are not814

always well defined. For example, controlling for genome-wide patterns of population stratification based815

on common alleles does not control for the genetic and environmental confounding of rare variants (Zaidi816

and Mathieson 2020). Work on genetic confounding has uncovered increasing evidence that assortative817

mating may be leading to large biases in estimates of direct genetic effects and to large genetic correlations818

for a number of traits (Yengo et al. 2018; Border et al. 2022b,a); moreover, it can often be unclear whether819

genetic signals of assortative mating are due to trait-based mate choice or some other more general form820

of genetic confounding (e.g., Haworth et al. 2019). Additionally, while we have focused primarily on821

genetic confounding, for a number of traits there are also signals of residual environmental confounding822

in GWAS signals (Selzam et al. 2019; Mostafavi et al. 2020; Okbay et al. 2022; Abdellaoui et al. 2022).823

Thus, subtle and often interwoven forms of genetic and environmental confounding remain a major issue824

in many GWASs (Young et al. 2022), compromising the interpretation of GWAS effect size estimates and825

downstream quantities such as SNP heritabilities and genetic correlations.826

Effect size estimates from within-family GWASs are less affected by these various confounds. In827

the absence of G×E interactions, they are not subject to environmental confounding across families,828

because the environments of family members are effectively randomized with respect to within-family829

genetic transmission. As we have shown, family-based estimates should also suffer substantially less from830

genetic confounding, because genetic transmission at unlinked loci (but not linked loci) is randomized by831

independent assortment of chromosomes in meiosis. Nonetheless, family-based GWASs can suffer from832

residual genetic confounding as well as sibling indirect effects and G×E/G×G interactions; they also raise833

a number of conceptual problems that we discuss below.834

Sources of genetic confounding. Genetic confounding is caused by long-range LD between loci that835

affect the trait or traits under study. To illustrate the potential for genetic confounds to bias GWAS836

effect size estimates, we have considered several sources of long-range LD. Some of these—assortative837

mating, selection on GWAS traits, and phenotype-biased migration—can cause systematic directional838
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biases in GWAS effect size estimates. Others, such as neutral population structure, cause random biases839

that influence the variance of effect size estimates and related quantities. Assortative mating and neu-840

tral population structure have received considerable theoretical attention in the GWAS literature (e.g.,841

Rosenberg and Nordborg 2006; Yengo et al. 2018; Border et al. 2022a,b). Here, we have further outlined842

how both selection and phenotyped-biased migration can drive systematic genetic confounding that may843

not be well accounted for by current methods of controlling for stratification.844

We wish to emphasize stabilizing selection in particular as a potential source of systematic confounding845

in GWASs. Stabilizing selection has been well studied in the quantitative genetics literature but less so846

in the context of GWASs, despite its expected ubiquity. By selecting for compensating combinations of847

trait-increasing and trait-decreasing alleles, stabilizing selection generates negative LD between alleles848

with the same directional effect on the trait (Bulmer 1971, 1974), and can therefore bias GWAS effect849

size estimates downwards. While the potential for stabilizing selection to confound effect size estimation850

has been noted (e.g., Brown et al. 2016; Yair and Coop 2022; Li et al. 2023), the resulting biases have851

not, to our knowledge, been quantified. Our calculations suggest that these downward biases could,852

for some human traits, be as large as 5% systematically across all causal loci in population GWASs.853

While biases of this magnitude are unlikely to compromise some goals of GWASs, such as gene discovery,854

they could be quantitatively problematic for other GWAS aims, such as estimation of SNP heritabilities855

and the strength of assortative mating. Moreover, while our results pertain to (a particular model of)856

stabilizing selection, many kinds of selection generate LD between genetically distant loci—in fact, only857

multiplicative selection among loci does not (Bürger 2000, pgs. 50 and 177). Therefore, the general result858

that selection can generate genetic confounding will hold more broadly.859

For a given genotyped locus in a GWAS, there is no bright line between local ‘tagged’ LD and long-860

range confounding LD, and one reasonable objection to the approach taken here is that that we have used861

an arbitrary definition of the causal loci that are locally tagged by a genotyped locus (Llocal in Eq. 2).862

All of the sources of genetic confounding that we have considered generate LD among causal loci both863

within and across chromosomes. Under these models, the within-chromosome LD that is generated is, in864

a sense, a continuation of the LD generated across chromsomes (moving from a recombination rate = 0.5865

to ≤ 0.5). Thus, while investigators may prefer some looser definition of ‘local’ when thinking about866

genotyped GWAS loci as tag SNPs, to extend that definition to include all loci on the same chromosome867

as the SNP would, by reasonable interpretation, be to include confounding into the desired estimator.868

The extent to which the absorption of genetic confounding in estimated effect sizes is a problem de-869

pends on the application. In the case of polygenic prediction, absorbing environmental effects, indirect870

effects, the effects of untyped loci throughout the genome can help to improve prediction accuracy, al-871

though this does come at a cost to interpretability. For GWAS applications focused on understanding872

genetic causes and mechanisms, the biases in effect size estimates and spurious signals of pleiotropy among873

traits generated by genetic confounding will be more problematic.874

Indirect genetic effects. Family GWASs are often interpreted as providing the opportunity to ask to875

what extent parental genotypes (or other family genotypes) causally affect a child’s phenotype (‘genetic876

nurture’; Kong et al. 2018). Viewed in this way, the association between untransmitted parental alleles877

and the child’s phenotype would seem, at first, a natural estimate of indirect genetic effects.878

In practice, however, if the population GWAS suffers from genetic and environmental confounds, then879

the estimated effects of untransmitted alleles will absorb that confounding in much the same way that880

estimates of direct genetic effects from a population GWAS do (Eq. 8; Shen and Feldman 2020). For881

example, in the case of assortative mating, a given untransmitted allele is correlated with alleles that882

were transmitted both by this parent and by their mate, and these transmitted alleles can directly affect883
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the offspring’s phenotype. Thus, while family-based estimates of direct genetic effects benefit from the884

randomization of meiosis and from controlling for the environment, family-based estimates of indirect885

genetic effects lack both of these features and should be interpreted with caution. Indeed, recent work886

using parental siblings to control for grandparental genotypes has shown that little of the estimated887

‘indirect genetic effect’ may be causally situated in parents (Nivard et al. 2022). With empirical estimates888

of indirect genetic effects potentially absorbing a broad set of confounds (Demange et al. 2022; Young889

et al. 2022), and few current studies of indirect effects having designs that allow such confounding to be890

disentangled, it is premature—and potentially invalid—to interpret associations of untransmitted alleles891

causally in terms of indirect genetic effects (Wolf et al. 1998). Rather, they should be treated agnostically892

in terms of ‘non-direct’ effects.893

Direct genetic effects. Mendelian segregation provides a natural randomization experiment within894

families (Fisher 1952), and so crosses in experimental organisms and family designs have long been an895

indispensable tool to geneticists in exploring genetic effects and causation. Growing concerns about896

GWAS confounding and the increasing availability of genotyped family members have led to a return of897

family-based studies to the association study toolkit (Young et al. 2019). Family-based estimates of direct898

genetic effects are often interpreted as being unbiased and discussed in terms of the counterfactual effect899

of experimentally substituting one allele for another (Morris et al. 2020; Brumpton et al. 2020; Young900

et al. 2022).901

As we have shown, family-based GWASs are indeed less subject to confounding than population-902

based GWASs: in the presence of genetic and environmental confounding, the family-based estimate903

of the effect size at a given locus provides a much closer approximation to the true effects of tightly904

linked causal loci than a population-based estimate does. The family-based estimate is not biased by905

environmental variation across families and avoids the correlated effects of the many causal loci that lie906

on other chromosomes. Still, the family-based estimate does absorb the effects of non-local causal loci907

on the same chromosome, and so cannot truly be said to be free of genetic confounding. Rather than908

considering a single allele being substituted between individuals, a better experimental analogy for the909

effect size estimate would be to say that we are measuring the mean effect of transmission of a large chunk910

of chromosome surrounding the focal locus, potentially carrying many causal loci.911

In addition, while within-family GWASs offer these advantages, in other ways, they move us further912

away from the questions about the sources and causes of variation among unrelated individuals that913

motivate population GWASs in the first place. Indeed, the presence of confounding introduces a number914

of conceptual issues in moving from within-family GWAS to the interpretation of differences among915

individuals from different families (Coop and Przeworski 2022a,b). For example, in the presence of genetic916

confounding, the effect of a causal allele of interest will depend on a set of weights: its LD to many other917

causal alleles. In estimating the direct effect of the allele, family-based approaches weight these LD terms918

differently to population-based approaches, which, we argue, can complicate the interpretation of these919

estimates. For example, when previously isolated populations admix, same-ancestry alleles will be held920

together in long genomic blocks until these are broken up by recombination, which will happen very921

quickly for alleles on different chromosomes but more slowly for alleles on the same chromosome. A922

few generations after admixture, therefore, cross-chromosome ancestry LD will largely have dissipated,923

but contiguous ancestry tracts will still span substantial portions of chromosome lengths. Since both924

population and within-family GWASs are similarly confounded by the same-chromosome LD, their mean925

squared effect sizes will be similar in this case (Fig. 5). Bearing in mind that the LD resulting from926

admixture is not present in the source populations, it becomes unclear which weighting of ancestry LD927

is appropriate if we want to interpret the resulting effect size estimates as direct effects. As this example928
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illustrates, while family-based GWASs are a useful device for dealing with confounding, it is not always929

obvious how to interpret the quantities that they measure.930

A number of additional complications arise when, to compensate for the small effect sizes of individual931

loci, researchers combine many SNPs into a polygenic score (PGS) and study the effects of PGSs within932

families (or use them as instruments in Mendelian randomization analyses). For one, SNPs are usually933

chosen for inclusion in the PGS on the basis of their statistical significance in a population GWAS.934

This approach prioritizes SNPs whose effect size estimates are amplified (or even wholly generated) by935

confounding (for an example of how this leads to residual environmental confounding in applications of936

sibling-based effect size estimates, see Zaidi and Mathieson 2020). Second, the weights given to SNPs that937

are included in the PGS absorb the effects of confounding, and this confounding is heterogeneous across938

SNPs. Thus, when we study the correlates of trait-A PGS differences between siblings in the presence939

of GWAS confounding, we are not observing the average phenotypic outcomes of varying the genetic940

component of trait A between siblings. Rather, we are varying a potentially strangely-weighted set of941

genetic correlates of trait A.942

An observation that a population GWAS PGS is predictive of phenotypic differences among siblings943

demonstrates that the PGS SNPs tag nearby causal loci, but beyond that, interpretation is difficult.944

Notably, if there is cross-trait assortative mating for traits A and B, but no pleiotropic link between the945

traits, then some of the SNPs identified as significant in a GWAS on trait A may be tightly linked to946

loci that causally affect trait B but not trait A. If these loci are included in the trait-A PGS, then when947

we study the effect of variation in the trait-A PGS on sibling differences, we are accidentally absorbing948

some components of the variation in trait B across siblings. Thus, we might observe a correlation between949

the trait-A PGS and differences in trait B between siblings, and this correlation may be lower than is950

observed at the population level, without there existing any pleiotropic (or causal) link between A and B.951

These effects can be exacerbated if the two traits have different genetic architectures (Figure 4). Instead952

of using a set of SNPs and weights from a population GWAS, genetic correlations between traits due to953

pleiotropy could be estimated from the correlation of effect sizes estimated within families (Howe et al.954

2022). Given current sample size constraints in family-based studies, the confidence intervals on these955

estimates are large. Moreover, significant family-based correlations need not reflect pure pleiotropy, since,956

as we have shown, they are not completely free of genetic confounding due to intra-chromosomal LD.957

Also complicating the interpretation of family-based effect size estimates are various types of interac-958

tions. Indirect effects between siblings can bias family estimates of direct genetic effects (Eq. 19; Young959

et al. 2019; Fletcher et al. 2021; Young et al. 2022) in ways that are conceptually different from the biases960

they introduce to population-based estimates (Eq. 21). These sibling effects can potentially be addressed961

with fuller family information (e.g., parental genotypes in addition to sibling genotypes; Kong et al. 2018;962

Young et al. 2022).963

As we have further shown here, G×E (and G×G) interactions can also complicate the interpretation964

of family-based effect size estimates. The reason is that, even if we were to know the causal alleles965

for a trait of interest, what we estimate by measuring their associations with phenotypic differences966

within families is not analogous to the counterfactual effects of experimentally substituting alleles in967

random individuals. Instead, we are necessarily restricting our focus to the effect of their transmission968

from heterozygous parents. If heterozygous parents tend to experience different environments or carry969

different genetic backgrounds than homozygotes do, within-family designs will tell us about direct effects970

in these particular environments or genetic backgrounds, rather than in the population as a whole. Thus,971

although the ongoing shift towards family-based studies is motivated by concerns about confounding, with972

different alleles experiencing different environmental and genetic backgrounds, family-based studies can973

be influenced by conceptually similar issues of confounding in the presence of G×E and G×G interactions.974
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Such interactions are difficult to reliably identify and measure, but there are a growing number of potential975

examples from GWASs (Tropf et al. 2017; Barcellos et al. 2018; Young et al. 2018b; Mostafavi et al. 2020;976

Patel et al. 2022). The interaction issues raised here echo a set of conceptually distinct concerns about977

the interpretation of average treatment effects in other contexts (S loczyński 2022), reinforcing the need978

for care in interpreting such estimates as informative about causes across heterogeneous groups.979

In summary, family-based studies are a clear step forward towards quantifying genetic effects, with980

large-scale family studies carrying the potential to resolve long-standing issues in human genetics. How-981

ever, these designs come with their own sets of caveats, which will be important to understand and982

acknowledge as family-based genetic studies become a key tool in the exploration of causal effects across983

disparate fields of study.984
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Methods989

All simulations were carried out in SLiM 4.0 (Haller and Messer 2019). Code is available at990

github.com/cveller/confoundedGWAS.991

For the purpose of carrying out sibling association studies in our simulations, we assumed a simple,992

monogamous mating structure: each generation, each female and each male is involved in a single mating993

pair, and each mating pair produces exactly two offspring (who are therefore full siblings). To maintain994

the precisely even sex ratio required by this scheme, we assumed that a quarter of mating pairs produce995

two daughters, a quarter produce two sons, and half produce a son and a daughter. Population sizes996

were chosen to ensure that these numbers of mating pairs were whole numbers, and mating pairs were997

permuted randomly each generation before assigning brood sex ratios (to ensure that no artifact was998

introduced by SLiM’s indexing of individuals).999

Each generation, per-locus effect size estimates were calculated for both population-wide and sibling1000

GWASs. The former were calculated as the regression of trait values on per-locus genotypes, while1001

the latter were calculated as the regression of sibling differences in trait values on sibling differences in1002

per-locus genotypes.1003

In all simulations, the total population size was N = 40,000.1004

Assortative mating. For our general cross-trait assortative mating setup, traits 1 and 2 are influenced1005

by variation at sets of bi-allelic loci L1 and L2 respectively. The effect sizes of the reference allele at locus l1006

on traits 1 and 2 are αl and βl respectively. An individual’s polygenic score (PGS) is then P1 =
∑

l∈L1
glαl1007

for trait 1 and P2 =
∑

l∈L2
glβl for trait 2. In all the scenarios we simulated, traits had heritability 1, so1008

that individuals’ trait values are the same as their PGSs.1009

Our aim is to simulate a scenario where assortative mating is based on females’ values for trait 1 and1010

males’ values for trait 2, such that, across mating pairs, the correlation of the mother’s PGS for trait 1,1011

Pm
1 , and the father’s PGS for trait 2, P f

2 , is a constant value ρ (in all of our simulations, ρ = 0.2). To1012

achieve this, we use an algorithm suggested by Zaitlen et al. (2017): At the outset, we choose an accuracy1013

tolerance ε such that, if by some assignment of mates the correlation of their PGSs falls within ε of the1014

target value ρ, we accept that assigment. Each generation in which assortative mating occurs, we rank1015

females in order of their PGSs for trait 1, and males in order of their PGSs for trait 2. We then calculate1016

the PGS correlation across mating pairs, ρ0, if females and males were matched according to this ranking.1017

If this (maximal) correlation is smaller than the upper bound of our target window (ρ0 < ρ + ε, which1018

very seldom occurred in our simulations), then females and males mate precisely according to their PGS1019

rankings and we move on to the next generation. If, instead, ρ0 exceeds ρ+ε, then we follow the following1020

iterative procedure until we have found a mating structure under which the correlation of PGSs falls1021

within ε of the target value ρ.1022

First, we choose initial ‘perturbation sizes’ ξ0 and ξ1 = 2ξ0. Suppose that, in iteration k of the1023

procedure, the perturbation size is ξk and the chosen mating structure leads to a correlation among mates1024

of ρk. If |ρk − ρ| < ε, we accept the mating structure and move on to the next generation. Otherwise,1025

we choose a new perturbation size ξk+1: (i) if ρk−1, ρk > ρ, then ξk+1 = 2ξk; (ii) if ρk−1 > ρ > ρk or1026

ρk−1 < ρ < ρk, then ξk+1 = (ξk−1 + ξk)/2; (iii) if ρk−1, ρk < ρ, then ξk+1 = ξk/2. Once we have chosen1027

ξk+1, for each individual we perturb their PGS (trait 1 for females; trait 2 for males) by a value chosen1028

from a normal distribution with mean 0 and standard deviation ξk+1, independently across individuals.1029

We then rank females and males according to their perturbed PGSs, and calculate the correlation ρk+1 of1030

their true PGSs if they mate according to this ranking. (Since, in our experience, there can be substantial1031

variance in the ρk+1 values that result from this procedure, we repeat it 5 times and choose the mating1032
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structure that produces the value of ρk+1 closest to the target value ρ.) We then decide if another1033

iteration—i.e., another perturbation size ξk+2—is required.1034

Fig. 2. Cross-trait assortative mating for traits with the same genetic architecture. In the1035

simulations displayed in Fig. 2, ρ = 0.2, and traits 1 and 2 have identical but non-overlapping genetic1036

architectures: L1 and L2 are distinct sets of 500 loci each, with αl = 1 and βl = 0 for l ∈ L1, and1037

αl = 0 and βl = 1 for l ∈ L2. Loci in L1 and L2 alternate in an even spacing along the physical (bp)1038

genome. Fig. 2A shows results for the ‘single chromosome’ case where the recombination fraction between1039

adjacent loci is c = 1/999 in both sexes (such that the single-chromosome genome receives, on average,1040

one crossover per transmission). Fig. 2B shows results for the case where recombination fractions between1041

loci are calculated from the human female and male linkage maps generated by Kong et al. (2010). In1042

both cases, we assumed no crossover interference.1043

At each locus, the initial frequency of the reference allele was 1/2, with reference alleles assigned1044

randomly across diploid individuals and independently across loci such that, in expectation, Hardy-1045

Weinberg and linkage equilibrium initially prevail. The assortative mating algorithm above was run1046

for 19 generations, with a target correlation ρ = 0.2, a tolerance parameter ε = ρ/100, and an initial1047

perturbation size ξ0 = 4
[
max

({
{Pm

1 }, {P f
2 }
})

− min
({

{Pm
1 }, {P f

2 }
})]

. Thereafter, assortative mating1048

was switched off, with mating pairs (still monogamous) being chosen randomly.1049

Fig. 3. Same-trait assortative mating. The algorithm we followed to ensure assortative mating1050

of a given strength was the same as that for Fig. 2 above, but here traits 1 and 2 are identical. 1,0001051

loci underlie variation in the trait, and are evenly spread along the physical genome. The effect size1052

of the reference allele at each locus was drawn from a normal distribution with mean 0 and standard1053

deviation 1, independently across loci. The initial frequency of the reference allele at each locus was1054

drawn, independently across loci, from a uniform distribution on [MAF , 1 − MAF ]; in our simulations,1055

we chose a minimum minor allele frequency of MAF = 0.1. Since here we are interested in quantifying1056

the mean squared effect size estimate, which is directionally affected by drift-based local LD that may not1057

be present in our initial configuration, we allowed 150 generations of random mating before switching on1058

assortative mating (only the final 20 generations of this random mating burn-in are displayed in Fig. 3).1059

Assortative mating occurred for 19 generations, after which random mating occurred for a further 201060

generations.1061

Fig. 4. Cross-trait assortative mating for traits with different architectures. We again followed1062

a similar procedure to that for Fig. 2 above, but now, while traits 1 and 2 have distinct genetic bases, the1063

numbers of loci contributing variation to traits 1 and 2 are |L1| = 100 and |L2| = 1,000. Trait-1 loci are1064

placed evenly along the physical genome, with trait-2 loci then evenly spaced among the trait-1 loci; we1065

used the human linkage map for these simulations. At both trait-1 and trait-2 loci, the initial frequency1066

of the focal allele was drawn from a uniform distribution on [MAF , 1−MAF ], with MAF = 0.1. At trait-1067

2 loci, true effect size were randomly drawn from a normal distribution with mean zero and standard1068

deviation 1; at trait-1 loci, true effect sizes were randomly drawn from a normal distribution with mean1069

zero and standard deviation
√

10, so that traits 1 and 2 have equal genic variances. After a burn-in of 1501070

generation of random mating, assortative mating was switched on. We performed a population GWAS at1071

the end of the period of random mating and after 20 generations of assortative mating. These GWASs1072

were performed across 1,000 replicate trials, with the effect size estimates then pooled across trials. From1073
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these, we estimated the densities of the absolute values of effect size estimates using Matlab’s kernel1074

density estimator ksdensity, specifying that the support of the distributions be positive.1075

Fig. 5. Population structure and admixture. We wished first to simulate a situation where two1076

populations of size N/2 have been separated for a length of time such that the value of FST between them1077

is some predefined level (in our case, a mean FST per locus of 0.1). To do so without having to run the1078

full population dynamics of two allopatric populations for a prohibitively large number of generations, we1079

simply assigned allele frequencies to achieve the desired level of FST . We assumed 1,000 loci spread evenly1080

over the physical genome. At each locus l, we chose an ‘ancestral’ frequency pal for the reference allele1081

independently from a uniform distribution on [MAF , 1 − MAF ], with MAF = 0.2. We then perturbed1082

this allele frequency in populations 1 and 2 by independent draws from a normal distribution with mean1083

0 and variance 2pal (1 − pal )FST ; if a perturbed allele frequency fell below 0 or above 1, we set it to 0 or 11084

respectively. The population dynamics described above, with monogamous mating pairs chosen randomly,1085

were then run for 50 generations.1086

In generation 50, the two populations merge, forming an admixed population of size N . The same1087

population dynamics, with monogamous mating pairs chosen randomly, were then run for a further 501088

generations.1089

Fig. 6. Stabilizing selection To calculate the bias in GWAS effect size estimation caused by stabilizing1090

selection, we must first calculate the harmonic mean recombination rate. We focus on humans, and1091

consider only the autosomal genome. The set of loci underlying variation in the trait is L, which we1092

apportion among the 22 autosomes according to their physical (bp) lengths (as reported in GRCh38.p11 of1093

the human reference genome; https://www.ncbi.nlm.nih.gov/grc/human/data?asm=GRCh38.p11). For1094

each chromosome, we spread its allotment of loci evenly over its sex-averaged genetic (cM) length, using1095

the male and female linkage maps produced by Kong et al. (2010). (We use genetic lengths instead of1096

physical lengths because, were we to spread loci evenly over the physical lengths of the chromosomes,1097

some pairs of adjacent loci on some chromosomes might have a sex-averaged recombination fraction of 0,1098

in which case the harmonic mean recombination rate would be undefined.) For each pair of linked loci,1099

the recombination rate between them was estimated separately from the male and female genetic distance1100

between them using Kosambi’s map function (Crow 1990). Pairs of loci on separate chromosomes have a1101

recombination fraction of 1/2. With the sex-averaged recombination fraction cll′ thus calculated for every1102

pair of loci (l, l′), the harmonic mean recombination fraction was calculated as c̄h =
(|L|

2

)
/
(∑

l,l′
1
cll′

)
,1103

where
(|L|

2

)
= |L|(|L| − 1)/2 is the number of pairs of distinct loci in L.1104

Performing this calculation with |L| = 1,000 loci, we obtain an estimate of c̄h ≈ 0.464 for human1105

autosomes. Substituting this estimate into Appendix Eqs. (A.87) and (A.88) then defines the curves1106

plotted in Figs. 6A and 6B respectively.1107
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Figure S1: Cross-trait assortative mating influences effect size estimates at loci that affect the study trait, although
this influence is second-order relative to that on effect size estimates at loci that do not affect the study trait but
do affect the other trait involved in assortative mating (note the scale of the y-axis). Simulations are the same as
in Fig. 2.
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A1 Genetic confounding in population and family-based GWAS de-1350

signs1351

A1.1 The model1352

Under the general additive model we have studied, an individual’s value for trait Y is1353

Y = Y ∗ +
∑
l∈L

αd
l gl +

∑
l∈L

αi,m
l gml +

∑
l∈L

αi,f
l gfl + ϵ, (A.1)1354

1355

where gl is the number of focal alleles at locus l carried by the individual, αd
l is the direct genetic effect1356

on the trait value of the focal allele at l (which we assume to be positive, without loss of generality),1357

gml and gfl are the numbers of copies of the focal allele at locus l carried by the individual’s mother and1358

father respectively, and αi,m
l and αi,f

l are the indirect genetic effects of the focal allele at l via the mother’s1359

and father’s genotype respectively. ϵ is the environmental disturbance, with mean zero, and Y ∗ is the1360

expected trait value of the offspring of parents who carry only trait-decreasing alleles.1361

It will be useful to expand Eq. (A.1) in terms of the individual’s and the individual’s parents’ mater-1362

nally and paternally inherited genotypes:1363

Y = Y ∗ +
∑
l∈L

αd
l

(
gmat
l + gpatl

)
+
∑
l∈L

αi,m
l

(
gm,mat
l + gm,pat

l

)
+
∑
l∈L

αi,f
l

(
gf,mat
l + gf,patl

)
+ ϵ, (A.2)1364

where gmat
l is the number of focal alleles at locus l that the individual inherited maternally, gm,mat

l is the1365

number of focal alleles at l that the individual’s mother inherited maternally, etc.1366

A1.2 Population GWAS1367

If we perform a standard population GWAS at a genotyped locus λ, the estimated effect of the focal allele1368

at λ on the trait Y is1369

α̂pop
λ =

Cov(gλ, Y )

Var(gλ)
. (A.3)1370

Here, Var(gλ) is the genotypic variance at λ among sampled individuals, equal to 2pλ(1 − pλ)(1 + Fλ),1371

where pλ is the frequency of the focal allele at λ and Fλ is the coefficient of inbreeding at λ. For example,1372

if λ is at Hardy-Weinberg equilibrium, then Var(gλ) = 2pλ(1 − pλ); if, instead, the population is divided1373

into several populations, in each of which Hardy-Weinberg equilibrium obtains at λ but between which1374

the frequency of the focal variant differs, then Var(gλ) = 2pλ(1− pλ)(1 +FST,λ), where FST,λ is the value1375

of FST at locus λ.1376
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The covariance term in Eq. (A.3) expands out to1377

Cov(gλ, Y ) = Cov

(
gmat
λ + gpatλ , Y ∗ +

∑
l∈L

αd
l

(
gmat
l + gpatl

)
1378

+
∑
l∈L

αi,m
l

(
gm,mat
l + gm,pat

l

)
+
∑
l∈L

αi,f
l

(
gf,mat
l + gf,patl

)
+ ϵ

)
1379

= Cov

(
gmat
λ + gpatλ ,

∑
l∈L

αd
l

(
gmat
l + gpatl

))
1380

+ Cov

(
gmat
λ ,

∑
l∈L

αi,m
l

(
gm,mat
l + gm,pat

l

)
+
∑
l∈L

αi,f
l

(
gf,mat
l + gf,patl

))
1381

+ Cov

(
gpatλ ,

∑
l∈L

αi,m
l

(
gm,mat
l + gm,pat

l

)
+
∑
l∈L

αi,f
l

(
gf,mat
l + gf,patl

))
+ Cov(gλ, ϵ)1382

=
∑
l∈L

([
Cov

(
gmat
λ , gmat

l

)
+ Cov

(
gmat
λ , gpatl

)
+ Cov

(
gpatλ , gmat

l

)
+ Cov

(
gpatλ , gpatl

)]
αd
l1383

+
[
Cov

(
gmat
λ , gm,mat

l + gm,pat
l

)]
αi,m
l +

[
Cov

(
gpatλ , gf,mat

l + gf,patl

)]
αi,f
l1384

+
[
Cov

(
gmat
λ , gfl

)]
αi,f
l +

[
Cov

(
gpatλ , gml

)]
αi,m
l

)
+ Cov(gλ, ϵ)1385

=
∑
l∈L

(
2
(
Dλl + D̃λl

)
αd
l1386

+
[
Cov

(
gmat
λ , gm,mat

l + gm,pat
l

)]
αi,m
l +

[
Cov

(
gpatλ , gf,mat

l + gf,patl

)]
αi,f
l1387

+
[
Cov

(
gmat
λ , gfl

)]
αi,f
l +

[
Cov

(
gpatλ , gml

)]
αi,m
l

)
+ Cov(gλ, ϵ), (A.4)1388

1389

where Dλl and D̃λl are the degrees of cis- and trans-linkage disequilibrium between the focal alle-1390

les at loci λ and l in the GWAS sample. Since gmat
λ equals gm,mat

λ or gm,pat
λ with equal probability,1391

Cov
(
gmat
λ , gm,mat

l + gm,pat
l

)
= D′

λl + D̃′
λl, and similarly, Cov

(
gpatλ , gf,mat

l + gf,patl

)
= D′

λl + D̃′
λl (here,1392

D′
λl and D̃′

λl are the LDs in the parents of the sample, assumed to be equal across mothers and fa-1393

thers). Since maternal transmission is independent of paternal genotype, and vice versa, Cov
(
gmat
λ , gfl

)
=1394

Cov
(
gmλ , gfl

)
/2 and Cov

(
gpatλ , gml

)
= Cov

(
gfλ, g

m
l

)
/2. So1395

Cov(gλ, Y ) =
∑
l∈L

(
2
(
Dλl + D̃λl

)
αd
l +

(
D′

λl + D̃′
λl

)(
αi,m
l + αi,f

l

)
1396

+
1

2

[
Cov

(
gmλ , gfl

)]
αi,f
l +

1

2

[
Cov

(
gfλ, g

m
l

)]
αi,m
l

)
+ Cov(gλ, ϵ). (A.5)1397

1398
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If αi,m
l = αi,f

l = αi
l, then1399

Cov(gλ, Y ) =
∑
l∈L

(
2
(
Dλl + D̃λl

)
αd
l +

(
2
(
D′

λl + D̃′
λl

)
+

1

2

[
Cov

(
gmλ , gfl

)
+ Cov

(
gfλ, g

m
l

)])
αi
l

)
+ Cov(gλ, ϵ)1400

=
∑
l∈L

(
2
(
Dλl + D̃λl

)
αd
l +

(
2
(
D′

λl + D̃′
λl

)
+

1

2

[
8D̃λl

])
αi
l

)
+ Cov(gλ, ϵ)1401

= 2
∑
l∈L

((
Dλl + D̃λl

)
αd
l +

(
D′

λl + D̃′
λl + 2D̃λl

)
αi
l

)
+ Cov(gλ, ϵ). (A.6)1402

1403

In the second line of Eq. (A.6), we have used the fact that covariances across parents translate to co-1404

variances across maternal and paternal genomes in the offspring. Note, however, that Cov
(
gmλ , gfl

)
and1405

Cov
(
gfλ, g

m
l

)
need not, in general be equal—e.g., they will not be so under sex-based cross-trait assortative1406

mating—which is why we could not apply a similar simplification to Eq. (A.5).1407

Dividing Eq. (A.6) by Var(gλ), and recognizing that, for l ∈ Llocal, cλl ≈ 0, we recover Eq. (3) in the1408

Main Text.1409

A1.3 Sibling GWAS1410

Consider two full siblings. Let gmat,1
l and gmat,2

l indicate whether sib 1 and sib 2 respectively inherited the1411

focal (trait-increasing) allele from their mother at locus l. Let gpat,1l and gpat,2l be analogous indicators1412

for paternal transmission. Write ∆gmat
l = gmat,1

l − gmat,2
l and ∆gpatl = gpat,1l − gpat,2l . Since maternal1413

and paternal transmission are independent, ∆gmat
l and ∆gpatl′ are independent for all pairs of loci l and l′1414

(including l = l′). The difference in the two siblings’ genotypic values at locus l is ∆gl = ∆gmat
l + ∆gpatl .1415

From Eq. (A.1), the difference in their trait values is1416

∆Y =
∑
l∈L

∆glα
d
l + ∆ϵ, (A.7)1417

where ∆ϵ is the difference in the environmental disturbances experienced by the two siblings. Notice that1418

the indirect effects cancel out of Eq. (A.7), since the parental genotypes are the same for the two siblings.1419

So, in a sib-GWAS for trait Y, the estimated effect size at λ is1420

α̂sib
λ =

Cov (∆gλ,∆Y )

Var (∆gλ)
=

Cov
(
∆gλ,

∑
l∈L ∆glα

d
l + ∆ϵ

)
Var (∆gλ)

1421

=
Cov

(
∆gmat

λ + ∆gpatλ ,
∑

l∈L

(
∆gmat

l + ∆gpatl

)
αd
l

)
+ Cov(∆gλ,∆ϵ)

Var
(

∆gmat
λ + ∆gpatλ

)1422

=

∑
l∈L

[
Cov

(
∆gmat

λ ,∆gmat
l

)
+ Cov

(
∆gpatλ ,∆gpatl

)]
αd
l + Cov(∆gλ,∆ϵ)

Var
(
∆gmat

λ

)
+ Var

(
∆gpatλ

)1423

=

∑
l∈L

(
E
[
∆gmat

λ ∆gmat
l

]
+ E

[
∆gpatλ ∆gpatl

])
αd
l + Cov(∆gλ,∆ϵ)

E
[(

∆gmat
λ

)2]
+ E

[(
∆gpatλ

)2] ,1424

1425
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since Cov
(

∆gmat
λ ,∆gpatl

)
= Cov

(
∆gmat

l ,∆gpatλ

)
= 0 (line 3) and E

[
∆gmat

k

]
= E

[
∆gpatk

]
= 0 for all loci1426

k (line 4). The denominator E
[(

∆gmat
λ

)2]
+ E

[(
∆gpatλ

)2]
= Hλ, the fraction of parents in the family1427

GWAS sample who are heterozygous at locus λ. The only non-zero contributions to E
[
∆gmat

λ ∆gmat
l

]
1428

and E
[
∆gpatλ ∆gpatl

]
come from parents who are heterozygous at both λ and l. Such parents are either1429

‘coupling’ double-heterozygotes carrying the focal alleles at λ and l in coupling phase (i.e., inherited from1430

the same parent), or ‘repulsion’ double-heterozygotes carrying the focal alleles at λ and l in repulsion1431

phase (inherited from different parents). Among parents, let the fractions of coupling and repulsion1432

double-hets for loci λ and l be Hcoup
λl and Hr

λl respectively. If the recombination rate between the loci is1433

c
♀
λl in females and c♂λl in males, then1434

E
[
∆gmat

λ ∆gmat
l

]
= E

[
∆gmat

λ ∆gmat
l |mother is coupling double-het

]
Hcoup

λl1435

+ E
[
∆gmat

λ ∆gmat
l |mother is repulsion double-het

]
Hrep

λl1436

=

(
1

2
− c

♀
λl

)
(Hcoup

λl −Hr
λl)1437

=
(

1 − 2c
♀
λl

)
(D′

λl − D̃′
λl),1438

1439

since Hcoup
λl −Hr

λl = 2(D′
λl − D̃′

λl), where D′
λl and D̃′

λl are the cis- and trans-LD between the focal/trait-1440

increasing alleles at λ and l among parents.. Similarly,1441

E
[
∆gpatλ ∆gpatl

]
=
(

1 − 2c♂λl

)
(D′

λl − D̃′
λl),1442

So1443

α̂d,sib
λ =

2
∑

l∈L (1 − 2cλl) (D′
λl − D̃′

λl)α
d
l + Cov(∆gl,∆ϵ)

Hλ
, (A.8)1444

where cλl is the sex-averaged recombination fraction between λ and l. Since Cov(∆gl,∆ϵ) = 0, and1445

recognizing that, for l ∈ Llocal, cλl ≈ 0 and |D̃λl| ≪ |Dλl| in expectation, we recover Eq. (7) in the Main1446

Text.1447

A1.4 Indirect effects: transmitted vs. untransmitted alleles1448

In Eq. (A.2), gmat
l represents the allele that was transmitted maternally from among the set of maternal1449

alleles
{
gm,mat
l , gm,pat

l

}
. Thus, if the maternally transmitted allele was the grandmaternal allele (with1450

probability 1/2, and in which case gmat
l = gm,mat

l ), then the untransmitted allele at locus l is the grandpa-1451

ternal allele, with genotypic value gm,pat
l . To make this distinction clear, we write gmatT

l for the genotypic1452

value of the maternally transmitted allele at locus l, and gmatU
l for the maternally untransmitted allele1453

at locus l. Similarly, gpatTl and gpatUl represent the paternally transmitted and untransmitted alleles at l.1454

The transmitted and untransmitted genotypes are gTl = gmatT
l +gpatTl and gUl = gmatU

l +gpatUl respectively.1455

Estimating direct effects1456

The regressions of the trait value on the transmitted and untransmitted genotypes are1457

α̂T
λ =

Cov
(
gTλ , Y

)
Var

(
gTλ
) =

Cov
(
gTλ , Y

)
Var (gλ)

and α̂U
λ =

Cov
(
gUλ , Y

)
Var

(
gUλ
) =

Cov
(
gUλ , Y

)
Var (gλ)

,1458
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where we have used the fact that, since transmission at λ is random, Var
(
gTλ
)

= Var
(
gUλ
)

= Var (gλ).1459

The estimate of the direct effect of the focal variant at λ is then1460

α̂d
λ = α̂T

λ − α̂U
λ =

Cov
(
gTλ , Y

)
− Cov

(
gUλ , Y

)
Var (gλ)

.1461

We have1462

Cov
(
gmatT
λ , Y

)
= Cov

(
gmatT
λ , Y ∗ +

∑
l∈L

(
gmatT
l + gpatTl

)
αd
l1463

+
∑
l∈L

(
gm,mat
l + gm,pat

l

)
αi,m
l +

∑
l∈L

(
gf,mat
l + gf,patl

)
αi,f
l + ϵ

)
1464

=
∑
l∈L

[
Cov

(
gmatT
λ , gmatT

l

)
+ Cov

(
gmatT
λ , gpatTl

)]
αd
l1465

+
∑
l∈L

[
Cov

(
gmatT
λ , gm,mat

l

)
+ Cov

(
gmatT
λ , gm,pat

l

)]
αi,m
l1466

+
∑
l∈L

[
Cov

(
gmatT
λ , gf,mat

l + gf,patl

)]
αi,f
l + Cov

(
gmatT
λ , ϵ

)
1467

=
∑
l∈L

[
D′

λl

(
1 − c

♀
λl

)
+ D̃′

λlc
♀
λl + Cov

(
gmatT
λ , gpatTl

)]
αd
l1468

+
∑
l∈L

(
D′

λl + D̃′
λl

)
αi,m
l +

∑
l∈L

[
Cov

(
gmatT
λ , gf,mat

l + gf,patl

)]
αi,f
l + Cov

(
gmatT
λ , ϵ

)
,1469

1470

and1471

Cov
(
gmatU
λ , Y

)
= Cov

(
gmatU
λ , Y ∗ +

∑
l∈L

(
gmatT
l + gpatTl

)
αd
l (A.9)1472

+
∑
l∈L

(
gm,mat
l + gm,pat

l

)
αi,m
l +

∑
l∈L

(
gf,mat
l + gf,patl

)
αi,f
l + ϵ

)
1473

=
∑
l∈L

[
Cov

(
gmatU
λ , gmatT

l

)
+ Cov

(
gmatU
λ , gpatTl

)]
αd
l1474

+
∑
l∈L

[
Cov

(
gmatU
λ , gm,mat

l

)
+ Cov

(
gmatU
λ , gm,pat

l

)]
αi,m
l1475

+
∑
l∈L

[
Cov

(
gmatU
λ , gf,mat

l + gf,patl

)]
αi,f
l + Cov

(
gmatU
λ , ϵ

)
1476

=
∑
l∈L

[
D′

λlc
♀
λl + D̃′

λl

(
1 − c

♀
λl

)
+ Cov

(
gmatU
λ , gpatTl

)]
αd
l1477

+
∑
l∈L

(
D′

λl + D̃′
λl

)
αi,m
l +

∑
l∈L

[
Cov

(
gmatU
λ , gf,mat

l + gf,patl

)]
αi,f
l + Cov

(
gmatU
λ , ϵ

)
.

(A.10)

1478
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Since Cov
(
gmatT
λ , gpatTl

)
= Cov

(
gmatU
λ , gpatTl

)
and Cov

(
gmatT
λ , gf,mat

l + gf,patl

)
= Cov

(
gmatU
λ , gf,mat

l + gf,patl

)
,1480

Cov
(
gmatT
λ , Y

)
− Cov

(
gmatU
λ , Y

)
=
∑
l∈L

[
D′

λl(1 − c
♀
λl) + D̃′

λlc
♀
λl

]
αd
l −

∑
l∈L

[
D′

λlc
♀
λl + D̃′

λl(1 − c
♀
λl)
]
αd
l1481

+ Cov
(
gmatT
λ − gmatU

λ , ϵ
)

1482

=
∑
l∈L

(1 − 2c
♀
λl)
(
D′

λl − D̃′
λl

)
αd
l + Cov

(
gmatT
λ − gmatU

λ , ϵ
)
.1483

1484

Similarly,1485

Cov
(
gpatTλ , Y

)
− Cov

(
gpatUλ , Y

)
=
∑
l∈L

(1 − 2c♂λl)
(
D′

λl − D̃′
λl

)
αd
l + Cov

(
gpatTλ − gpatUλ , ϵ

)
.1486

Since gTλ = gmatT
λ + gpatTλ and gUλ = gmatU

λ + gpatUλ ,1487

Cov
(
gTλ , Y

)
− Cov

(
gUλ , Y

)
= 2

∑
l∈L

(1 − 2cλl)
(
D′

λl − D̃′
λl

)
αd
l + Cov

(
gTλ − gUλ , ϵ

)
,1488

where cλl is the sex-averaged recombination fraction between λ and l. Therefore, the transmitted-1489

untransmitted regression coefficient at locus λ is1490

α̂d,T-U
λ =

Cov
(
gTλ , Y

)
− Cov

(
gUλ , Y

)
Var (gλ)

=
2
∑

l∈L(1 − 2cλl)
(
D′

λl − D̃′
λl

)
αd
l + Cov

(
gTλ − gUλ , ϵ

)
Vλ

. (A.11)1491

Estimating indirect effects1492

The coefficient in the regression of the trait value Y on the untransmitted genotype gUλ at locus λ, α̂U
λ ,1493

has sometimes been considered to provide an estimate of the indirect ‘family’ effect of the focal variant1494

at λ: α̂i
λ = α̂U

λ . From Eq. (A.10) and its analog for the paternally untransmitted allele,1495

Cov
(
gmatU
λ + gpatUλ , Y

)
=
∑
l∈L

([
2D′

λlcλl + 2D̃′
λl(1 − cλl) + Cov

(
gmatU
λ , gpatTl

)
+ Cov

(
gpatUλ , gmatT

l

)]
αd
l1496

+
(
D′

λl + D̃′
λl

)
αi,m
l +

∑
l∈L

[
Cov

(
gmatU
λ , gf,mat

l + gf,patl

)]
αi,f
l1497

+
(
D′

λl + D̃′
λl

)
αi,f
l +

∑
l∈L

[
Cov

(
gpatUλ , gm,mat

l + gm,pat
l

)]
αi,m
l

)
1498

+ Cov
(
gmatU
λ , ϵ

)
+ Cov

(
gpatUλ , ϵ

)
,1499

1500

where cλl is the sex-averaged recombination fraction. In this expression,1501

Cov
(
gmatU
λ , gpatTl

)
+ Cov

(
gpatUλ , gmatT

l

)
= Cov

(
gmatT
λ , gpatTl

)
+ Cov

(
gpatTλ , gmatT

l

)
= 2D̃λl,1502

while1503

Cov
(
gmatU
λ , gf,mat

l + gf,patl

)
= Cov

(
gmatU
λ , gpatUl + gpatTl

)
= Cov

(
gmatU
λ , gpatUl

)
+Cov

(
gmatU
λ , gpatTl

)
= 2D̃λl,1504
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and, similarly, Cov
(
gpatUλ , gm,mat

l + gm,pat
l

)
= 2D̃λl. So1505

Cov
(
gUλ , Y

)
= Cov

(
gmatU
λ + gpatUλ , Y

)
=
∑
l∈L

[
2
(
D′

λlcλl + D̃′
λl(1 − cλl) + D̃λl

)
αd
l1506

+
(
D′

λl + D̃′
λl + 2D̃λl

)(
αi,m
l + αi,f

l

)]
+ Cov

(
gUλ , ϵ

)
. (A.12)1507

1508

If we assume that indirect effects via the maternal and paternal families are equal (αi,m
l = αi,f

l = αi
l),1509

then Eq. (A.12) simplifies further to1510

Cov
(
gUλ , Y

)
= 2

∑
l∈L

[(
D′

λlcλl + D̃′
λl(1 − cλl) + D̃λl

)
αd
l +

(
D′

λl + D̃′
λl + 2D̃λl

)
αi
l

]
+ Cov

(
gUλ , ϵ

)
. (A.13)1511

In this case, the estimate of the indirect effect of the focal allele at λ is1512

α̂i
λ =

Cov
(
gUλ , Y

)
Var (gλ)

=
2
∑

l∈L

[(
D′

λlcλl + D̃′
λl(1 − cλl) + D̃λl

)
αd
l +

(
D′

λl + D̃′
λl + 2D̃λl

)
αi
l

]
+ Cov

(
gUλ , ϵ

)
Var(gλ)

.

(A.14)1513

A2 Polygenic scores and their phenotypic correlations1514

Suppose that we have estimated effect sizes α̂λ at a set of genotyped loci λ ∈ Λ using a population GWAS1515

for trait 1. For each individual, we can then compute a polygenic score:1516

PGS 1 =
∑
λ∈Λ

gλα̂
pop
λ . (A.15)1517

PGSs are often treated as predictions of individuals’ genetic values for traits. In this regard, we might1518

therefore be interested in the covariance across the population between the PGS for a trait and individuals’1519

values for that trait: Cov(PGS 1, Y1). Additionally, if PGSs are treated as predictions of genetic values1520

of traits, then we might be interested in how the PGS calculated for one trait covaries with the value1521

of another trait: Cov(PGS 1, Y2). Such covariances might be informative of genetic correlations between1522

traits, or pleiotropy of the alleles underlying genetic variation in the traits. We focus on the two-trait1523

covariance, since it nests the single-trait covariance as a special case. If the total set of loci causally1524

underlying variation in traits 1 and 2 is L, then the population covariance between the PGS for trait 11525

and the value of trait 2 is1526

Cov (PGS 1, Y2) = Cov

(∑
λ∈Λ

gλα̂
pop
λ ,

∑
l∈L

glβl

)
1527

= Cov

(∑
λ∈Λ

(
gmλ + gpλ

)
α̂pop
λ ,

∑
l∈L

(
gml + gpl

)
βl

)
1528

= 2
∑
λ∈Λ

∑
l∈L

(
Dλl + D̃λl

)
α̂pop
λ βl. (A.16)1529

1530

The effect size estimates from the population GWAS for trait 1 are1531

α̂pop
λ =

2

Vλ

∑
l′∈L

(Dλl′ + D̃λl′)αl′ ≈ αλ +
2

Vλ

∑
l′∈L
l′ ̸=λ

(Dλl′ + D̃λl′)αl′ ,1532
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and so Eq. (A.16) is, in general,1533

Cov (PGS 1, Y2) =
∑
λ∈Λ

2pλ(1 − pλ)αλβλ + 2
∑
λ∈Λ

∑
l∈L
l ̸=λ

(
Dλl + D̃λl

)
αλβl (A.17)1534

+ 4
∑
λ∈Λ

∑
l′∈L
l′ ̸=λ

∑
l∈L
l ̸=λ

1

Vλ

(
Dλl′ + D̃λl′

)(
Dλl + D̃λl

)
αl′βl. (A.18)1535

1536

In a family-based study, we might instead be interested in the covariance between siblings’ differences1537

in the trait-1 population PGS and their differences in trait 2. We can write this covariance in our model1538

as1539

Cov (∆PGS 1,∆Y2) = Cov

(∑
λ∈Λ

(
∆gmλ + ∆gpλ

)
α̂pop
λ ,

∑
l∈L

(
∆gml + ∆gpl

)
βl

)
1540

= E

[(∑
λ∈Λ

(
∆gmλ + ∆gpλ

)
α̂pop
λ

)(∑
l∈L

(
∆gml + ∆gpl

)
βl

)]
1541

=
∑
λ∈Λ

∑
l∈L

E
[(

∆gmλ + ∆gpλ
) (

∆gml + ∆gpl
)
α̂pop
λ βl

]
1542

=
∑
λ∈Λ

∑
l∈L

(
E
[
∆gmλ ∆gml α̂pop

λ βl
]

+ E
[
∆gpλ∆gpl α̂

pop
λ βl

])
, (A.19)1543

1544

since maternal and paternal transmission are conditionally independent. Focusing on maternal transmis-1545

sion, and writing hc,mλl and hr,mλl for the events that the mother is respectively a coupling and a repulsion1546

heterozygote at loci λ and l, with Hcoup
λl and Hrep

λl their associated probabilities (which are assumed to1547

be the same for mothers and fathers),1548

E
[
∆gmλ ∆gml α̂pop

λ βl
]

= E
[
∆gmλ ∆gml α̂pop

λ βl | hc,mλl

]
Hcoup

λl + E
[
∆gmλ ∆gml α̂pop

λ βl | hr,mλl
]
Hrep

λl1549

=
(
E
[
∆gmλ ∆gml | hc,mλl

]
Hcoup

λl + E
[
∆gmλ ∆gml | hr,mλl

]
Hrep

λl

)
α̂pop
λ βl1550

=

(
1

2
− c

♀
λl

)(
Hcoup

λl −Hrep
λl

)
α̂pop
λ βl1551

=
(

1 − 2c
♀
λl

)(
D′

λl − D̃′
λl

)
α̂pop
λ βl,1552

1553

with D′
λl and D̃′

λl measured in the parents. Similarly,1554

E
[
∆gpλ∆gpl α̂

pop
λ βl

]
=
(

1 − 2c♂λl

)(
D′

λl − D̃′
λl

)
α̂pop
λ βl,1555

and so Eq. (A.19) becomes1556

Cov (∆PGS 1,∆Y2) = 2
∑
λ∈Λ

∑
l∈L

(1 − 2cλl)
(
D′

λl − D̃′
λl

)
α̂pop
λ βl, (A.20)1557

where cλl is the sex-averaged recombination fraction between λ and l.1558

Before we substitute the population GWAS estimates α̂pop
λ into Eq. (A.20), it is worth considering what1559

value this expression would take if effect sizes were correctly estimated at every study locus, α̂pop
λ = αλ.1560
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In this case, Eq. (A.20) becomes1561

Cov (∆PGS 1,∆Y2) = 2
∑
λ∈Λ

∑
l∈L

(1 − 2cλl)
(
Dλl − D̃λl

)
αλβl1562

=
∑
λ∈Λ

2pλ(1 − pλ)αλβλ + 2
∑
λ∈Λ

∑
l∈L
l ̸=λ

(1 − 2cλl)
(
D′

λl − D̃′
λl

)
αλβl. (A.21)1563

1564

If the two traits are distinct, then the first term in Eq. (A.21) is the genic covariance of traits 1 and1565

2 across the set of study loci (more precisely, tagged locally by the study loci), and reflects systematic1566

pleiotropy at these loci; this term would, for example, be positive if alleles tend to have same-direction1567

effects on traits 1 and 2. If we were studying only one trait, then αλ = βλ, and the first term would be1568

the genic variance of the trait across study loci,
∑

λ∈Λ 2pλ(1 − pλ)α2
λ. The second term in Eq. (A.21) is1569

an effect of linkage disequilibria between study loci and the loci that are causal for trait 2; these LDs are1570

absorbed by the PGS because the PGS is a sum across loci. In the absence of such LDs, or in cases where1571

the cis- and trans-LDs are equal so that D′
λl − D̃′

λl = 0, Eq. (A.21) would equal the genic variance in the1572

single-trait case and the genic covariance in the two-trait case.1573

The effect size estimates from a population GWAS are in fact1574

α̂pop
λ =

2

Vλ

∑
l′∈L

(Dλl′ + D̃λl′)αl′ ≈ αλ +
2

Vλ

∑
l′∈L
l′ ̸=λ

(Dλl′ + D̃λl′)αl′ ,1575

Dλl′ and D̃λl′ are measured in the sample. We assume these to be equal to the values in parents in the1576

family-based GWAS, D′
λl and D̃′

λl, and so the value taken by Eq. (A.20) is1577

Cov (∆PGS 1,∆Y2) = 2
∑
λ∈Λ

∑
l∈L

(1 − 2cλl)
(
Dλl − D̃λl

)
α̂pop
λ βl1578

= 2
∑
λ∈Λ

∑
l∈L

(1 − 2cλl)
(
Dλl − D̃λl

)(
αλ +

2

Vλ

∑
l′∈L
l′ ̸=λ

(
Dλl′ + D̃λl′

)
αl′

)
βl1579

=
∑
λ∈Λ

2pλ(1 − pλ)αλβλ︸ ︷︷ ︸
pleiotropy

+ 2
∑
λ∈Λ

∑
l∈L
l ̸=λ

(1 − 2cλl)
(
Dλl − D̃λl

)
αλβl

︸ ︷︷ ︸
covariance from LD absorbed by PGS

because it is a sum across loci

1580

+ 4
∑
λ∈Λ

∑
l∈L
l ̸=λ

(1 − 2cλl)
(
D2

λl − D̃2
λl

)
αlβl/Vλ

︸ ︷︷ ︸
covariance from LD absorbed by PGS
because effect size estimates absorb LD

1581

+ 4
∑
λ∈Λ

∑
l∈L
l ̸=λ

∑
l′∈L
l′ ̸=λ,l

(1 − 2cλl)
(
Dλl′ + D̃λl′

)
αl′

(
Dλl − D̃λl

)
βl/Vλ

︸ ︷︷ ︸
covariance from systematic LD between variants

with same directional effect on trait

. (A.22)1582

1583

In the absence of genetic confounding (Dλl = D̃λl = 0) or, more generally, if genetic stratification is such1584

that the cis- and trans-LDs are equal (Dλl− D̃λl = 0), then Eq. (A.22) simplifies to the SNP-tagged genic1585
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covariance between traits 1 and 2:1586

Cov (∆PGS 1,∆Y2) =
∑
λ∈Λ

2pλ(1 − pλ)αλβλ. (A.23)1587

If traits 1 and 2 are the same, then this is simply the SNP-tagged genic variance of the trait: Cov (∆PGS ,∆Y ) =1588 ∑
λ∈Λ 2pλ(1 − pλ)α2

λ.1589

Eq. (A.22) simplifies somewhat if we focus on a single trait (αl = βl) and assume that there is no1590

trans-LD (D̃λl = 0); in this case,1591

Cov (∆PGS ,∆Y ) =
∑
λ∈Λ

2pλ(1 − pλ)α2
λ︸ ︷︷ ︸

SNP-tagged genic variance

+ 2
∑
λ∈Λ

∑
l∈L
l ̸=λ

(1 − 2cλl)Dλlαλαl

︸ ︷︷ ︸
variance from LD absorbed by PGS

because it is a sum across loci

1592

+ 4
∑
λ∈Λ

∑
l∈L
l ̸=λ

(1 − 2cλl)D
2
λlα

2
l /Vλ

︸ ︷︷ ︸
variance from LD absorbed by PGS

because effect size estimates absorb LD

+ 4
∑
λ∈Λ

∑
l∈L
l ̸=λ

∑
l′∈L
l′ ̸=λ,l

(1 − 2cλl)DλlαlDλl′αl′/Vλ

︸ ︷︷ ︸
variance from systematic LD between variants

with same directional effect on trait

.

(A.24)

1593

1594

A3 Sources of genetic confounding1595

The calculations above reveal that genetic confounds in GWAS designs can depend on long-range LD in1596

the sample and among parents of the sample. Here, we consider several possible sources of long-range1597

LD.1598

A3.1 Assortative mating1599

If there is a constant correlation among mates for their values of two traits, then a genetic equilibrium1600

will eventually be achieved. In this equilibrium, for any pair of loci l and l′, the trans-LD D̃ll′ will be1601

constant. Call this constant value D∗
ll′ , and suppose that the recombination fraction between the loci1602

is cll′ . With D̃ll′ constant across generations, the balance of its conversion into cis-LD (at rate cll′ per1603

generation) and the destruction of cis-LD by recombination (at rate cll′ per generation) will result in an1604

equilibrium level of cis-LD equal to the degree of trans-LD: Dll′ = D̃ll′ = D∗
ll′ (e.g., Crow and Felsenstein1605

1968).1606

The value of D∗
ll′ will, in general, depend in a complicated way on the strength of effects of l and l′ on1607

the traits upon which assortative mating is based and on the linkage relations of these loci to one another1608

and to other causal loci. However, while it is therefore difficult to calculate the individual equilibrium LD1609

terms D∗
ll′ , we can in some cases calculate weighted sums of these terms across locus pairs.1610

Let the set of loci that influence one or both traits be L, and let αl be the effect size of the focal variant1611

at locus l on trait 1 and βl its effect on trait 2 (the analyses below also apply to same-trait assortative1612

mating, setting αl = βl). Recall the notation gm,mat
l and gm,pat

l for a mother’s maternally and paternally1613

inherited genotype at locus l, with gf,mat
l and gf,patl a father’s analogs. The mother’s breeding value for1614

trait 1 is1615

Gm
1 =

∑
l∈L

gml αl =
∑
l∈L

(
gm,mat
l + gm,pat

l

)
αl =

∑
l∈L

gm,mat
l αl +

∑
l∈L

gm,pat
l αl = Gm,mat

1 + Gm,pat
1 ,1616
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and, similarly, her breeding value for trait 2 is1617

Gm
2 =

∑
l∈L

gm,mat
l βl +

∑
l∈L

gm,pat
l βl = Gm,mat

2 + Gm,pat
2 .1618

The father’s breeding values for the two traits are1619

Gf
1 =

∑
l∈L

gf,mat
l αl +

∑
l∈L

gf,patl αl = Gf,mat
1 + Gf,pat

11620

and1621

Gf
2 =

∑
l∈L

gf,mat
l βl +

∑
l∈L

gf,patl βl = Gf,mat
2 + Gf,pat

2 .1622

We assume that individual trait values equal the breeding values plus environmental disturbances that1623

are uncorrelated with the breeding values:1624

Y m
1 = Gm

1 + ϵm1 ; Y m
2 = Gm

2 + ϵm2 ; Y f
1 = Gf

1 + ϵf1; Y f
2 = Gf

2 + ϵf2;1625

where1626

Var(ϵm1 ) = Var(ϵf1) = V 1
E , Var(ϵm2 ) = Var(ϵf2) = V 2

E ,1627

and1628

Cov(ϵmi , G
m
i ) = Cov(ϵfi, G

f
i) = 0 for i ∈ {1, 2}.1629

A3.1.1 Same-trait assortative mating, or cross-trait assortative mating that is symmetric1630

with respect to sex1631

We first consider the case where the strength of assortative mating between two traits, as measured by1632

their correlation coefficient across mating pairs, is equal in the female-male and male-female directions.1633

Notice that this scenario covers same-trait assortative mating. In the case of cross-trait assortative1634

mating, it could occur if assortative mating arises by mechanisms other than direct female (or male)1635

mating preferences.1636

We assume that there is a constant correlation ρ among mating pairs for their phenotypic values of1637

traits 1 and 2. In equilibrium, this will translate to a constant correlation ρG between their breeding1638

values as well (e.g., Felsenstein 1981). To calculate ρG, we first note that, because assortative mating is1639

based on phenotypic values and not breeding values per se, if we know the phenotypes of a pair of mates,1640

we obtain no further information about the similarity of their breeding values; that is,1641

Cov
(
Gm

1 , G
f
2 |
{
Y m
1 , Y f

2

})
= Cov

(
Gm

2 , G
f
1 |
{
Y m
2 , Y f

1

})
= 0. (A.25)1642

For the same reason, if we know the phenotypic values of two mates, then the trait-2 value of the male1643

does not offer any information on the female’s trait-1 breeding value beyond that already offered by the1644

female’s trait-1 phenotype, and vice versa; that is,1645

E
[
Gm

1 |
{
Y m
1 , Y f

2

}]
= E [Gm

1 | Y m
1 ] ; E

[
Gf

2 |
{
Y m
1 , Y f

2

}]
= E

[
Gf

2 | Y f
2

]
;1646

E
[
Gm

2 |
{
Y m
2 , Y f

1

}]
= E [Gm

2 | Y m
2 ] ; E

[
Gf

1 |
{
Y m
2 , Y f

1

}]
= E

[
Gf

1 | Y f
1

]
. (A.26)1647

1648
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If Y1 and G1, and similarly Y2 and G2, are bivariate normal, then1649

E [G1 | Y1] = E [G1] + h21 (Y1 − E [Y1]) and E [G2 | Y2] = E [G2] + h22 (Y2 − E [Y2]) (A.27)1650

where h21 and h22 are the heritabilities of traits 1 and 2, respectively.1651

From the law of total covariance,1652

Cov
(
Gm

1 , G
f
2

)
= Cov{Y m

1 ,Y f
2}
(
E
[
Gm

1 |
{
Y m
1 , Y f

2

}]
, E

[
Gf

2 |
{
Y m
1 , Y f

2

}])
1653

+ E{Y m
1 ,Y f

2}
[
Cov

(
Gm

1 , G
f
2 |
{
Y m
1 , Y f

2

})]
1654

= Cov{Y m
1 ,Y f

2}
(
E [Gm

1 | Y m
1 ] , E

[
Gf

2 | Y f
2

])
[from Eqs. A.25 and A.26]1655

= Cov
(
h21Y

m
1 , h22Y

f
2

)
[from Eq. (A.27)]1656

= h21h
2
2Cov

(
Y m
1 , Y f

2

)
. (A.28)1657

1658

Similarly, Cov
(
Gm

2 , G
f
1

)
= h21h

2
2Cov

(
Y m
2 , Y f

1

)
.1659

Let V 1 and V 2 be the phenotypic variances of traits 1 and 2, and V 1
G and V 2

G their additive genetic1660

variances, assumed to be the same across the sexes. Given the calculations above, the correlation among1661

mates for their breeding values of traits 1 and 2, ρG, can be written1662

ρG =
1
2

[
Cov

(
Gm

1 , G
f
2

)
+ Cov

(
Gm

2 , G
f
1

)]√
V 1
GV

2
G

(A.29)1663

=

h2
1h

2
2

2

[
Cov

(
Y m
1 , Y f

2

)
+ Cov

(
Y m
2 , Y f

1

)]√
h21V

1h22V
2

1664

= h1h2

1
2

[
Cov

(
Y m
1 , Y f

2

)
+ Cov

(
Y m
2 , Y f

1

)]
√
V 1V 2

= h1h2ρ. (A.30)1665

1666

When traits 1 and 2 are the same, we have ρG = h2ρ, a standard result (e.g., Wright 1921; Felsenstein1667

1981).1668

Expanding the numerator of Eq. (A.29),1669

1

2

[
Cov

(
Gm

1 , G
f
2

)
+ Cov

(
Gm

2 , G
f
1

)]
=

1

2

[
Cov

(
Gm,mat

1 + Gm,pat
1 , Gf,mat

2 + Gf,pat
2

)
1670

+Cov
(
Gm,mat

2 + Gm,pat
2 , Gf,mat

1 + Gf,pat
1

)]
1671

=
1

2

[
Cov

(
Gm,mat

1 , Gf,mat
2

)
+ Cov

(
Gm,mat

1 , Gf,pat
2

)]
+

1

2

[
Cov

(
Gm,pat

1 , Gf,mat
2

)
+ Cov

(
Gm,pat

1 , Gf,pat
2

)]
1672

+
1

2

[
Cov

(
Gm,mat

2 , Gf,mat
1

)
+ Cov

(
Gm,mat

2 , Gf,pat
1

)]
+

1

2

[
Cov

(
Gm,pat

2 , Gf,mat
1

)
+ Cov

(
Gm,pat

2 , Gf,pat
1

)]
1673

=
1

2

[
Cov

(
Gm,mat

1 , Gf,mat
2

)
+ Cov

(
Gm,mat

2 , Gf,mat
1

)]
+

1

2

[
Cov

(
Gm,mat

1 , Gf,pat
2

)
+ Cov

(
Gm,mat

2 , Gf,pat
1

)]
1674

+
1

2

[
Cov

(
Gm,pat

1 , Gf,mat
2

)
+ Cov

(
Gm,pat

2 , Gf,mat
1

)]
+

1

2

[
Cov

(
Gm,pat

1 , Gf,pat
2

)
+ Cov

(
Gm,pat

2 , Gf,pat
1

)]
.

(A.31)

1675

1676
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But1677

1

2

[
Cov

(
Gm,mat

1 , Gf,mat
2

)
+ Cov

(
Gm,mat

2 , Gf,mat
1

)]
=

1

2

[
Cov

(∑
l∈L

gm,mat
l αl,

∑
l′∈L

gf,mat
l′ βl′

)
1678

+Cov

(∑
l∈L

gm,mat
l βl,

∑
l′∈L

gf,mat
l′ αl′

)]
1679

=
1

2

[∑
l∈L

∑
l′∈L

Cov
(
gm,mat
l , gf,mat

l′

)
αlβl′ +

∑
l∈L

∑
l′∈L

Cov
(
gm,mat
l , gf,mat

l′

)
αl′βl

]
1680

=
1

2

[∑
l∈L

∑
l′∈L

Cov
(
gm,mat
l , gf,mat

l′

)
αlβl′ +

∑
l∈L

∑
l′∈L

Cov
(
gm,mat
l′ , gf,mat

l

)
αlβl′

]
1681

=
∑
l∈L

∑
l′∈L

1

2

[
Cov

(
gm,mat
l , gf,mat

l′

)
+ Cov

(
gm,mat
l′ , gf,mat

l

)]
αlβl′1682

=
∑
l∈L

∑
l′∈L

D̃ll′αlβl′ ,1683

1684

since grandmaternal and grandpaternal alleles are transmitted to the offspring with equal probability,1685

independently across maternal and paternal transmission. The three additional terms in Eq. (A.31)1686

likewise each amount to
∑

l∈L
∑

l′∈L D̃ll′αlβl′ , and so1687

1

2

[
Cov

(
Gm

1 , G
f
2

)
+ Cov

(
Gm

2 , G
f
1

)]
= 4

∑
l∈L

∑
l′∈L

D̃ll′αlβl′ . (A.32)1688

Noting that the trans-covariance at a given locus D̃ll = pl(1−pl)r̃ll, where r̃ll is the within-locus correlation1689

(equal to the inbreeding coefficient at the locus), we can split Eq. (A.32) into within- and between-locus1690

terms:1691

1

2

[
Cov

(
Gm

1 , G
f
2

)
+ Cov

(
Gm

2 , G
f
1

)]
= 4

∑
l∈L

pl(1 − pl)r̃llαlβl + 4
∑
l∈L

∑
l′∈L
l′ ̸=l

D̃ll′αlβl′ . (A.33)1692

In the denominator of Eq. (A.29),1693

V 1
G = Var (Gm

1 ) = Var
(
Gm,mat

1 + Gm,pat
1

)
= Var

(
Gm,mat

1

)
+ Var

(
Gm,pat

1

)
+ 2Cov

(
Gm,mat

1 , Gm,pat
1

)
,

(A.34)1694

Expanding the first term,1695

Var
(
Gm,mat

1

)
= Var

(∑
l∈L

gm,mat
l αl

)
=
∑
l∈L

Var
(
gm,mat
l

)
α2
l +

∑
l∈L

∑
l′∈L
l′ ̸=l

Cov
(
gm,mat
l , gm,mat

l′

)
αlαl′1696

=
∑
l∈L

pl(1 − pl)α
2
l +

∑
l∈L

∑
l′∈L
l′ ̸=l

D′
ll′αlαl′ .1697

1698

Similarly, the second term is1699

Var
(
Gm,pat

1

)
=
∑
l∈L

pl(1 − pl)α
2
l +

∑
l∈L

∑
l′∈L
l′ ̸=l

D′
ll′αlαl′ .1700
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The third, covariance term in Eq. (A.34) is1701

Cov
(
Gm,mat

1 , Gm,pat
1

)
= Cov

(∑
l∈L

gm,mat
l αl,

∑
l′∈L

gm,pat
l′ αl′

)
=
∑
l∈L

∑
l′∈L

Cov
(
gm,mat
l , gm,pat

l′

)
αlαl′1702

=
∑
l∈L

∑
l′∈L

1

2

[
Cov

(
gm,mat
l , gm,pat

l′

)
+ Cov

(
gm,mat
l′ , gm,pat

l

)]
αlαl′1703

=
∑
l∈L

∑
l′∈L

D̃′
ll′αlαl′ =

∑
l∈L

pl(1 − pl)r̃
′
llα

2
l +

∑
l∈L

∑
l′∈L
l′ ̸=l

D̃′
ll′αlαl′ .1704

1705

Putting these together in Eq. (A.34),1706

V 1
G = Var (Gm

1 ) = 2
∑
l∈L

pl(1 − pl)
(
1 + r̃′ll

)
α2
l + 2

∑
l∈L

∑
l′∈L
l′ ̸=l

(
D′

ll′ + D̃′
ll′

)
αlαl′ .1707

Similarly,1708

V 2
G = Var (Gm

2 ) = 2
∑
l∈L

pl(1 − pl)
(
1 + r̃′ll

)
β2
l + 2

∑
l∈L

∑
l′∈L
l′ ̸=l

(
D′

ll′ + D̃′
ll′

)
βlβl′ .1709

In equilibrium, D′
ll′ = D̃′

ll′ = D̃ll′ = D∗
ll′ for l ̸= l′, and r̃′ll = r̃ll = r̃∗ll, so1710

1

2

[
Cov

(
Gm

1 , G
f
2

)
+ Cov

(
Gm

2 , G
f
1

)]
= 4

∑
l∈L

pl(1 − pl)r
∗
llαlβl + 4

∑
l∈L

∑
l′∈L
l′ ̸=l

D∗
ll′αlβl′ , (A.35)1711

V 1
G = 2

∑
l∈L

pl(1 − pl) (1 + r̃∗ll)α
2
l + 4

∑
l∈L

∑
l′∈L
l′ ̸=l

D∗
ll′αlαl′ + V 1

E ≈ V 1
g + 4

∑
l∈L

∑
l′∈L
l′ ̸=l

D∗
ll′αlαl′ , (A.36)1712

V 2
G = 2

∑
l∈L

pl(1 − pl) (1 + r̃∗ll)β
2
l + 4

∑
l∈L

∑
l′∈L
l′ ̸=l

D∗
ll′βlβl′ + V 2

E ≈ V 2
g + 4

∑
l∈L

∑
l′∈L
l′ ̸=l

D∗
ll′βlβl′ , (A.37)1713

1714

where V 1
g and V 2

g are the genic variances of traits 1 and 2, and the approximations come from the fact1715

that, under assortative mating for a polygenic trait, the sum of the ∼|L|2 cross-locus trans-LD terms D̃∗
ll′1716

dominates the sum of the |L| within-locus trans-LD terms D̃∗
ll = pl(1 − pl)r̃

∗
ll (Crow and Kimura 1970,1717

Ch. 4). Eq. (A.29) in equilibrium is therefore1718

ρG =

4
∑
l∈L

pl(1 − pl)r̃
∗
llαlβl + 4

∑
l∈L

∑
l′∈L
l′ ̸=l

D∗
ll′αlβl′

√
V 1
GV

2
G

1719

≈

4
∑
l∈L

∑
l′∈L
l′ ̸=l

D∗
ll′αlβl′

√√√√√
(
V 1
g + 4

∑
l∈L

∑
l′∈L
l′ ̸=l

D∗
ll′αlαl′

)(
V 2
g + 4

∑
l∈L

∑
l′∈L
l′ ̸=l

D∗
ll′βlβl′

) . (A.38)1720

1721

We now consider some special cases.1722
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Same-trait assortative mating with equal effect sizes. In the case of same-trait assortative mating,1723

αl = βl, so Eq. (A.38) simplifies to1724

ρG =

4
∑
l∈L

∑
l′∈L
l′ ̸=l

D∗
ll′αlαl′

Vg + 4
∑
l∈L

∑
l′∈L
l′ ̸=l

D∗
ll′αlαl′

, (A.39)1725

from which1726

4
∑
l∈L

∑
l′∈L
l′ ̸=l

D∗
ll′αlαl′ ≈

ρG
1 − ρG

Vg

(
=

h2ρ

1 − h2ρ
Vg

)
. (A.40)1727

Since, in equilibrium, Dll′ = D̃ll′ , this expression can also be written1728

2
∑
l∈L

∑
l′∈L
l′ ̸=l

(
D∗

ll′ + D̃∗
ll′

)
αlαl′ ≈

ρG
1 − ρG

Vg. (A.41)1729

Because the additive genetic variance VG = Vg + 2
∑

l∈L
∑

l′∈L
l′ ̸=l

(D∗
ll′ + D̃∗

ll′)αlαl′ , Eq. (A.41) can also be1730

written1731

VG = Vg/(1 − ρG), (A.42)1732

which is a classic result (e.g., Wright 1921; Crow and Kimura 1970, Ch. 4).1733

If we make the further assumption that effect sizes are the same across loci (αl = α for all l ∈ L),1734

then Eq. (A.41) becomes1735

2
∑
l∈L

∑
l′∈L
l′ ̸=l

(
D∗

ll′ + D̃∗
ll′

)
≈ 1

α2

ρG
1 − ρG

Vg. (A.43)1736

In a population association study at locus l, assuming no indirect effects and no sources of genetic1737

confounding other than assortative mating, the effect size estimate is1738

α̂l = αl +
2

Vl

∑
l′∈L
l′ ̸=l

(
D∗

ll′ + D̃∗
ll′

)
αl′ ,1739

so that the proportionate bias in the effect size estimate at l is1740

α̂l − αl

αl
=

2

Vl

∑
l′∈L
l′ ̸=l

(
D∗

ll′ + D̃∗
ll′

) αl′

αl
=

2

Hl

∑
l′∈L
l′ ̸=l

(
D∗

ll′ + D̃∗
ll′

)
, (A.44)1741

since αl′ = αl by assumption and Vl ≈ Hl = 2pl(1− pl) because assortative mating does not substantially1742

increase within-locus homozygosity (Crow and Kimura 1970, Ch. 4). The average proportionate bias1743
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across loci is then1744

1

|L|
∑
l∈L

α̂l − αl

αl
=

1

|L|
∑
l∈L

2

Hl

∑
l′∈L
l′ ̸=l

(
D∗

ll′ + D̃∗
ll′

)
1745

≈ 2

|L|H̄
∑
l∈L

∑
l′∈L
l′ ̸=l

(
D∗

ll′ + D̃∗
ll′

)
1746

≈ 1

|L|H̄α2

ρG
1 − ρG

Vg1747

=
1

Vg

ρG
1 − ρG

Vg1748

=
ρG

1 − ρG
, (A.45)1749

1750

where we have used Eq. (A.43) and have assumed that minor allele frequencies do not differ widely1751

across loci. Since ρG = h2ρ, where ρ is the phenotypic correlation among mates and h2 = VG/VP is the1752

heritability of the trait, Eq. (A.45) can also be written1753

1

|L|
∑
l∈L

α̂l − αl

αl
=

h2ρ

1 − h2ρ
. (A.46)1754

Sex-symmetric cross-trait assortative mating with distinct genetic bases and equal effect1755

sizes. In the case of cross-trait assortative mating, if the sets of loci underlying the two traits, L1 and1756

L2, are distinct, then αl ̸= 0 ⇒ βl = 0 and βl ̸= 0 ⇒ αl = 0. In this case, Eq. (A.38) becomes1757

ρG =

4
∑
l∈L1

∑
l′∈L2

D∗
ll′αlβl′√

V 1
GV

2
G

, (A.47)1758

from which1759

ρG

√
V 1
GV

2
G = 4

∑
l∈L1

∑
l′∈L2

D∗
ll′αlβl′ = 2

∑
l∈L1

∑
l′∈L2

(
D∗

ll′ + D̃∗
ll′

)
αlβl′ . (A.48)1760

Because assortative mating is cross-trait, the LDs that assortative mating induces across L1 and L21761

will dominate the second-order LDs induced within L1 and within L2. Therefore, V 1
G ≈ V 1

g and V 2
G ≈ V 2

g .1762

The effect size estimate at a locus l ∈ L1 in a population GWAS on trait 2 is1763

β̂l ≈
2

Vl

∑
l′∈L2

(
Dll′ + D̃ll′

)
βl′ ≈

2

Hl

∑
l′∈L2

(
Dll′ + D̃ll′

)
βl′ , (A.49)1764

while the true effect size βl is zero, since l /∈ L2. In equilibrium, the average effect size estimate, and thus1765

the average deviation of these estimates from the true values, is therefore1766

1

|L1|
∑
l∈L1

β̂l ≈
1

|L1|
∑
l∈L1

2

Hl

∑
l′∈L2

(
Dll′ + D̃ll′

)
βl′ ≈

2

|L1|H̄1

∑
l∈L1

∑
l′∈L2

(
Dll′ + D̃ll′

)
βl′ , (A.50)1767
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where we have assumed that minor allele frequencies are not very different across L1 (H̄1 is the average1768

heterozygosity in L1). If we further assume that effect sizes at causal loci are equal for each trait (αl = α1769

for all l ∈ L1 and βl′ = β for all l′ ∈ L2), then Eq. (A.50) can be written1770

1

|L1|
∑
l∈L1

β̂l ≈
2

|L1|H̄1

∑
l∈L1

∑
l′∈L2

(
Dll′ + D̃ll′

)
β1771

=
α

|L1|H̄1α2
× 2

∑
l∈L1

∑
l′∈L2

(
Dll′ + D̃ll′

)
αβ1772

=
α

V 1
g

× ρG

√
V 1
GV

2
G [from Eq. A.48]1773

≈ ρG

√
V 1
G

V 2
G

α =

√
V 1
G

V 1
P

·
V 2
G

V 2
P

ρ

√
V 1
G

V 2
G

α = ρ
V 1
G√

V 1
PV

2
P

α, (A.51)1774

1775

recalling from Eq. (A.30) that ρG =
√
h1h2ρ.1776

In the further special case where both the genetic and the phenotypic variances of the two traits are1777

equal, then so are the heritabilities of the two traits. In this case, Eq. (A.51) simplifies to1778

1

|L1|
∑
l∈L1

β̂l ≈
VG

VP
ρα = h2ρα, (A.52)1779

where h2 is the common heritability of the two traits.1780

Sex-symmetric cross-trait assortative mating for traits with different genetic architectures.1781

Eq. (A.52) reveals an interesting role for genetic architecture in the bias that cross-trait assortative mating1782

can generate in population association studies performed at non-causal loci. Suppose, as we did in deriving1783

Eq. (A.52), that the two traits on which assortative mating is based have the same genetic and phenotypic1784

variances, VG and V , and therefore also the same heritabilities, h2. We shall make the further assumption1785

that the traits have the same genic variance, Vg. Assume further that the sets of loci underlying traits 11786

and 2, L1 and L2, have similar mean heterozygosities ≈ H̄. Normalize the effect size sizes at loci causal1787

for trait 2 to β = 1, so that the traits’ common genic variance is Vg = |L2|H̄.1788

Suppose that we now perform a population GWAS for trait 2. At loci that are causal for trait 21789

(l ∈ L2), we will estimate effect sizes accurately: β̂l ≈ 1 (there will be a small positive second-order bias,1790

of order ρ2, since the locus l ∈ L2 comes into positive LD with loci l′ ∈ L1, which in turn have come into1791

positive LD with loci l′′ ∈ L2).1792

At loci that are causal for trait 1 (l ∈ L1), and which therefore have no effect on trait 2, we will1793

estimate effect sizes on average as given by Eq. (A.52): β̂l = h2ρα.1794

How does the number of loci underlying variation in trait 1, |L1|, affect this biased estimate of their1795

effect on trait 2? For the genic variance of trait 1 to be the same as that of trait 2, Vg = |L1|H̄α2 =1796

|L2|H̄β2 = |L2|H̄), and so we must have α2 = |L2|/|L1|. Substituting this into the average effect size1797

estimate at non-causal loci, β̂l = h2ρ
√
|L2|/|L1|.1798

So, the average effect size estimate at causal loci l ∈ L2 is β̂l ≈ 1, while the average effect size estimate1799

at non-causal loci l ∈ L1 is β̂l = h2ρ
√
|L2|/|L1|. How do these two quantities compare? If the number of1800

loci underlying the two traits is the same, L1 = L2, and effect size estimates at non-causal loci are smaller1801

than those at causal loci by a factor of about h2ρ. However, if there are more loci underlying trait 2 than1802
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underlying trait 1—i.e., if trait 1 has a more concentrated genetic architecture L1 < L2—then the effect1803

size estimates at non-causal loci will be closer to those at causal loci. Indeed, if trait 1 has a sufficiently1804

concentrated architecture relative to trait 2, specifically, if L1 < h4ρ2L2, then the effect size estimates at1805

non-causal loci will, on average, be larger in magnitude than effect size estimates at causal loci.1806

More generally, the calculations above suggest that, in a more realistic scenario where effect sizes vary1807

across loci, the trait-2 GWAS distribution of magnitudes of effect size estimates at trait-1 loci (non-causal)1808

will overlap more with the distribution of magnitudes of effect size estimates at trait-2 loci (causal) if the1809

genetic architecture of trait 1 is more concentrated (Fig. 4). This will lead to a greater number of trait 11810

loci being identified as statistically significantly associated with trait 2 in the trait-2 GWAS.1811

A3.1.2 Cross-trait assortative mating that is asymmetric with respect to sex1812

We now consider the case where the strength of assortative mating between two traits, as measured by1813

their correlation coefficient across mating pairs, is not equal in the female-male and male-female directions.1814

This is clearest in the case of an active mate preference exhibited by one sex for some phenotype exhibited1815

by the other sex.1816

To study this case, we make several simplifying assumptions. First, we assume that the genetic bases1817

of variation in the two traits are distinct: αl ̸= 0 ⇔ βl = 0. Second we assume that there is only one1818

active direction of assortative mating: female trait 1 and male trait 2. That is, conditional on the mother’s1819

breeding value for trait 1 and the father’s breeding value for trait 2, there is no correlation between the1820

mother’s breeding value for trait 2 and the father’s breeding value for trait 1:1821

Cov
(
Gm

2 , G
f
1

∣∣ {Gm
1 , G

f
2}
)

= 0.1822

Suppose that there is a constant correlation ρG between mothers’ breeding values for trait 1 and1823

fathers’ breeding values for trait 2:1824

ρG =
Cov

(
Gm

1 , G
f
2

)√
V 1
GV

2
G

. (A.53)1825

To study the genetic consequences of this assortment, we need to know the average bi-directional corre-1826

lation among mates for traits 1 and 2 (Eq. A.29). Since traits 1 and 2 will come into a positive genetic1827

correlation via assortative mating of female trait 1 and male trait 2, there will also be a positive covariance1828

between mothers’ breeding values for trait 2 and fathers’ breeding values for trait 1, which we can express1829

using the law of total covariance:1830

Cov
(
Gm

2 , G
f
1

)
= Cov{Gm

1 ,Gf
2}

(
E
[
Gm

2

∣∣ {Gm
1 , G

f
2}
]
,E
[
Gf

1

∣∣ {Gm
1 , G

f
2}
])

1831

+ E{Gm
1 ,Gf

2}

[
Cov

(
Gm

2 , G
f
1

∣∣ {Gm
1 , G

f
2}
)]

1832

= Cov{Gm
1 ,Gf

2}

(
E
[
Gm

2

∣∣Gm
1

]
,E
[
Gf

1

∣∣Gf
2

])
. (A.54)1833

1834

If Gm
1 and Gm

2 are bivariate normal (more generally, if Gm
2 = a+ bGm

1 + ε, with E [ε] = E [εGm
1 ] = 0), then1835

E
[
Gm

2

∣∣Gm
1

]
= E [Gm

2 ] + ρm1,m2

√
V 2
G/V

1
G (Gm

1 − E [Gm
1 ])1836

= E [Gm
2 ] + ρm1,m2 (Gm

1 − E [Gm
1 ]) ,1837

1838
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where ρm1,m2 = Corr (Gm
1 , G

m
2 ) is the genetic correlation between traits 1 and 2 in mothers, and where we1839

have assumed that the two traits have equal variance. Similarly, if Gf
1 and Gf

2 are bivariate normal, then1840

E
[
Gf

1

∣∣Gf
2

]
= E

[
Gf

1

]
+ ρf1,f2

(
Gf

2 − E
[
Gf

2

])
.1841

Substituting these expressions into Eq. (A.54),1842

Cov
(
Gm

2 , G
f
1

)
= ρm1,m2 ρf1,f2 Cov

(
Gm

1 , G
f
2

)
. (A.55)1843

But, in our case, ρm1,m2 = ρf1,f2, the common value of which we shall call ρ12, and so the average1844

bi-directional correlation is1845

1
2

[
Cov

(
Gm

1 , G
f
2

)
+ Cov

(
Gm

2 , G
f
1

)]√
V 1
GV

2
G

=
1
2

(
1 + ρ212

)
Cov

(
Gm

1 , G
f
2

)√
V 1
GV

2
G

=
ρG
2

(
1 + ρ212

)
. (A.56)1846

Given this value, the calculations of the effect of assortative mating on the weighted sums of cis- and trans-1847

covariances, and thus on the additive genetic variance, proceed as for the case of symmetric assortative1848

mating above.1849

Assuming the genetic bases of the two traits to be distinct, we may substitute the average bi-directional1850

correlation, ρG
(
1 + ρ212

)
/2, into Eq. (A.48) to find1851

ρG
(
1 + ρ212

)
=

4
∑

l∈L1

∑
l′∈L2

(
Dll′ + D̃ll′

)
αlβl′√

V 1
GV

2
G

. (A.57)1852

But1853

ρ12 =
2
∑

l∈L1

∑
l′∈L2

(
Dll′ + D̃ll′

)
αlβl′√

V 1
GV

2
G

,1854

and so Eq. (A.57) can be written as the quadratic equation ρG(1 + ρ212) = 2ρ12, the relevant solution1855

to which is ρ12 =
(

1 −
√

1 − ρ2G

)
/ρG. If ρG is small, we use the first-order Taylor approximation1856 √

1 − ρ2G ≈ 1 − ρ2G/2 to find1857

ρG
2

≈ ρ12 =
2
∑

l∈L1

∑
l′∈L2

(
Dll′ + D̃ll′

)
αlβl′√

V 1
GV

2
G

≈
2
∑

l∈L1

∑
l′∈L2

(
Dll′ + D̃ll′

)
αlβl′√

V 1
g V

2
g

. (A.58)1858

In the particular scenario we have simulated in Fig. 2, V 1
g = V 2

g , αl = 1 for all l ∈ L1, and βl = 1 for1859

all l ∈ L2, so Eq. (A.58) further simplifies to1860

4
∑
l∈L1

∑
l′∈L2

(
Dll′ + D̃ll′

)
= ρV 1

g (A.59)1861

In a population association study for trait 2 performed at a locus l ∈ L1 (so that βl = 0),1862

β̂l = βl +
2

Vl

∑
l′∈L2

(
Dll′ + D̃ll′

)
βl′ =

2

Vl

∑
l′∈L2

(
Dll′ + D̃ll′

)
. (A.60)1863
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Across loci in L1, the average estimate is1864

β̂l =
1

|L1|
∑
l∈L1

2

Vl

∑
l′∈L2

(
Dll′ + D̃ll′

)
. (A.61)1865

In our simulations, pl ≈ 1/2 for all l so that Vl ≈ 2pl(1 − pl) = 1/2, and |L1| = |L2| = 500, so1866

V 1
g = V 2

g = 250. Under this configuration,1867

β̂l =
1

|L1|
∑
l∈L1

2

Vl

∑
l′∈L2

(
Dll′ + D̃ll′

)
=

1

500

∑
l∈L1

2

1/2

∑
l′∈L2

(
Dll′ + D̃ll′

)
1868

=
4

500

∑
l∈L1

∑
l′∈L2

(
Dll′ + D̃ll′

)
=

ρGV
1
g

500
= ρG/2.1869

1870

The trait we simulated is genetic, with heritability 1, and so ρG = ρ, the phenotypic correlation among1871

mates. We chose a strength of assortative mating of ρ = 0.2, and so, in equilibrium, the average effect1872

size estimate at non-causal loci should be approximately 0.1, which is indeed the case in Fig. 2.1873

Sex-asymmetric cross-trait assortative mating for traits with different genetic architectures.1874

For the case where the numbers of loci underlying traits 1 and 2 differ, and noting that the ‘effective’1875

correlation among mates in the sex-asymmetric case is approximately half that in the sex-symmetric case1876

(Eq. A.58), we can perform a similar back-of-the-envelope calculation as in the sex-symmetric cross-trait1877

assortative mating case above to find that, when effect sizes are constant across trait-1 loci and constant1878

across trait-2 loci (though differing across traits 1 and 2), the effect size estimates at trait-1 (non-causal)1879

loci in a trait-2 population GWAS is, on average, a fraction h2ρ
2

√
|L2|/|L1| of the estimates at trait-21880

(causal) loci.1881

Thus, more generally, when the number of loci underlying trait 1 is small relative to the number of1882

loci underlying trait 2, the distribution of magnitudes of effect size estimates at trait-1 loci in a trait-21883

GWAS can overlap substantially with the distribution of magnitudes of effect size estimates at trait-2 loci1884

(Fig. 4), causing variants at these non-causal trait-1 loci to show up as significant in the trait-2 GWAS.1885

A3.2 Population structure1886

In the model we have considered, with results displayed in Fig. 5, there are initially two isolated pop-1887

ulations of equal size. The frequency of the focal variant at locus l is p
(1)
l in population 1 and p

(2)
l in1888

population 2, so that its overall frequency is pl =
(
p
(1)
l + p

(2)
l

)
/2. A population GWAS at locus λ returns1889

an effect size estimate1890

α̂pop
λ =

2

Vλ

∑
l∈L

(Dλl + D̃λl)αl,1891

where Dλl and D̃λl are calculated across both populations and are generally nonzero because of allele1892

frequency differences between the two populations at loci λ and l (Nei and Li 1973). In our case,1893

Vλ = 2pλ(1 − pλ)(1 + Fλ),1894

and1895

Dλl = D̃λl =
1

4

(
p
(1)
λ − p

(2)
λ

)(
p
(1)
l − p

(2)
l

)
,1896
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so1897

α̂pop
λ =

p
(1)
λ − p

(2)
λ

2pλ(1 − pλ)(1 + Fλ)

∑
l∈L

(
p
(1)
l − p

(2)
l

)
αl.1898

Squaring this and multiplying by 2pλ(1 − pλ),1899

2pλ(1− pλ)(α̂pop
λ )2 =

(
p
(1)
λ − p

(2)
λ

)2
2pλ(1 − pλ)(1 + Fλ)2

∑
l∈L

(
p
(1)
l − p

(2)
l

)2
α2
l +

∑
l ̸=l′

(
p
(1)
l − p

(2)
l

)(
p
(1)
l′ − p

(2)
l′

)
αlαl′

 .

(A.62)1900

Neutral allele frequency divergence. If allele frequency divergence between the two populations is1901

neutral, frequency changes at different loci are independent of one another and of effect sizes, so the second1902

term in square brackets above is zero in expectation. In addition, because Hardy-Weinberg equilibrium1903

obtains within each population, non-zero expected values of Fλ derive only from allele frequency differences1904

between the populations, so that Fλ = FST,λ in expectation. Therefore,1905

E
[
2pλ(1 − pλ)(α̂pop

λ )2
]

=
1

(1 + FST )2
E


(
p
(1)
λ − p

(2)
λ

)2
2pλ(1 − pλ)

 |L|E
[(

p
(1)
l − p

(2)
l

)2]
E
[
α2
l

]
1906

=
1

(1 + FST )2
E [2FST,λ] |L|E [2FST,lHl]E

[
α2
l

]
1907

≈ 4|L|
(1 + FST )2

(E [FST,l])
2 E [Hl]E

[
α2
l

]
1908

= 4|L|
(

FST

1 + FST

)2

E [Hl]E
[
α2
l

]
,1909

1910

where Hl = 2pl(1−pl). If the ancestral allele frequency at l was pal , then E[Hl|pal ] = 2pal (1−pal )(1−FST,l),1911

and so E[Hl] is calculated using the law of iterated expectations by averaging this quantity over the1912

ancestral distribution of allele frequencies: E[Hl] ≈ E[Ha
l ](1 − FST ), where Ha

l = 2pal (1 − pal ). So1913

E
[
2pλ(1 − pλ)(α̂pop

λ )2
]
≈ 4|L|

(
FST

1 + FST

)2

(1 − FST )E [Ha
l ]E

[
α2
l

]
. (A.63)1914

Selection and phenotype-biased migration. Above, in calculating the mean heterozygosity-weighted1915

value of (α̂λ)2 under neutral frequency divergence between populations, we assumed that in Eq. (A.62)1916

the second term in the square brackets was zero, i.e., that the effect-size-signed population allele fre-1917

quency difference was uncorrelated across loci. Howevever, when selection or phenotype-biased migra-1918

tion acts, this will no longer be true. For example, if higher genetic values of the trait were favoured1919

in population 1 relative to population 2, then selection will on average have driven a mean shift such1920

that E
[(

p
(1)
l − p

(2)
l

)
αl

]
> 0. This in turn will drive systematic positive covariances between terms1921 (

p
(1)
l − p

(2)
l

)
αl and

(
p
(1)
l′ − p

(2)
l′

)
αl′ , and as these covariances are summed over all pairs of loci in1922

Eq. (A.62), the resulting inflation of the average squared effect size estimate (and other genome-wide1923

summaries) could be quantitatively substantial.1924
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More general population stratification. Given a sample of N individuals, the sample cis-LD be-1925

tween two markers λ and l can be written generally as1926

Dλl =
1

N − 1

N∑
i=1

(
∆gmi,λ∆gmi,l + ∆gpi,λ∆gpi,l

)
, (A.64)1927

where ∆gmi,k and ∆gpi,k are the deviations of individual i’s maternal and paternal focal allele count at locus1928

k from their mean frequencies. The trans-LD between λ and l is1929

D̃λl =
1

N − 1

N∑
i=1

(
∆gmi,λ∆gpi,l + ∆gmi,l∆gpi,λ

)
. (A.65)1930

These cis- and trans-LD terms are equal only if1931

Dλl − D̃λl =
1

N − 1

N∑
i=1

(
∆gmi,λ − ∆gpi,λ

)(
∆gmi,l − ∆gpi,l

)
= 0, (A.66)1932

i.e., if the maternal and paternal alleles at the one locus are exchangeable with respect to deviations of1933

the allelic state at the other locus.1934

We might often be concerned with stratification along some specific axis of variation in our sample. Call1935

this axis v, with every individual having a value along v, with mean zero across individuals (for example,1936

in our two population case above, the vector v could be 1 for population 1 and −1 for population 2). The1937

covariance of the maternal allele at locus l with the vector v is proportional to aml · v =
∑

i a
m
i,lvi. So the1938

contribution of LD along this axis to the difference in cis- and trans-LD is1939

D
(v)
λl − D̃

(v)
λl =

((
∆gmλ − ∆gpλ

)
· v
) ((

∆gml − ∆gpl
)
· v
)
, (A.67)1940

which is zero only if the maternal and paternal genotypes at the two loci are exchangeable with respect1941

to each other along the axis v.1942

A3.3 Admixture1943

Suppose that two previously isolated populations admix in proportions A and 1 − A, with subsequent1944

random mating in the admixed population. Following the notation in the Section A3.2 above, before1945

admixture, the frequency of the focal variant at locus l was p
(1)
l in population 1 and p

(2)
l in population 2,1946

so that its overall frequency in the admixed population is pl = Ap
(1)
l + (1 −A)p

(2)
l .1947

When the two populations admix, trans-LD between all pairs of loci disappears in expectation, owing1948

to random mating in the admixed population: D̃t
λl = 0 for any pairs of loci λ and l and for any number1949

of generations t after admixture. However, cis-associations between alleles that were more prevalent in1950

one ancestral population than in the other will be retained as cis-LD in the admixed population until1951

these associations are eroded by recombination. The initial degree of cis-LD between loci λ and l in the1952

admixed population is1953

D0
λl = A(1 −A)

(
p
(1)
λ − p

(2)
λ

)(
p
(1)
l − p

(2)
l

)
.1954

When t generations have elapsed since admixture, this cis-LD will have been eroded by recombination to1955

Dt
λl = D0

λl(1 − cλl)
t = A(1 −A)

(
p
(1)
λ − p

(2)
λ

)(
p
(1)
l − p

(2)
l

)
(1 − cλl)

t,1956
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where cλl is the sex-averaged recombination rate between λ and l. Therefore, t generations after admixture,1957

a population association study at λ returns an effect size estimate1958

α̂pop,t
λ =

2

Vλ

∑
l∈L

Dt
λlαl = A(1 −A)

p
(1)
λ − p

(2)
λ

pλ(1 − pλ)

∑
l∈L

(
p
(1)
l − p

(2)
l

)
(1 − cλl)

tαl,1959

while a sibling-based association study at λ returns1960

α̂sib,t
λ =

2

Hλ

∑
l∈L

(1 − 2cλl)D
t
λlαl = A(1 −A)

p
(1)
λ − p

(2)
λ

pλ(1 − pλ)

∑
l∈L

(
p
(1)
l − p

(2)
l

)
(1 − cλl)

t(1 − 2cλl)αl,1961

where we have substituted Vλ = Hλ = 2pλ(1 − pλ) owing to random mating in the admixed population.1962

Squaring the population estimate and multiplying by 2pλ(1 − pλ),1963

2pλ(1 − pλ)(α̂pop,t
λ )2 = 2A2(1 −A)2

(
p
(1)
λ − p

(2)
λ

)2
pλ(1 − pλ)

[∑
l∈L

(
p
(1)
l − p

(2)
l

)2
(1 − cλl)

2tα2
l1964

+
∑
l ̸=l′

(
p
(1)
l − p

(2)
l

)(
p
(1)
l′ − p

(2)
l′

)
(1 − cλl)

t(1 − cλl′)
tαlαl′

]
, (A.68)1965

1966

while the heterozygosity-weighted squared sibling effect size is1967

2pλ(1 − pλ)(α̂sib,t
λ )2 = 2A2(1 −A)2

(
p
(1)
λ − p

(2)
λ

)2
pλ(1 − pλ)

[∑
l∈L

(
p
(1)
l − p

(2)
l

)2
(1 − cλl)

2t(1 − 2cλl)
2α2

l1968

+
∑
l ̸=l′

(
p
(1)
l − p

(2)
l

)(
p
(1)
l′ − p

(2)
l′

)
(1 − cλl)

t(1 − cλl′)
t(1 − 2cλl)(1 − 2cλl′)αlαl′

]
. (A.69)1969

1970

Neutral allele frequency divergence. If allele frequency divergence between the two populations1971

was neutral, then frequency changes at different loci are independent of one another, of effect sizes, and of1972

recombination rates (assuming the loci are sufficiently far apart), so the second terms in square brackets1973

in Eqs. (A.68) above is zero in expectation, so that1974

E
[
2pλ(1 − pλ)(α̂pop,t

λ )2
]

= 4A2(1 −A)2E


(
p
(1)
λ − p

(2)
λ

)2
2pλ(1 − pλ)

 |L|E
[(

p
(1)
l − p

(2)
l

)2]
(1 − c)2t E

[
α2
l

]
1975

= 4A2(1 −A)2(1 − c)2tE [2FST,λ] |L|E [2FST,lHl]E
[
α2
l

]
1976

≈ 16A2(1 −A)2(1 − c)2t |L|F 2
STE [Hl]E

[
α2
l

]
,1977

1978

where (1 − c)2t is the average value of (1 − cll′)
2t taken across all pairs of loci l, l′.1979

Similarly, under drift in the ancestral populations, the average squared sibling-based effect size estimate1980

can be simplified to1981

E
[
2pλ(1 − pλ)(α̂sib,t

λ )2
]
≈ 16A2(1 −A)2(1 − c)2t(1 − 2c)2 |L|F 2

STE [Hl]E
[
α2
l

]
,1982

where (1 − c)2t(1 − 2c)2 is the average value of (1 − cll′)
2t(1 − 2cll′) taken across all pairs of loci l, l′.1983
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Selection and phenotype-biased migration. As in the case of population structure, selection and1984

phenotype-biased migration in the ancestral populations can drive systematic positive covariances between1985

the terms
(
p
(1)
l − p

(2)
l

)
αl and

(
p
(1)
l′ − p

(2)
l′

)
αl′ in Eqs. (A.68) and (A.69) above, so that the second terms1986

in square brackets in these equations do not cancel in expectation as they did under neutral divergence1987

between the ancestral populations. Again, as these covariances are summed over all pairs of loci in1988

Eqs. (A.68) and (A.69), the resulting inflation of the average squared effect size estimate and other1989

genome-wide summaries could be substantial.1990

A3.4 Stabilizing selection1991

We consider the model of Bulmer (1971, 1974), in which a very large number of loci contribute variation1992

to a trait under stabilizing selection. We assume that the distribution of trait values is centered on the1993

optimal value Y ∗, and that the relative fitness of an individual with trait value Y is exp
(
−(Y − Y ∗)2/2VS

)
,1994

where VS , the width or ‘variance’ of this gaussian selection function, governs the strength of stabilizing1995

selection, with larger VS values implying weaker selection. Under this model, selection acts to reduce the1996

phenotypic variation each generation; if the trait value is normally distributed with variance VP , then1997

selection reduces the within-generation phenotypic variance by an amount1998

∆VP =
−V 2

P

VS + VP
. (A.70)1999

How much of this reduction carries over to the offspring generation then depends on the heritability of2000

the trait.2001

Owing to the large number of loci in this model, the buildup of LD among them occurs on a faster2002

timescale than the change in allele frequencies at individual loci. Assuming the loci to have equal effect2003

sizes, Bulmer (1974) showed that the overall reduction in the phenotypic variance due to stabilizing2004

selection, d, rapidly approaches a quasi-equilibrium value that approximately satisifes2005

d∗ =
1

2
h∗4∆V ∗

P /c̄h, (A.71)2006

where h∗2 is the heritability of the trait in this equilibrium and c̄h is the harmonic mean of the recom-2007

bination rates amongst all pairs of loci. On this rapid timescale, the reduction in variance is due to LD2008

among the loci underlying the trait; in fact,2009

d = 2α2
∑
l∈L

∑
l′∈L

Dll′ , (A.72)2010

where α is the common per-locus effect size and Dll′ is defined with respect to the trait-increasing alleles2011

at l and l′. The individual linkage disequilibria Dll′ , in expectation, are proportional to the inverse2012

recombination rates 1/cll′ . Writing2013

2α2
∑
l∈L

∑
l′∈L

D∗
ll′ = d∗ =

1

2
h∗4∆V ∗

P /c̄h =
1

2
h∗4∆V ∗

P

∑
l

∑
l′ ̸=l 1/cll′

(|L|
2 )

, (A.73)2014

where (|L|
2 ) = |L|

(
|L| − 1

)
/2 is the number of pairs of distinct loci in L, it is apparent that2015

E [D∗
ll′ ] =

1

4α2
h∗4∆V ∗

P

1/cll′

(|L|
2 )

. (A.74)2016
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Henceforth we deal only with equilibriuj quantities and therefore drop the star superscript for neatness.2017

The phenotypic variance VP can be written VP = VG +VE = Vg +d+VE , where VG is the additive genetic2018

variance, Vg is the genic variance, and VE is the variance due to the environment. Eqs. (A.70) and (A.71),2019

together with the definition of heritability h2 = VG/VP , define a quadratic equation in d:2020

(1 + 2H)d2 + 2[(VS + Vg + VE)c̄h + Vg]d + V 2
g = 0. (A.75)2021

Eq. (A.75) matches Eq. (10) in Bulmer (1974), with Bulmer’s parameter c replaced by 1/2VS . For ease2022

of reference in what follows, we write Eq. (A.75) in the standard form ad2 + bd + c = 0. The roots are2023

d+,− =
−b±

√
b2 − 4ac

2a
=

−[(VS + Vg + VE)c̄h + Vg] ±
√

[(VS + Vg + VE)c̄h + Vg]2 − (1 + 2H)V 2
g

1 + 2c̄h
.

(A.76)2024

To see which of these roots is the relevant one, we first note that the roots are both real, since the2025

requirement for this is2026

[(VS + Vg + VE)c̄h + Vg]2 ≥ (1 + 2c̄h)V 2
g ⇔ (VS + Vg + VE)c̄h + Vg ≥

√
1 + 2c̄hVg2027

⇔ VS + VE ≥
√

1 + 2c̄h − 1 − c̄h
c̄h

Vg,2028

2029

and
√

1 + 2c̄h < 1 + c̄h for c̄h > 0, while VS + VE > 0. Furthermore, since b > 0 and 4ac > 0, both roots2030

are in fact negative, with d− < d+ < 0. Now note that2031

2d− < d+ + d− = − b

a
= −2[(VS + Vg + VE)c̄h + Vg]

1 + 2c̄h
2032

< −2[(Vg + Vg + VE)c̄h + Vg]

1 + 2c̄h
(since Vg < VS)2033

< −2[(Vg + Vg)c̄h + Vg]

1 + 2c̄h
(since VE > 0)2034

= −2Vg,2035
2036

i.e., Vg + d− < 0. But then if the relevant root were d = d−, 0 ≤ VG = Vg + d− < 0, a contradiction. So2037

the relevant root is in fact2038

d = d+ =
−[(VS + Vg + VE)c̄h + Vg] +

√
[(VS + Vg + VE)c̄h + Vg]2 − (1 + 2c̄h)V 2

g

1 + 2c̄h
, (A.77)2039

from which2040

− d

Vg
=

1 − c̄h

(√
1 + 2

(
1 + 1

c̄h

)
X + X2 − (1 + X)

)
1 + 2c̄h

, (A.78)2041

where X = VS+VE
Vg

. Since, in the absence of selection, VG = Vg, Eq. (A.78) gives the proportionate2042

reduction in the additive genetic variance due to selection.2043

From Eq. (A.72), d = 2α2
∑

l

∑
l′ ̸=l Dll′ , and, since Vg =

∑
l 2pl(1 − pl)α

2 = α2H̄|L|, with |L| the2044

number of loci and H̄ the average heterozygosity across them, we have2045

d

Vg
=

2
∑

l

∑
l′ ̸=l Dll′

H̄L
. (A.79)2046
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In a population association study performed at locus l, the effect size estimate is2047

α̂pop
l = αl +

2

2pl(1 − pl)

∑
l′ ̸=l

Dll′αl′ = α

1 +
2

2pl(1 − pl)

∑
l′ ̸=l

Dll′

 , (A.80)2048

so that the proportionate error is2049

2

2pl(1 − pl)

∑
l′ ̸=l

Dll′ . (A.81)2050

The mean proportionate error across loci is therefore2051

1

|L|
∑
l∈L

 2

2pl(1 − pl)

∑
l′ ̸=l

Dll′

 ≈
2
∑

l

∑
l′ ̸=l Dll′

H̄|L|
=

d

Vg
, (A.82)2052

from Eq. (A.79), and assuming that the heterozygosities do not vary much across loci. That is, the average2053

proportionate bias to effect size estimation that stabilizing selection induces is approximately equal to the2054

proportionate reduction in the additive genetic variance, which is given in general form by Eq. (A.78).2055

In a within-family association study performed at locus l, the effect size estimate is2056

α̂fam
l = αl +

2

2pl(1 − pl)

∑
l′ ̸=l

(1 − 2cll′)Dll′αl′ = α

1 +
2

2pl(1 − pl)

∑
l′ ̸=l

(1 − 2cll′)Dll′

 , (A.83)2057

so that the proportionate error is2058

2

2pl(1 − pl)

∑
l′ ̸=l

(1 − 2cll′)Dll′ . (A.84)2059

The mean proportionate error across loci is therefore2060

1

|L|
∑
l∈L

 2

2pl(1 − pl)

∑
l′ ̸=l

(1 − 2cll′)Dll′

 ≈
2
∑

l

∑
l′ ̸=l(1 − 2cll′)Dll′

H̄|L|
2061

≈
2
∑

l

∑
l′ ̸=l(1 − 2cll′)

dc̄h
2α2(|L|

2 )cll′

H̄|L|
2062

=
dc̄h

α2H̄|L|(|L|
2 )

∑
l

∑
l′

(
1

cll′
− 2

)
2063

=
dc̄h

Vg(|L|
2 )

(
(|L|

2 )

c̄h
− 2(|L|

2 )

)
2064

=
d

Vg
(1 − 2c̄h) , (A.85)2065

2066

where we have used Eq. (A.74) in the second line. Therefore, the mean error in the within-family GWAS2067

is smaller in magnitude than that in a population GWAS by a factor 1 − 2c̄h.2068

If ∼1,000 loci underlie variation in the trait (and all contribute approximately the same variation),2069

c̄h ≈ 0.4640 in humans (see Methods), and so the average bias that stabilizing selection induces in within-2070

family GWASs will be about 1− 2c̄h ≈ 7% that in population GWASs. If ∼10,000 loci underlie variation2071
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in the trait, c̄h ≈ 0.4346, and so the bias in within-family GWASs will be about 13% that in population2072

GWASs.2073

The calculations above give the average proportionate bias to GWAS estimates in terms of the basic2074

parameters of the model, Vg, VE , VS , and c̄h. Often, however, not all of these parameters will be2075

measurable. For example, human height appears to be under stabilizing selection (Sanjak et al. 2018),2076

is highly heritable, and this heritability is believed to be underlain largely by direct genetic effects (Lee2077

et al. 2018). However, it is difficult to directly measure the genic variance in height Vg because not all2078

causal loci will be assayed in association studies—and, moreover, even if they were, effect size estimation2079

at these causal loci would be biased by the genetic confounds that we have studied in this paper. However,2080

the phenotypic variance in height VP can obviously be measured, and the heritability of height h2 can2081

also be measured using classical methods rather than effect size estimation in association studies. The2082

strength of stabilizing selection on height can also be measured (Sanjak et al. 2018). From VP and h2,2083

the additive genetic variance VG can be estimated (VG = h2VP ).2084

This example suggests that, in many applications, it might be useful to be able to estimate the equi-2085

librium value of d using VG (or VP ), VE , VS , and c̄h, even though VG (and VP ), in the model we have2086

considered, is a state variable influenced by the state variable of primary interest, d. This is straightfor-2087

ward: returing to our use of a star superscript to denote equilibrium values, if we treat VG and VP as2088

their equilibrium values V ∗
G and V ∗

P , Eq. (A.71) can be estimated directly, and also simplifies to2089

d∗ = − 1

2c̄h
·

V ∗2
G

VS + V ∗
G + VE

= − 1

2c̄h
·

V ∗2
G

VS + V ∗
P

=
1

2c̄h
·
h∗4V ∗2

P

VS + V ∗
P

. (A.86)2090

The proportionate bias in a population GWAS, given by Eq. (A.82), can similarly be estimated from h2,2091

VP , VS , and c̄h, by first observing that2092

Vg = V ∗
G − d∗ = V ∗

G +
1

2c̄h

V ∗2
G

VS + V ∗
P

= V ∗
G

(
1 +

1

2c̄h
·

V ∗
G

VS + V ∗
P

)
,2093

so that Eq. (A.82) can be written2094

d∗

Vg
=

− 1
2c̄h

· V ∗2
G

VS+V ∗
P

V ∗
G

(
1 + 1

2c̄h
· V ∗

G
VS+V ∗

P

) =
− 1

2c̄h
· V ∗

G
VS+V ∗

P

1 + 1
2c̄h

· V ∗
G

VS+V ∗
P

=
− 1

2c̄h
· h∗2V ∗

P
VS+V ∗

P

1 + 1
2c̄h

· h∗2V ∗

VS+V ∗
P

= − 1

2c̄h

(
1+VS/V

∗
P

h∗2

)
+ 1

, (A.87)2095

which reveals that the proportionate bias depends only on c̄h, h∗2 and the scaled inverse strength of2096

selection, VS/V
∗
P .2097

From Eq. (A.85), the proportionate bias in a within-family GWAS is then approximately2098

d∗

Vg
(1 − 2c̄h) = − 1 − 2c̄h

2c̄h

(
1+VS/V

∗
P

h∗2

)
+ 1

. (A.88)2099

Stabilizing selection attenuates estimates of the strength of assortative mating based on2100

cross-chromosome PGS correlations2101

Recently, the strength of assortative mating has been estimated based on measurement of the correlation2102

of polygenic scores across distinct sets of chromosomes (e.g., Yengo et al. 2018; Yamamoto et al. 2023).2103

Were assortative mating acting in isolation, such correlations would be due entirely to the positive cis-2104
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and trans-LDs among same-effect alleles created by assortative mating. Since stabilizing selection, acting2105

in isolation, generates negative cis-LDs among same-effect alleles, it will attenuate the positive cis-LDs2106

generated by assortative mating, and therefore reduce the correlation in PGSs among distinct sets of2107

chromosomes, leading to underestimates of the strength of assortative mating if this effect is not taken2108

into account.2109

To quantify this attenuation, we first calculate the strength of (positive) cross-chromosome LDs ex-2110

pected under assortative mating alone; then we calculate the strength of (negative) cross-chromosome2111

LDs expected under stabilizing selection alone; then, assuming these LDs to be generated independently2112

of one another—so that the LDs generated under the joint action of assortative mating and stabilizing2113

selection are the sums of the LDs expected under these forces alone—we calculate how much stabilizing2114

selection attenuates the correlation in PGSs across distinct sets of chromosomes.2115

Cross-chromosome correlations in PGSs. The number of autosomes in the haploid set is n (= 22 in2116

humans). Label the set of loci on chromosome k that contribute variation to our trait of interest Lk; the2117

overall set of loci underlying variation in the trait is L = {L1, L2, . . . , Lk}. We divide the chromosomes2118

into distinct sets K1 and K2 (e.g., K1 could be the set of odd numbered chromosomes and K2 the2119

even). Let L(1) and L(2) be the sets of causal loci on the chromosomes in K1 and K2 respectively (i.e.,2120

L(i) = ∪k∈Ki
Lk).2121

Suppose that we have accurately estimated effect sizes at all loci l ∈ L. For each individual, we then2122

calculate a polygenic score for K1 and for K2:2123

P1 =
∑

l∈L(1)

glαl; P2 =
∑

l′∈L(2)

gl′αl′ .2124

We are interested in the correlation in the population between P1 and P2, and in particular, how this2125

correlation is affected by assortative mating and stabilizing selection for the focal trait. The correlation2126

can be written2127

Corr(P1, P2) =
Cov(P1, P2)

Var(P1)Var(P2)
,2128

with2129

Cov(P1, P2) = Cov

 ∑
l∈L(1)

glαl,
∑

l′∈L(2)

gl′αl′

2130

=
∑

l∈L(1)

∑
l′∈L(2)

Cov (gl, gl′)αlαl′2131

= 2
∑

l∈L(1)

∑
l′∈L(2)

(
Dll′ + D̃ll′

)
αlαl′ . (A.89)2132

2133

Since, to make progress in the case of stabilizing selection, we will assume effect sizes to be equal across2134

loci, we make that assumption now, so that2135

Cov(P1, P2) = 2α2
∑

l∈L(1)

∑
l′∈L(2)

(
Dll′ + D̃ll′

)
. (A.90)2136

Since every pair of loci (l, l′) across L(1) and L(2) are by definition unlinked, under many processes2137

(including assortative mating and stabilizing selection), the values of Dll′ and D̃ll′ will not differ much in2138
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expectation across locus pairs, in equilibrium. Therefore, we may approximate Dll′ = D∗ and D̃ll′ = D̃∗
2139

for all l ∈ L(1) and l′ ∈ L(2, so that Eq. (A.90) simplifies further:2140

Cov(P1, P2) = 2
∣∣L(1)

∣∣ ∣∣L(2)
∣∣(D∗ + D̃∗)α2. (A.91)2141

Assortative mating alone. Under assortative mating with equal effect sizes across loci, in equilibrium,2142

LDs are approximately equal across locus pairs, regardless of the recombination rate between them;2143

moreover, cis- and trans-LDs are equal (see above). Therefore, to calculate D∗ (= D̃∗), we simply2144

apportion the total LD given by Eq. (A.40) among individual locus pairs:2145

h2ρ

1 − h2ρ
Vg ≈ 4

∑
l∈L

∑
l′∈L
l′ ̸=l

D∗
ll′αlαl′ = 4|L|(|L| − 1)α2D∗

2146

⇒ D∗ ≈
h2ρ

1−h2ρ
Vg

4|L|(|L| − 1)α2
=

h2ρ
1−h2ρ

|L|H̄α2

4|L|(|L| − 1)α2
=

h2ρ
1−h2ρ

H̄

4(|L| − 1)
≈ 1

4
· h2ρ

1 − h2ρ
· H̄

|L|
, (A.92)2147

2148

when |L| is large. Similarly,2149

D̃∗ ≈ 1

4
· h2ρ

1 − h2ρ
· H̄

|L|
, (A.93)2150

so that the overall contribution of assortative mating to the covariance in Eq. (A.91) is proportional to2151

D∗ + D̃∗ ≈ 1

2
· h2ρ

1 − h2ρ
· H̄

|L|
. (A.94)2152

Stabilizing selection alone. Under stabilizing selection, the total amount of negative cis-LD is given2153

by Eq. (A.87):2154

2α2
∑
l∈L

∑
l′∈l
l′ ̸=l

Dll′ = d = − Vg

2c̄h

(
1+VS/VP

h2

)
+ 1

, (A.95)2155

where we have dropped the equilibrium ‘∗’ markers. This expression does not easily decompose into2156

terms from individual locus pairs. However, if we assume that stabilizing selection is relatively weak2157

(VS/V
∗
P ≫ 1) and that the recombination process is such that the harmonic mean recombination rate2158

c̄h ∼ 1/2 (as is the case in humans), Eq. (A.95) can be approximated by2159

2α2
∑
l∈L

∑
l′∈l
l′ ̸=l

Dll′ = d ≈ − Vg

2c̄h

(
1+VS/VP

h2

) = −1

2
· h2Vg

1 + VS/VP
· 1

c̄h
= −1

2
· h2Vg

1 + VS/VP
·

2
∑

l,l′ 1/cll′

|L|(|L| − 1)
,2160

from which we infer that, in expectation,2161

2α2Dll′ ≈ − h2Vg

1 + VS/VP
· 1/cll′

|L|(|L| − 1)
.2162

Therefore, for unlinked l and l′ (cll′ = 1/2), in expectation,2163

Dll′ ≈ − 1

α2|L|(|L| − 1)
· h2Vg

1 + VS/VP
= − H̄

α2H̄|L|(|L| − 1)
· h2Vg

1 + VS/VP
= − H̄

(|L| − 1)Vg
· h2Vg

1 + VS/VP
2164

= − H̄

|L| − 1
· h2

1 + VS/VP
≈ − H̄

|L|
· h2

1 + VS/VP
. (A.96)2165

2166
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Stabilizing selection does not systematically generate trans-LD, so, in expectation, D̃ll′ = 0. Therefore,2167

under stabilizing selection alone, the contribution of an unlinked locus pair to the covariance in Eq. (A.91)2168

is2169

D∗ + D̃∗ = D∗ ≈ − H̄

|L|
· h2

1 + VS/VP
. (A.97)2170

How much does stabilizing selection attenuate the signal of assortative mating? Comparing2171

Eqs. (A.94) and (A.97), we find that the proportionate attenuation of assortative mating’s effect (in2172

isolation) by the action of stabilizing selection is2173

− H̄
|L| ·

h2

1+VS/VP

1
2 · h2ρ

1−h2ρ
· H̄
|L|

=
−2

1 + VS/VP
· 1 − h2ρ

ρ
. (A.98)2174

For example, in the case of human height (h2 ∼ 0.8), the signal of assortative mating (strength ρ ∼ 0.25)2175

is attenuated by stabilizing selection (strength VS/VP ∼ 30) by a proportionate amount of approximately2176

20%. That is, one might measure by other means (e.g., the phenotypic correlation among mates, together2177

with an estimate of the heritability of height) that the strength of assortative mating is ρ = 0.25, but2178

estimating this strength from cross-chromosome PGS correlations without accounting or correcting for2179

stabilizing selection on height would yield ρ̂ ≈ 0.2, 20% smaller than the true value.2180

A4 One-locus GxE2181

We study the phenotypic model in Eq. (22), with the phenotype of individual i in family f given by2182

Yi = Y ∗ + (α + αf + αi) gi + ϵf + ϵi, (A.99)2183

where, across the population, E[αf ] = E[αi] = E[ϵf ] = E[ϵi] = 0, and αi, ϵf , and ϵi are all independent of2184

gi.2185

Sibling GWAS. Let i and j be siblings in family f , and define ∆Yf = Yi − Yj , ∆gf = gi − gj , and2186

∆ϵf = ϵi − ϵj . A sibling association study returns an effect size estimate2187

α̂sib =
Cov (∆Yf ,∆gf )

Var (∆gf )
=

Cov
(

(α + αf ) ∆gf + (αigi − αjgj) + ∆ϵf ,∆gf
)

Var (∆gf )
2188

=
E
[

(α + αf ) (∆gf )2
]

+ E
[

(αigi − αjgj) ∆gf
]

+ E
[
∆ϵf∆gf

]
H

,2189
2190

where H is the fraction of parents who are heterozygous at the focal locus. Since αi, αj , ϵi, and ϵj are2191

genotype-independent perturbations, E
[

(αigi − αjgj) ∆gf
]

= E [∆ϵf∆gf ] = 0, and so2192

α̂ =
E
[
α (∆gf )2

]
+ E

[
αf (∆gf )2

]
H

= α +
E
[
αf (∆gf )2

]
H

, (A.100)2193

which deviates from α by an amount E
[
αf (∆gf )2

]
/H.2194

Let ∆gmat
f and ∆gpatf be the difference in the genotypes of the siblings in family f due to maternal2195

and paternal transmission. Because of the independence of maternal and paternal transmission in a given2196
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family, the term additional to α in Eq. (A.100) can be split into E[αf (∆gmat
f )2]/H and E[αf (∆gpatf )2]/H,2197

which we can analyze separately.2198

If the mother is heterozygous, then (∆gmat
f )2 equals 1 with probability 1/2 and 0 with probability 1/2;2199

if the mother is homozygous, then (∆gmat
f )2 is 0. Therefore, denoting by hm the event that the mother is2200

heterozygous,2201

E
[
αf (∆gmat

f )2
]

H
=

1
2E [αf | hm] Prob(hm)

H
=

1

2
E [αf | hm] .2202

The same holds for paternal transmission, and so the deviation of the family-based estimate α̂ from α is2203

α̂− α =
E
[
αf (∆gf )2

]
H

= E [αf | h] . (A.101)2204

That is, quite intuitively, if the average G×E effect αf is different in the families of heterozygous parents2205

than in the population as a whole, then limiting estimation to the offspring of heterozygous parents will2206

be problematic.2207

Population GWAS. Under the same one-locus model, a population association study returns an effect2208

size estimate of2209

α̂pop =
Cov (Yi, gi)

Var (gi)
=

Cov
(

(α + αf + αi) gi + ϵf + ϵi, gi
)

Var (gi)
2210

= α +
Cov (αfgi, gi)

Var (gi)
. (A.102)2211

2212

We can immediately see from Eq. (A.102) that if the family environments are randomized across genotypes,2213

such that αf and gi are independent (implying Cov (αfgi, gi) = 0), then the population estimate will2214

coincide with α.2215

To calculate the deviation of the population estimate from α in the general case, let F be the inbreeding2216

coefficient at the locus. Then Var(gi) = 2p(1 − p)(1 + F ), where p is the frequency of the focal variant,2217

and the frequency of heterozygotes is f1 = 2p(1− p)(1−F ) while the frequencies of the two homozygotes2218

are f0 = (1−p)2+p(1−p)F (zero focal alleles) and f2 = p2+p(1−p)F (two focal alleles). The covariance2219

term in Eq. (A.102) can then be written2220

Cov (αfgi, gi) = E
[
αfg

2
i

]
− E [αfgi]E [gi] = E

[
αfg

2
i

]
− 2pE [αfgi]2221

=
(
0 × E [αf | gi = 0] f0 + 1 × E [αf | gi = 1] f1 + 4 × E [αf | gi = 2] f2

)
2222

− 2p
(
0 × E [αf | gi = 0] f0 + 1 × E [αf | gi = 1] f1 + 2 × E [αf | gi = 2] f2

)
2223

= E [αf | gi = 1] f1(1 − 2p) + 4E [αf | gi = 2] f2(1 − p)2224

= 2E [αf | gi = 1] p(1 − p)(1 − 2p)(1 − F ) + 4E [αf | gi = 2]
(
p2(1 − p) + p(1 − p)2F

)
.2225

2226

The deviation of the population-based estimate from α is therefore2227

α̂pop − α =
Cov (αfgi, gi)

Var (gi)
2228

=
2E [αf | gi = 1] p(1 − p)(1 − 2p)(1 − F ) + 4E [αf | gi = 2]

(
p2(1 − p) + p(1 − p)2F

)
2p(1 − p)(1 + F )

2229

= E [αf | gi = 1] (1 − 2p)
1 − F

1 + F
+ 2E [αf | gi = 2]

(
p + (1 − p)F

) 1

1 + F
(A.103)2230

≈ E [αf | gi = 1] (1 − 2p)(1 − 2F ) + 2E [αf | gi = 2] (p + (1 − 2p)F ). (A.104)2231
2232
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The approximation holds when F is small.2233

An interesting special case is where homozygotes for the focal allele and heterozygotes have the same2234

distribution of environments, so that E [αf | gi = 1] = E [αf | gi = 2] = E [αf | gi > 0]. In this case,2235

Eq. (A.103) simplifies to2236

α̂pop − α = E [αf | gi > 0] , (A.105)2237

which reveals that, if individuals who carry the focal allele tend to experience different environments to2238

individuals who do not carry the focal allele, then the population GWAS estimate will deviate from the2239

average effect under true randomization, α. Moreover, in this case, if E [αf | gi = 1] and E [αf | h] are the2240

same—that is, if the mean environment of heterozygous offspring is the same as that for heterozygous2241

parents—then the sibling and population-based effect size estimates are the same.2242
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