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ABSTRACT 43 

Cervical cancer is a leading cause of cancer mortality, with approximately 90% of the 44 

250,000 deaths per year occurring in low- and middle-income countries (LMIC). 45 

Secondary prevention with cervical screening involves detecting and treating precursor 46 

lesions; however, scaling screening efforts in LMIC has been hampered by 47 

infrastructure and cost constraints. Recent work has supported the development of an 48 

artificial intelligence (AI) pipeline on digital images of the cervix to achieve an accurate 49 

and reliable diagnosis of treatable precancerous lesions. In particular, WHO guidelines 50 

emphasize visual triage of women testing positive for human papillomavirus (HPV) as 51 

the primary screen, and AI could assist in this triage task. Published AI reports have 52 

exhibited overfitting, lack of portability, and unrealistic, near-perfect performance 53 

estimates. To surmount recognized issues, we implemented a comprehensive deep-54 

learning model selection and optimization study on a large, collated, multi-institutional 55 

dataset of 9,462 women (17,013 images). We evaluated relative portability, 56 

repeatability, and classification performance. The top performing model, when 57 

combined with HPV type, achieved an area under the Receiver Operating 58 

Characteristics (ROC) curve (AUC) of 0.89 within our study population of interest, and a 59 

limited total extreme misclassification rate of 3.4%, on held-aside test sets. Our work is 60 

among the first efforts at designing a robust, repeatable, accurate and clinically 61 

translatable deep-learning model for cervical screening. 62 

 63 



4 

 

The flood of artificial intelligence (AI) and deep learning (DL) approaches in recent years 64 

(1,2) has permeated medicine and medical imaging, where it has had a transformative 65 

impact: some AI based algorithms are now able to interpret imaging at the level of 66 

experts (3,4). This can be attributed to three key factors: 1. a pressing and seemingly 67 

consistent clinical need; 2. the advancements in and convergence of computational 68 

resources, innovations, and collaborations; and 3. the generation of larger and more 69 

comprehensive repositories of patient image data for model development (5). The 70 

nature of clinical tasks performed by AI models has shifted from simple detection or 71 

classification to more nuanced versions with direct relevance for risk stratification of 72 

patients and precision medicine (6). 73 

The advancements made by AI in image classification tasks over the past 74 

several years have also reached the cervical imaging domain, for instance, as an 75 

assistive technology for cervical screening (7). Globally, cervical cancer is a leading 76 

cause of cancer morbidity and mortality, with approximately 90% of the 250,000 deaths 77 

per year occurring in low- and middle-income countries (LMIC) (8,9). Persistent 78 

infections with high-risk human papillomavirus (HPV) types are the causal risk factor for 79 

subsequent carcinogenesis (10,11). Accordingly, primary prevention via prophylactic 80 

HPV vaccination (12), and secondary prevention via HPV-based screening for precursor 81 

lesions (“precancer”) are the recommended preventive methods (13,14). Crucially, 82 

screening is the key secondary prevention strategy, with the long process of 83 

carcinogenic transformation from HPV infection to invasive cancer providing an 84 

opportunity for detecting the disease at a stage when treatment is preventive or, at 85 

least, curative (13). 86 

However, implementation of an effective cervical screening program in LMIC, in 87 

line with WHO’s elimination targets (15), is hindered by barriers to healthcare delivery. 88 

Cytology and other current tests are costly and have substantial infrastructure 89 

requirements due to the need for laboratory infrastructure, transport of samples, multiple 90 

visits for screening and treatment, and (in the case of cytology) highly trained 91 

cytopathologists and colposcopists for management of abnormal results (16). As a less 92 

resource-intensive alternative, some have established screening of the cervix by visual 93 

inspection after application of acetic acid (VIA) to identify precancerous or cancerous 94 
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abnormalities via community-based programs, followed by treatment of abnormal 95 

lesions using thermal ablation or cryotherapy and/or large loop excision of the 96 

transformation zone (LLETZ) (17,18). The major limitation of VIA, however, is its 97 

inherently subjective and unreliable nature, resulting in high variability in the ability of 98 

clinicians to differentiate precancer from more common minor abnormalities, which 99 

leads to both undertreatment and overtreatment (19,20). 100 

Given the severe burden of cervical cancer and the lack of widely disseminated 101 

screening approaches in LMIC, a critical need exists for methods that can more 102 

consistently, inexpensively, and accurately evaluate cervical lesions and subsequently 103 

enable informed local choice of the appropriate treatment protocols. 104 

There has been a relative paucity of prior work utilizing AI and DL for cervical 105 

screening based on cervical images. Crucially, the existing work also largely suffers 106 

from overfitting of the model on the training data. This leads to apparent initial promise, 107 

with either poor performance on or absence of held-aside test sets for evaluating true 108 

model performance. When deployed in different settings, these models fail to return 109 

consistent scores and accurately detect precancers (21–24). This poses significant 110 

concerns when considering downstream deployment in various LMIC, where model 111 

predictions directly inform the course of treatment, and where screening opportunities 112 

are limited. 113 

In this work, we address the aforementioned concerns through three 114 

contributions, which are generalizable to clinical domains outside of cervical imaging: 115 

1. Improved reliability of model predictions 116 

We employ a comprehensive, multi-level model design approach with a primary 117 

aim of improving model reliability. Model reliability or repeatability, is defined as 118 

the ability of a model to generate near-identical predictions for the same woman 119 

under identical conditions, ensuring that the model produces precise, reliable 120 

outputs in the clinical setting. Specifically, we consider multiple combinations of 121 

model architectures, loss functions, balancing strategies, and dropout. Our final 122 

model selection for the classifier, termed automated visual evaluation (AVE), is 123 

based on a criterion that first prioritizes model reliability, followed by class 124 

discrimination or classification performance, and finally reduction of grave errors. 125 
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2. Improved clinical translatability: multi-level ground truth 126 

The large majority of current medical image classification and radiogenomic 127 

pipelines that utilize AI and DL, across clinical domains, use binary ground truths. 128 

Our clinical intuition from working with binary models as well as prior empirical 129 

work have informed us that these models frequently fail to capture the inherent 130 

uncertainty with ambiguous samples (21–24). These uncertain samples are of 131 

two intersecting kinds: samples that are uncertain to the clinician (“rater 132 

uncertainty”) and samples that are uncertain to the model i.e., where the model 133 

reports low confidence scores (“model uncertainty”); both instances can lead to 134 

incorrect classification and subsequent misinformed downstream actions for 135 

these patients. Crucially, real-world clinical oncology samples, across domains 136 

such as cervical, prostate and breast, and across hospitals/institutions, include 137 

many uncertain cases (25–27). To address both levels of ambiguity, we employ 138 

several multi-level, ordinal ground truth delineation schemes in our model 139 

selection. 140 

3. Improved downstream clinical-decision making: combination of HPV risk 141 

stratification with model predictions 142 

A number of different cancers have identified “sufficient” causes. Examples 143 

across this spectrum range from the presence of BRAF V600E mutation for the 144 

papillary subtype for craniopharyngioma (28), to the presence of BRCA1 or 145 

BRCA2 mutations for breast cancer (29–31). Cervical cancer is unique among 146 

common neoplasms in that HPV is virtually necessary and is present in >95% of 147 

cases. Different HPV types predict higher or lower absolute risk, e.g., HPV 16 is 148 

the highest risk type, followed by HPV 18, while other types pose weaker or no 149 

risk (32–34). In our work, we combined HPV typing and its strong risk 150 

stratification with our visual model predictions, to create a risk score that can be 151 

adapted to local clinical preferences for “risk-action” thresholds. This is 152 

generalizable across clinical domains where additional clinical variables and risk 153 

associations significantly determine patient outcomes. 154 

 155 

 156 
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RESULTS 157 

In this work, we conducted a comprehensive, multi-stage model selection and 158 

optimization approach (Fig. 1, Fig. 2), utilizing a large, collated multi-institution, multi-159 

device, and multi-population dataset of 9,462 women (17,013 images) (Table 1), in 160 

order to generate a diagnostic classifier optimized for 1. repeatability; 2. classification 161 

performance; and 3. HPV-group combined risk stratification (Fig. 2) (see METHODS). 162 

REPEATABILITY ANALYSIS 163 

Table 2 highlights the summary of the repeatability analysis (Stage I), reporting the 164 

mean, median and adjusted linear regression β values for QWK. We evaluated the 165 

metrics overall and within each design choice category, dropping the worst performing 166 

design choices both overall and within each category. Overall, this resulted in 19.0% of 167 

our design choices being dropped from further consideration (Table 2, shaded in 168 

salmon; Fig. 3a, muted bars). Within each design choice category, this amounted to 169 

dropping the design choices that had adjusted linear regression β values >0.06 below 170 

reference. Specifically, the design choices that were dropped in Stage 1 include the 171 

resnest50 architecture, focal and CORAL loss functions, and models trained without 172 

dropout. Here, we adopted a conservative approach, choosing to keep design choices 173 

that resulted in median QWK and corresponding adjusted β values that are relatively 174 

close and not clearly distinguishable from each other and only dropped the clearly worst 175 

performing choices; for instance, we decided to keep both the “3 level subsets” (β = -176 

0.026) and the “5 level all patients” (β = -0.025) design choices within the “Multilevel 177 

Ground Truth” design category, and pass them through to Stage 3. 178 

CLASSIFICATION PERFORMANCE ANALYSIS 179 

Table 3 highlights the summary of the classification performance analysis (Stage II), 180 

reporting the median and the interquartile ranges for each of our two key classification 181 

metrics: 1. Youden’s index and 2. extreme misclassifications, as well as the adjusted 182 

linear regression β for each design choice. Similar to Stage 1, we evaluated the metrics 183 

both overall and within each design choice category, dropping the worst performing 184 

design choices at this stage in a two-level approach. 185 

In the first level, we looked at the Youden’s index across all design choices and 186 

dropped the worst performing choices; this resulted in 3 choices (SWT architecture, no 187 
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balancing, 5-level ground truth) or 17.6% of the remaining choices being dropped and 188 

amounted to dropping choices that had median Youden’s index of <150 (Table 3, 189 

shaded in salmon; Fig. 3b, muted bars); this was further supported by other design 190 

choices within each design choice category having positive adjusted linear regression β 191 

values. In the second level, we considered two factors: 1. median extreme 192 

misclassification percentages (% precancer+ as normal and % normal as precancer+); 193 

and 2. practical reasons, dropping design choices due to a combination of these two 194 

factors. This resulted in three balancing strategies (Sampling 1:1:2, 1:1:4 and 2:1:1) and 195 

the “3 level subsets” ground truth mapping, or 28.6% of the remaining design choices 196 

being dropped (Table 3, shaded in gray). Weighted sampling by using preassigned label 197 

weights per class for the loading sampler (such as 1:1:4) is imprecise since weights are 198 

not adjusted relative to the dataset-specific class imbalance; this skews the model in 199 

making predictions along the lines of the assigned weights. This can be seen among the 200 

sampling strategies dropped: sampling 1:1:4 had a high rate of median % normal 201 

predicted as precancer+ (27.4%), while sampling 2:1:1 had a high rate of median % 202 

precancer+ predicted as normal (24.3%). The “3 level subsets” ground truth mapping 203 

was dropped for practical reasons: it was generated from the 5-level map by omitting 204 

the GL and GH labels to attempt to generate further distinction or discontinuity between 205 

the three classes (normal, GM, precancer+) during model experimentation. Both the “5-206 

level all patients” and the “3-level subsets” ground-truth mapping are impractical due to 207 

the limited clinical data (either HPV, histology and/or cytology) we anticipate having 208 

available in the field to generate 5 distinct levels of ground truth, thereby rendering 209 

retraining, validation and implementation of these approaches challenging. 210 

HPV-GROUP COMBINED RISK STRATIFICATION ANALYSIS 211 

Fig. 4 and Table 4 highlight the 10 best performing models that emerge following 212 

Stages 1, 2 and 3 of our model selection approach. All 10 models perform similarly 213 

among HPV positive women in the full 5-study set, while showing notable differences 214 

per study as shown in the NHS subset of the full 5-study set, measured by the 215 

combined HPV-AVE AUC. The NHS subset represents women who are closer to a 216 

screening population that we would expect in the field when considering deployment of 217 

our model, since this is a population-based cohort study (35); hence AUC on the NHS 218 
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subset represents a truer metric for model comparison. The models in Fig. 4a and Table 219 

4 are in decreasing order of AUC on the HPV positive NHS subset. Fig. 4b plots the 220 

ROC curves for each of the top 4 out of the 10 models highlighted in Table 4 and Fig. 221 

4a, highlighting 1. HPV risk-based stratification; 2. model stratification; and 3. combined 222 

stratification incorporating both HPV risk and model predicted class.  223 

CLASSIFICATION AND REPEATABILITY ANALYSIS: TEST SET 2 224 

Fig. 5a and Table 5 highlight the additional classification (1. % precancer+ as normal 225 

and 2. % normal as precancer+), and repeatability (1. % 2-class disagreement and 2. 226 

QWK) metrics from the predictions of each of the top 10 models on Test Set 2, while 227 

Figure 6 takes a deeper look by comparing individual model predictions across 60 228 

images for these top 10 models on Test Set 2. The top 10 models that pass through all 229 

stages of our model selection approach utilize the following configurations: 230 

• Architecture: densenet121 or resnet50 231 

• Loss function: quadratic weighted kappa (QWK) or cross-entropy (CE) 232 

• Balancing strategy: remove controls or balanced sampling 233 

• Dropout: Monte-Carlo (MC) dropout (spatial) 234 

• Multi-level ground truth: 3 level all patients (Normal, Gray Zone, Precancer+) 235 

• Model type: multiclass classification 236 

Based on the individual performances of the models in terms of degree of extreme 237 

misclassifications and repeatability (Table 5, Fig. 5a) and additional risk stratification 238 

(Table 4, Fig. 4), our best performing model (# 36) has the smallest rate of overall 239 

extreme misclassifications (5.9% precancer+ as normal, 4.2% normal as precancer+), 240 

one of the highest repeatability performance (repeatability QWK = 0.8557, 0.69% 2-241 

class disagreement on repeat images across women), and the highest additional risk 242 

stratification in the NHS subset of the full 5-study dataset, our screening population 243 

(difference between HPV-AVE combined AUC and HPV AUC= 0.164). Among the top 244 

10 models, model # 36 utilizes the following unique design choices: 245 

• Architecture: densenet121 246 

• Loss function: quadratic weighted kappa (QWK) 247 

• Balancing strategy: remove controls 248 
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Fig. 5b highlights key performance metrics of the top ranked model (# 36) on Test Set 2, 249 

as captured by the corresponding (i) ROC curves, (ii) confusion matrix, (iii) histogram of 250 

the model predicted 𝑠𝑐𝑜𝑟𝑒 and (iv) Bland-Altman plot. The ROC curve in (i) 251 

demonstrates excellent discrimination of the normal (class 0) and precancer+ (class 2) 252 

categories, with corresponding AUROC’s of 0.88 (class 0 vs. rest) and 0.82 (class 2 vs. 253 

rest) respectively. This is reinforced by the confusion matrix in (ii), which highlights a 254 

total extreme misclassification (extreme off diagonals) rate of only 3.4%, and by the 255 

histogram in (iii), which illustrates the strong class separation in model predicted 𝑠𝑐𝑜𝑟𝑒; 256 

specifically, (iii) highlights that the model confidently predicts the largest clusters of each 257 

of the three ground truth classes correctly as shown by the peaks around 𝑠𝑐𝑜𝑟𝑒 0.0, 1.0 258 

and 2.0. Finally, the Bland-Altman plot in (iv) highlights the model performance in terms 259 

of repeatability: each point on this plot refers to a single woman, with the y-axis 260 

representing the maximum difference in the 𝑠𝑐𝑜𝑟𝑒 across repeat images per woman, 261 

and the x-axis plotting the mean of the corresponding 𝑠𝑐𝑜𝑟𝑒 across all repeat images 262 

per woman. Repeatability is evaluated using the 95% limits of agreement (LoA), 263 

highlighted by the blue dotted lines in (iv) on either side of the mean (central blue dotted 264 

line); for model # 36, the 95% LoA is quite narrow, with most points clustered around 0 265 

on the y-axis suggesting that 𝑠𝑐𝑜𝑟𝑒 values of the model on repeat images taken on the 266 

same visit for each woman are quite similar; here, the 95% LoA adjusted for the number 267 

of classes and presented as a fraction of the possible value range is 0.240 (±0.038). 268 

Fig. 6 reinforces the validity of our approach for model selection and optimization 269 

by providing a detailed comparison of model performance at the individual image level, 270 

with the top models performing desirably with respect to the clinical problem we are 271 

aiming to address. Incorporation of a gray zone class, together with MC dropout and 272 

loss functions that penalize misclassifications between the extreme classes ensures 273 

that we deal with ambiguity with cases at the class boundaries. For instance, among 274 

these randomly selected 60 images, the best performing model (# 36) has the lowest 275 

rate of extreme misclassifications (none), while predicting a wide enough gray zone that 276 

adequately encapsulates the clinical ambiguity with uncertain cases: these are cases for 277 

which even clinically trained colposcopists and gynecologic oncologists would find 278 

determination of precancer+ status challenging. 279 
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DISCUSSION 280 

Despite the advancements made by AI in clinical classification tasks, key concerns 281 

hindering model deployment from bench to clinical practice include model reliability and 282 

clinical translatability. An incorrect, unreliable, or unrepeatable model prediction has the 283 

potential to lead to a cascade of clinical actions that might jeopardize the health and 284 

safety of a patient. Therefore, it is essential that models designed with the goal of 285 

clinical deployment be specifically optimized for improved repeatability and clinical 286 

translation. 287 

Our work addresses these concerns of reliability and clinical translatability. We 288 

optimize our model selection approach with improved repeatability as the primary stage 289 

(Stage I) of our selection criterion – ensuring that only design choices that produce 290 

repeatable, reliable predictions across multiple images from the same woman’s visit, are 291 

passed through to the next stage of evaluation for classification performance. Our work 292 

builds on prior work highlighting improvements in repeatability of model predictions 293 

made by certain design choices (36,37). Our work also stands out among the paucity of 294 

current approaches that have utilized AI and DL for cervical screening (21–24); as 295 

aforementioned, these are largely plagued by overfitting and no consideration of 296 

repeatability. The dearth of work investigating repeatability of AI models designed for 297 

clinical translation in the current DL and medical image classification literature has 298 

meant that no rigorous study, to the best of our knowledge, has employed repeatability 299 

as a model selection criterion. We posit that our work could motivate further efforts to 300 

include repeatability as a key criterion for clinical AI model design. 301 

Subsequent design choices of our work are optimized to improve clinical 302 

translatability. Prior work (21–24) has shown us that while binary classifiers for cervical 303 

image-based cervical precancer+ detection can achieve competitive performance in a 304 

given internal seed dataset, they translate poorly when tested in different settings; 305 

uncertain cases can be misclassified, and predictions tend to oscillate between the two 306 

classes. This oscillation phenomenon could prevent a precancer+ woman from 307 

accessing further evaluation (i.e., false negative) or direct a normal woman through 308 

unnecessary, potentially invasive tests (i.e., false positive). False negatives are 309 

especially problematic in LMIC where screening is limited and represent a missed 310 
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opportunity to detect and treat precancer via excisional, ablative, or surgical methods, in 311 

order to avert cervical cancer (13,38). By incorporating a multi-class approach and a 312 

loss function that heavily penalizes extreme misclassifications, we improve reliability of 313 

the model-predicted normal and precancer+ categories, and further ensure that women 314 

ascribed to the intermediate classes are recommended for additional clinical evaluation. 315 

Finally, our choice of incorporating HPV genotyping together with model 316 

predictions and assessing model performance based on the ability to further stratify 317 

precancer+ risk associated with each of the four groups of high-risk HPV types, is very 318 

relevant for cervical screening. Recent work has shown that the presence of clinical 319 

variables as additional inputs to a neural network can both enhance model performance 320 

and lend interpretability to the value of these variables for clinical decision making 321 

(5,39,40). Incorporating relevant clinical data and prognostic variables is an approach 322 

that, we believe, should become standard for cancer classifier design, and in particular 323 

for neoplasms with well-known clinical causative agents. 324 

Our prior work has informed us that the HPV positive women in the NHS subset 325 

better represent a typical screening population: specifically, the NHS subset represents 326 

women who tested HPV-positive in any given population with an intermediate HPV 327 

prevalence (35). The other 4 subsets within the full 5-study dataset comprise of women 328 

referred from HPV-based/cytology-based referral clinics: this represents a colposcopy 329 

population, which has a higher disease prevalence. We optimize each stage (I, II and 330 

III) of our model selection approach on the full 5-study dataset to better capture the 331 

variability in cervical appearance on imaging. At the end of this selection, we find that 332 

our top models do not perform meaningfully differently among HPV positive women in 333 

the full 5-study dataset, highlighted by similar HPV-AVE AUC values across the models 334 

in the “HPV positive 5 study” column on Table 4. For the final selection of the top 335 

candidates, given our goal of using AVE as a triage tool for HPV positive women in a 336 

screening setting, we therefore narrow our focus to the combined HPV-AVE AUC in the 337 

NHS HPV positive subset (“HPV positive NHS” column on Table 4; Fig. 4) for each 338 

model on Test Set 1 and confirm performance of the top candidates on Test Set 2 339 

(Table 5, Fig. 5a). 340 

 341 
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Despite the multi-institutional, multi-device and multi-population nature of our final, 342 

collated dataset; the use of multiple held-aside test sets; and the exhaustive search 343 

space utilized for our algorithm choices, our work may be limited by sparse  external 344 

validation. Forthcoming work will evaluate our model selection choices on several 345 

additional external datasets, assessing out-of-the-box performance as well as various 346 

transfer learning, retraining and generalization approaches. Future work will additionally 347 

optimize our final model choice for use on edge devices, thereby promoting 348 

deployability and translation in LMIC. 349 

In this work, we utilized a large, multi-institutional, multi-device and multi-350 

population dataset of 9,462 women (17,013 images) as a seed and implemented a 351 

comprehensive model selection approach to generate a diagnostic classifier, termed 352 

AVE, able to classify images of the cervix into “normal”, “gray zone” and “precancer+” 353 

categories. Our model selection approach investigates various choices of model 354 

architecture, loss function, balancing strategy, dropout, and ground truth mapping, and 355 

optimizes for 1. improved repeatability; 2. classification performance; and 3. high-risk 356 

HPV-type-group combined risk-stratification. Our best performing model uniquely 1. 357 

alleviates overfitting by incorporating spatial MC dropout to regularize the learning 358 

process; 2. achieves strong repeatability of predicted class across repeat images from 359 

the same woman; 3. addresses rater and model uncertainty with ambiguous cases by 360 

utilizing a three-level ground truth and QWK as the loss function to penalize extreme 361 

(between boundary class) misclassifications; and 4. achieves a strong additional risk-362 

stratification when combined with the corresponding HPV type group within our 363 

screening population of interest. While our initial goal is to implement AVE primarily to 364 

triage HPV positive women in a screening setting, we expect our approach and selected 365 

model to also provide reliable predictions both for images obtained in the colposcopy 366 

setting, as well as in the absence of HPV results. Our model selection approach is 367 

generalizable to other clinical domains as well: we hope for our work to foster additional, 368 

carefully designed studies that focus on alleviating overfitting and improving reliability of 369 

model predictions, in addition to optimizing for improved classification performance, 370 

when deciding to use an AI approach for a given clinical task. 371 

 372 
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METHODS 373 

 374 

OVERVIEW 375 

This study set out to systematically compare the impact of multiple design choices on 376 

the ability of a deep neural network (DNN) to classify cervical images into delineated 377 

cervical cancer risk categories. We combined images of the cervix from five studies 378 

(Supp. Table 1) into a large convenience sample for analysis. We subsequently labelled 379 

the images into three distinct multi-level ground truth labelling approaches: 1. a 5-level 380 

map, which included normal, gray-low (GL), gray-middle (GM), gray-high (GH), and 381 

precancer+ (termed “5 level all patients”); 2. a 3-level map which combined the 382 

intermediate three labels (GL, GM, GH) into one single gray zone (termed “3 level all 383 

patients”); and 3. an additional 3-level map which excluded the GL and GH labels, and 384 

considered only the normal, GM and precancer+ labels (termed “3 level subsets”). The 385 

choice of multi-level ground truth labelling for model selection was motivated by our 386 

previous work and intuition revealing the failure of binary models, as well as our specific 387 

clinical use case. Table 1 highlights the population level and dataset level 388 

characteristics for our final, collated dataset used for training and evaluation, 389 

highlighting the distribution of histology, cytology, HPV types, population-level study, 390 

age, and number of images per patient within each of the five ground truth classes. 391 

We subsequently identified four key design decision categories that were 392 

systematically implemented, intersected, and compared. These included: model 393 

architecture, loss function, balancing strategy, and implementation of dropout, as 394 

highlighted in Fig. 1. The choice of balancing strategy for a particular model determined 395 

the ratios of randomly chosen train and validation sets used during training. We 396 

subsequently trained multiple classifiers using combinations of these design choices 397 

and generated predictions on a common test set (“Test Set 1”) which allowed for 398 

comparison and ranking of approaches based on repeatability, classification 399 

performance, and HPV type-group combined risk stratification. Finally, we confirmed the 400 

performance of the top models on a second test set (“Test Set 2”) to mitigate the impact 401 

of chance on the best performing approaches. 402 

 403 
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DATASET 404 

 405 

Included Studies 406 

Cervical images used in this analysis were collected from five separate study 407 

populations labelled NHS, ALTS, CVT, Biop and D Biop (Table 1; Fig. 1). Detailed 408 

descriptions for each study can be found in the supplementary methods section. The 409 

final dataset was collated into a large convenience sample comprising of a total of 410 

17,013 images from 9,462 women. 411 

 412 

Analysis population 413 

The convenience sample was split using random sampling into four sets for use in the 414 

evaluation of algorithm parameters. For the initial splits, women were randomly selected 415 

into either training, validation, or test (“Test Set 1”), at a rate of 60%, 10%, and 20% 416 

respectively. An additional hold-back test set (“Test Set 2”) of 10% of the total women 417 

was selected and used to confirm the findings of the best models from Test Set 1. All 418 

subsets maintained the same study and ground truth proportions as the full set (Table 1, 419 

Supp. Table 2). All images associated with the selected visit for each woman were 420 

included in the set for which the woman was selected; 7359 women (77.8%) had ≥ 2 421 

images. For a woman identified as precancer or worse (precancer+), the visit at or 422 

directly preceding the diagnosis was selected, for women identified as any of the gray 423 

zone categories (GL, GM, GH), the visit associated with the abnormality was selected, 424 

and for a woman identified as normal, a study visit, if there were more than one, was 425 

randomly selected for inclusion. 426 

 427 

Disease endpoint definitions 428 

Ground truth classification in all studies was based on a combination of histology, 429 

cytology, and HPV status with emphasis on strictly defining the highest and lowest 430 

categories while pushing marginal results into the middle categories. When referral 431 

colposcopy lacked cytology or HPV testing the results from the preceding referral 432 

screening visit were used. Ground truth classification was generally consistent across 433 

studies; however, the multiple cytology results available in NHS allowed for slightly 434 

different classifications. In all studies, histologically confirmed cancer, cervical 435 

intraepithelial neoplasia (CIN) 3, or adenocarcinoma in situ (AIS) was considered as 436 
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precancer+ regardless of referral cytology or HPV, while oncogenic HPV-positive-CIN2 437 

was also considered as precancer+. In NHS, women with 2 or more high grade 438 

squamous intraepithelial lesion (HSIL) cytology results that tested positive for HPV 16 439 

were classified as precancer+. In all studies, images identified as atypical squamous 440 

cells of undetermined significance (ASCUS) or negative for intraepithelial lesion or 441 

malignancy (NILM) with negative oncogenic HPV, or as NILM with missing HPV test 442 

were labelled as normal. All other combinations were labelled as equivocal called gray 443 

zone, with finer distinctions made for the five-level ground truth classification, splitting 444 

the gray zone further into GH, GM, and GL based on specific combinations of cytology 445 

and HPV (Supp. Table 1). 446 

 447 

Ethics 448 

All study participants signed a written informed consent prior to enrollment and sample 449 

collection. All five studies were reviewed and approved by multiple Institutional Review 450 

Boards including those of the National Cancer Institute (NCI), National Institutes of 451 

Health (NIH) and within the institution/country where the study was conducted. 452 

MODEL 453 

 454 

Algorithm Design 455 

A compendium of models were trained using a combination of different architectures, 456 

model types, loss functions, and balancing strategies. All models were trained for 75 457 

epochs with a batch size of 8 and a learning rate of 10-5. The model with the highest 458 

summed normal and precancer area under the Receiver Operating Characteristics 459 

(ROC) curve (AUC) on the validation set was selected as the best model during training. 460 

Before training, all images were cropped with bounding boxes generated from a 461 

YOLOv5 (41) model trained for cervix detection, resized to 256x256 pixels, and scaled 462 

to intensity values from 0 to 1. During training, affine transformations were applied to the 463 

image for data augmentation. 464 

The following popular classification architectures were selected based on 465 

literature review and preliminary experiments indicating acceptable baseline 466 

performance: ResNet50 (42), ResNest50 (43), DenseNet121 (44), and Swin 467 

Transformer (45). 468 
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Four different loss functions were evaluated, three for classification models and one for 469 

ordinal models. For the classification models, we trained with standard cross entropy 470 

(CE), focal (FOC, Equation 1) (46), and quadratic weighted kappa (QWK, Equation 2) 471 

(47) loss functions, while all ordinal models leveraged the CORAL loss (Equation 3) 472 

(48). QWK is based on Cohen’s Kappa coefficient; unlike unweighted kappa, QWK 473 

considers the degree of disagreement between ground truth labels and model 474 

predictions and penalizes misclassifications quadratically. Relevant equations are 475 

highlighted below: 476 𝐹𝑂𝐶(𝑝𝑡) = −𝛼𝑡 (1 − 𝑝𝑡)𝛾 log(𝑝𝑡)    (1) 477 

 478 𝑝𝑡 = { 𝑝, 𝑓𝑜𝑟 𝑐𝑙𝑎𝑠𝑠 = 11 − 𝑝, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  479 

 480 

Here, 𝛼𝑡 is a weighting factor used to address class imbalance, also present in standard 481 

cross-entropy loss implementations, 𝛾 ≥ 0 is a tunable focusing parameter and 𝑝𝑡 is the 482 

predicted probability of the ground truth class. We used values of 𝛼𝑡 = 0.25 and 𝛾 = 2, 483 

as reported and optimized in previous work (46). Preliminary experiments were also 484 

conducted, iterating across 𝛼𝑡 = 0.25, 1, 𝑎𝑛𝑑 inverse class frequency as well as iterating 485 

across 𝛾 = 1.5, 2, 3 𝑎𝑛𝑑 4 , before arriving at the optimal choices of 𝛼𝑡 = 0.25 and 𝛾 = 2. 486 𝑄𝑊𝐾 =  ∑ 𝜔𝑖𝑗𝑂𝑖𝑗𝑖,𝑗∑ 𝜔𝑖𝑗𝐸𝑖𝑗𝑖,𝑗      (2) 487 

Here, 𝜔 is the weight matrix for quadratic penalization for every pair 𝑖, 𝑗  (𝜔𝑖𝑗 = (𝑖−𝑗)2(𝐶−1)2), C 488 

is the number of classes, O is the confusion matrix represented by the matrix 489 

multiplication between the true value and prediction vectors, and E is the outer product 490 

between the true value and prediction vectors. 491 𝐿𝑐𝑜𝑟𝑎𝑙 =  𝑙𝑜𝑔(𝜎(�̂�))𝑦 +  𝑙𝑜𝑔(1 −  𝜎(�̂�))(1 − 𝑦)     (3) 492 

Here σ is the sigmoid function, ŷ is the model’s output, and y is the level-encoded 493 

ground truth. 494 

Three balancing strategies were evaluated to deal with the dataset’s class 495 

imbalance: weighting the loss function, modifying the loading sampler, and rebalancing 496 

the training and validation sets. These strategies were only applied during the training 497 
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process and were compared against training without balancing. To emphasize the least 498 

frequent labels, one approach was to apply weights to the loss function in proportion to 499 

the inverse of the occurrence of each class label. A second approach was to reweight 500 

the loading sampler to present images associated with each label equally as well as 501 

with specific weights – 2:1:1, 1:1:2, or 1:1:4 (Normal : Gray Zone : Precancer+). The 502 

final balancing strategy, henceforth termed “remove controls”, involved randomly 503 

removing “normal” (class 0) women from the training and validation sets and 504 

reallocating them to Test Set 1, in order to better rebalance the training and validation 505 

set labels; in this approach, a total of 2383 women (4555 images) from the initial train 506 

set, and 410 women (780 images) from the initial validation set were reallocated to the 507 

test set. The final class balance in the train and validation sets for the “remove controls” 508 

balancing strategy amounted to ~40% normal : 40% gray zone (including GL, GM, and 509 

GH) : 20% precancer+ (Supp. Table 3). 510 

Finally, we evaluated multiple approaches to dropping layers during training to 511 

alleviate overfitting and regularize the learning process by randomly removing neural 512 

connections from the model (49). Spatial dropout drops entire feature maps during 513 

training: a rate of 0.1 was applied after each dense layer for the DenseNet models, and 514 

after each residual block for the ResNet and ReNest models. The Swin Transformer 515 

models were used as implemented in (45). Monte Carlo (MC) dropout was additionally 516 

implemented, which can be thought of as a Bayesian approximation (50) generated by 517 

enabling dropout during inference and averaging 50 MC samples. MC models in this 518 

work refer to models trained using dropout combined with the inference prediction 519 

derived from the 50 forward passes. 520 

Statistical analysis 521 

Our model selection approach (Fig. 2) consisted of three stages, each utilizing model 522 

predictions from Test Set 1. After selection of the 10 best models following stage III, we 523 

further evaluated their performance in Test Set 2 to confirm results from Test Set 1.  524 

In Stage I of our model selection approach, we evaluated models based on their 525 

ability to classify pairs of cervical images reliably and repeatedly, termed the 526 

repeatability analysis. We calculated the QWK values on the discrete class outcomes 527 

for paired images from the same woman and visit for all models, calculating the mean, 528 
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median, and inter-quartile range of the QWK for each design choice. We subsequently 529 

ran an adjusted multivariate linear regression of the median QWK vs. the various design 530 

choice categories and computed the β values and corresponding p-values for each 531 

design choice, holding the design choice with the highest median QWK within each 532 

design choice category as reference. This allowed us to gauge the relative impacts from 533 

the various design choices within each of the model architecture, loss function, 534 

balancing strategy, dropout, and ground truth categories. 535 

In Stage II of our approach, we evaluated classification performance based on 536 

two key metrics: 1. Youden’s index, which captures the overall sensitivity and specificity, 537 

and 2. the degree of extreme misclassifications; this is termed the classification 538 

performance analysis. We computed both sets of metrics for each of the design choices 539 

within each design choice category. Our choice to include misclassification of the 540 

extreme classes (i.e., precancer+ classified as normal or extreme false negative, and 541 

normal classified as precancer+ or extreme false positive) as metrics was motivated by 542 

the importance of these metrics for triage tests (51). Similar to the repeatability analysis, 543 

we calculated the mean, median, and interquartile ranges for these metrics, as well as 544 

conducted separate multivariate linear regressions of each of the three median statistics 545 

vs. the various design choices categories; we computed the β values and corresponding 546 

p-values holding the design choice with the lowest median Youden’s index within each 547 

design choice category as reference. This allowed for comparison across design 548 

choices overall and within each design choice category.  549 

In Stage III of our model selection approach, we selected the best individual 550 

models determined by their ability to further stratify the risk of precancer associated with 551 

each of four groups of oncogenic high-risk HPV-types. HPV screening is known to have 552 

an extremely high negative predictive value (52,53), and our approach was motivated 553 

by the goal of designing an algorithm to triage HPV positive primary screening. The 554 

HPV types were grouped hierarchically in four groupings, in order of decreasing risk 555 

(54): 1. HPV 16; 2. HPV 18 or 45; 3. HPV 31, 33, 35, 52, 58; and 4. HPV 39, 51, 56, 59, 556 

68. In order to assess the ability of a model to further stratify HPV associated risk, we 557 

ran logistic regression models on a binary precancer+ vs. <precancer variable. These 558 

models were adjusted for hierarchical HPV type group and the model predicted class. 559 
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We subsequently calculated the difference in AUC between the model adjusted for both 560 

predicted class and HPV type group and the model adjusted only for HPV type group 561 

and highlighted the 10 models with the best additional stratification (Table 4, Fig. 4). 562 

Finally, we computed additional classification performance metrics (1. % 563 

precancer+ as normal; and 2. % normal as precancer+), and repeatability metrics (1. 564 

the % 2-class disagreement between image pairs; and 2. QWK values, on the discrete 565 

class outcomes for paired images across woman) for each of the top 10 models on Test 566 

Set 2 (Table 5, Fig. 5), in order to further confirm the performance of these models. 567 

Additionally, to aid better visualization of predictions at the individual model level, we 568 

generated Figure 6 which compares model predictions across 60 images for each of the 569 

top 10 models. To generate this comparison, we first summarized each model’s output 570 

as a continuous severity 𝑠𝑐𝑜𝑟𝑒. Specifically, we utilized the ordinality of our problem and 571 

defined the continuous severity 𝑠𝑐𝑜𝑟𝑒 as a weighted average using softmax probability 572 

of each class as described in Equation 3, where 𝑘 is the number of classes and 𝑝𝑖 the 573 

softmax probability of class 𝑖. 574 

𝑠𝑐𝑜𝑟𝑒 =  ∑ 𝑝𝑖  × 𝑖𝑘
𝑖=0  575 

Put another way, the 𝑠𝑐𝑜𝑟𝑒 is equivalent to the expected value of a random variable that 576 

takes values equal to the class labels, and the probabilities are the model’s softmax 577 

probability at index 𝑖 corresponding to class label 𝑖. For a three-class model, the values 578 

lie in the range 0 to 2. We next computed the average of the 𝑠𝑐𝑜𝑟𝑒 for each image 579 

across all 10 models and arranged the images in order of increasing 𝑠𝑐𝑜𝑟𝑒 within each 580 

class. From this 𝑠𝑐𝑜𝑟𝑒-ordered list, we randomly selected 20 images per class, 581 

maintaining the distribution of mean scores within each class, and arranged the images 582 

in order of increasing average 𝑠𝑐𝑜𝑟𝑒 within each class in the top row of Fig. 6, color 583 

coded by ground truth. We subsequently compared the predicted class across the 10 584 

models for each of these 60 images (bottom 10 rows of Figure 5), maintaining the 585 

images in the same order as the ground truth row and color-coded by model predicted 586 

class. This enabled us to gain a deeper insight and to compare model performance at 587 

the individual image level. 588 
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FIGURE 1: Model selection and optimization overview. The top panel highlights the five different 

studies (NHS, ALTS, CVT, Biop and D Biop; see Table 1, Supp. Table 1, and Supp. Methods for 

detailed description and breakdown of the studies by ground truth) used to generate the final dataset 

on the middle panel, which is subsequently used to generate a train and validation set, as well as two 

separate test sets. The intersections of model selection choices on the bottom panel are used to 

generate a compendium of models trained using the corresponding train and validation sets and 

evaluated on Test Set 1, optimizing for repeatability, classification performance, reduced extreme 

misclassifications and combined risk-stratification with high-risk human papillomavirus (HPV) types. 

Test Set 2 is utilized to verify the performance of top candidates that emerge from evaluation on Test 

Set 1. SWT: Swin Transformer; QWK: quadratic weighted kappa; CORAL: CORAL (consistent 

rank logits) loss, as described in the METHODS section. 
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FIGURE 2: Model selection approach and statistical analysis utilized in our automated visual 

evaluation (AVE) classifier. IQR: interquartile range; AUC: area under the receiver operating 

characteristics (ROC) curve; CI: confidence interval. 
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FIGURE 3: (a) Median quadratic weighted kappa (QWK) and adjusted linear regression (LR) β across 

the various design choices, as part of the repeatability analysis. (b) Median Youden’s index, median % 

precancer+ as normal (% p as n) and median % normal as precancer+ (% n as p), with the 

corresponding adjusted LR β values across the various design choices (after filtering for repeatability), 

as part of the classification performance analysis. Muted bars indicate design choices dropped at each 

stage. SWT: Swin Transformer; CORAL: CORAL (consistent rank logits) loss, as described in the 

METHODS section; ref: reference category. 
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FIGURE 4: (a) Difference between HPV+AVE combined AUC and HPV-only AUC in the HPV 

positive NHS subset for top 10 models (b) Receiver operating characteristics (ROC) curves for each 

of the top 4 best performing models in the HPV positive NHS subset of the full dataset The plotted 

lines indicate 1. HPV AUC, 2. AVE AUC and 3. combined HPV-AVE AUC, for models (i) 36, (ii) 

65, (iii) 34, and (iv) 81. HPV: human papillomavirus; AVE: automated visual evaluation, which refers 

to the classifier; AUC: area under the ROC curve. 
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FIGURE 5: (a) Classification and repeatability results on Test Set 2 for top 10 best performing models, 

highlighting the % precancer+ as normal (%p as n) and % normal as precancer+ (%n as p) (left), the % 

2-class disagreement between image pairs across women (middle), and the quadratic weighted kappa 

(QWK) values on the discrete class outcomes for paired images across women (right) for each model. 

(b) Representative plots for the top performing model (# 36) on Test Set 2 - (i) Receiver operating 

characteristics (ROC) curves for the normal vs rest (Class 0 vs. rest) and precancer+ vs. rest (Class 2 

vs. rest) cases, (ii) confusion matrix, (iii) histogram of model predicted continuous 𝑠𝑐𝑜𝑟𝑒, color coded 

by ground truth, and (iv) Bland Altman plot of model predictions, color coded by ground truth: each 

point on this plot refers to a single woman, with the y-axis representing the maximum difference in 

the score across repeat images per woman, and the x-axis plotting the mean of the corresponding score 

across all repeat images per woman. 
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FIGURE 6: Model level comparison across top-10 best performing models. 60 images were randomly selected (see METHODS: Statistical 

Analysis section) and arranged in order of increasing mean score within each ground truth class in the top row (labelled “Ground Truth”). 
The model predicted class for the top 10 models for each of these 60 images is highlighted in the bottom rows, where the images follow 

the same order as the top row. The color coding in the top row represents ground truth while in the bottom 10 rows represent the model 

predicted class. Green: Normal, Gray: Gray Zone, and Red: Precancer +, as highlighted in the legend. Each image corresponds to a 

different woman. 
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TABLE 1: Baseline characteristics of women in each of the ground truth categories, highlighting proportions by 

histology, cytology, human papillomavirus (HPV) type, study, as well as age and # images/woman. The detailed 

study descriptions and ground truth assignment by study can be found in Supp. Table 1 and in the Supp. Methods 

section. CIN: cervical intraepithelial neoplasia; AIS: adenocarcinoma in situ; ASC-H: atypical squamous cells, 

cannot rule out high grade squamous intraepithelial lesion; HSIL: high-grade squamous intraepithelial lesion; 

LSIL: low-grade squamous intraepithelial lesion; ASCUS: atypical squamous cells of undetermined significance; 

SD: standard deviation; IQR: interquartile range. 

Table 1: Baseline characteristics of women in each of the ground truth categories 

Characteristics 

Ground truth categories  

no. (%) 

Normal 

(N=6092) 

Gray Low 

(N=867) 

Gray Middle 

(N=918) 

Gray High 

(N=529) 

Precancer+ 

(N=1056) 

Histology                     

Cancer 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 23 (2.2%) 

CIN3/AIS 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 571 (54.1%) 

CIN2 0 (0.0%) 0 (0.0%) 1 (0.1%) 66 (12.5%) 456 (43.2%) 

<CIN2 873 (14.3%) 467 (53.9%) 580 (63.2%) 280 (52.9%) 6 (0.6%) 

No histology 5219 (85.7%) 400 (46.1%) 337 (36.7%) 183 (34.6%) 0 (0.0%) 

Cytology                     

ASC-H/HSIL 0 (0.0%) 164 (18.9%) 110 (12.0%) 481 (90.9%) 647 (61.3%) 

LSIL 0 (0.0%) 220 (25.4%) 586 (63.8%) 15 (2.8%) 209 (19.8%) 

ASCUS 4288 (70.4%) 95 (11.0%) 222 (24.2%) 19 (3.6%) 112 (10.6%) 

Normal 1801 (29.6%) 386 (44.5%) 0 (0.0%) 11 (2.1%) 67 (6.3%) 

Other/missing 3 (0.0%) 2 (0.2%) 0 (0.0%) 3 (0.6%) 21 (2.0%) 

HPV type                     

16 0 (0.0%) 95 (11.0%) 172 (18.7%) 174 (32.9%) 507 (48.0%) 

18, 45 0 (0.0%) 66 (7.6%) 141 (15.4%) 54 (10.2%) 123 (11.6%) 

31,33,35,52,58 0 (0.0%) 187 (21.6%) 346 (37.7%) 174 (32.9%) 312 (29.5%) 

39,51,56,59,68 0 (0.0%) 130 (15.0%) 250 (27.2%) 59 (11.2%) 78 (7.4%) 

Negative 6087 (99.9%) 382 (44.1%) 6 (0.7%) 68 (12.9%) 26 (2.5%) 

Missing 5 (0.1%) 7 (0.8%) 3 (0.3%) 0 (0.0%) 10 (0.9%) 

Study                     

NHS 4518 (74.2%) 114 (13.1%) 127 (13.8%) 34 (6.4%) 173 (16.4%) 

ALTS 943 (15.5%) 231 (26.6%) 314 (34.2%) 171 (32.3%) 363 (34.4%) 

CVT 424 (7.0%) 297 (34.3%) 208 (22.7%) 49 (9.3%) 195 (18.5%) 

Biop 66 (1.1%) 51 (5.9%) 63 (6.9%) 32 (6.0%) 132 (12.5%) 

D Biop 141 (2.3%) 174 (20.1%) 206 (22.4%) 243 (45.9%) 193 (18.3%) 

Age (30-49)                     

Mean (SD) 34.5 (6.8) 30.7 (5.8) 30.1 (5.0) 30.3 (5.4) 30.6 (5.6) 

Median (IQR) 33 (29-40) 29 (26-33) 29 (26-32) 29 (26-32) 29 (26-33) 

# images/woman                     

Mean (SD) 1.9 (0.3) 1.4 (0.6)  1.6 (0.6) 1.6 (0.6) 1.7 (0.6) 

Median (IQR) 2 (2-2) 1 (1-2) 2 (1-2) 2 (1-2) 2 (1-2) 
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TABLE 2: Repeatability analysis highlighting quadratic weighted kappa (QWK) summary statistics – 

mean, median with interquartile range (IQR) and adjusted linear regression (LR) β values – for design 

choices within each design choice category for our automated visual evaluation (AVE) classifier. Rows 

shaded in salmon indicate design choices filtered out at this stage due to poor repeatability. SWT: 

Swin Transformer; CORAL: CORAL (consistent rank logits) loss, as described in the METHODS 

section; ref: reference category. 

 

Table 2: Repeatability analysis 

Design 

Choice 

Category 

Design Choices 

QWK summary 

Mean (SD) Median (IQR) Adjusted LR β 

Architecture 

densenet121 0.743 (0.062) 0.748  (0.719 - 0.786) -0.016 

resnest50 0.675 (0.069) 0.649  (0.630 - 0.743) -0.083** 

resnet50 0.752 (0.048) 0.760  (0.736 - 0.776) -0.018 

SWT 0.743 (0.079) 0.748 (0.671 - 0.815) ref 

Loss 

Function 

Cross Entropy 0.725 (0.069) 0.738  (0.671 - 0.771) -0.039** 

Focal 0.717 (0.070) 0.730  (0.654 - 0.773) -0.078** 

QWK 0.779 (0.042) 0.782  (0.752 - 0.809) ref 

CORAL 0.678 (0.056) 0.649  (0.636 - 0.729) -0.069** 

Balancing 

strategy 

Balanced loss 0.703 (0.107) 0.751  (0.647 - 0.769) -0.053** 

Balanced sampling 0.729 (0.057) 0.735  (0.675 - 0.781) -0.046** 

Remove controls 0.775 (0.054) 0.777  (0.744 - 0.809) ref 

Sampling 1:1:2 0.744 (0.055) 0.758  (0.728 - 0.783) -0.042** 

Sampling 1:1:4 0.776 (0.033) 0.772  (0.752 - 0.798) -0.026 

Sampling 2:1:1 0.764 (0.017) 0.762  (0.750 - 0.778) -0.045 

None 0.706 (0.069) 0.721  (0.638 - 0.749) -0.019 

Dropout 

No Dropout 0.663 (0.072) 0.649  (0.620 - 0.723) -0.088** 

Train Dropout only 0.725 (0.058) 0.738  (0.681 - 0.759) -0.035** 

Monte Carlo Dropout 0.760 (0.059) 0.772  (0.733 - 0.802) ref 

Multilevel 

Ground 

Truth 

3 level all patients 0.740 (0.068) 0.752  (0.719 - 0.780) ref 

3 level subsets 0.707 (0.070) 0.709  (0.637 - 0.778) -0.026** 

5 level all patients 0.705 (0.064) 0.721  (0.650 - 0.748) -0.025 
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TABLE 3: Classification performance analysis highlighting Youden’s index (YI) and extreme misclassification statistics – median with 

interquartile range (IQR) and adjusted linear regression (LR) β values – for design choices within each design choice category for our 

automated visual evaluation (AVE) classifier, after filtering for repeatability (Table 2). Rows shaded in salmon indicate design choices 

filtered out at this stage due to poor classification performance (as captured by the Youden’s index). Rows shaded in gray indicate design 
choices subsequently filtered out due to a combination of poor classification performance (as captured by the rate of extreme 

misclassifications) and/or practical reasons. SWT: Swin Transformer; ref: reference category. 

 

Table 3: Classification performance analysis 

Design 

Choice 

Category 

Design Choices 

Youden's index (YI) 
Extreme misclassifications 

% precancer+ as normal % normal as precancer+ 

Median (IQR) 
Adjusted 

LR β 
Median (IQR) 

Adjusted 

LR β 
Median (IQR) 

Adjusted 

LR β 

Architecture 

densenet121 154.5  (151.5 - 156.3) 6.6** 17.0 (10.9 - 23.2) -6.5** 10.3 ( 6.8 - 13.6) -3.6 

resnet50 155.7 (151.7 - 157.9) 8.3** 15.6 (11.6 - 23.9) -4.9** 9.3 ( 5.7 - 12.2) -5.4** 

SWT 146.3  (134.7 - 148.0) ref 16.3 (13.0 - 56.5) ref 9.5 ( 4.7 - 14.6) ref 

Loss 

Function 

Cross Entropy 151.6  (144.1 - 155.7) ref 17.4 (11.2 - 37.3) ref 10.2 ( 5.3 - 14.5) ref 

QWK 155.6 (153.7 - 157.6) 3.4 16.3 (11.6 - 21.0) -4.8** 9.7 ( 7.6 - 11.7) -0.9 

Balancing 

Strategy 

Balanced loss 151.6  (142.3 - 154.4) 4.2 4.3 ( 3.6 -  5.8) -35.2** 18.8 (10.3 - 23.0) 13.6** 

Balanced sampling 155.3  (153.3 - 157.8) 10.5** 14.5 (13.0 - 18.1) -26.3** 10.3 ( 8.7 - 11.9) 4.9** 

Remove controls 156.0  (153.5 - 156.9) 2.7 13.8 (10.9 - 18.1) -26.6** 7.7 ( 4.2 - 10.3) 2.9 

Sampling 1:1:2 155.0  (153.6 - 156.0) 5.4 16.3 (12.0 - 21.4) -21.0** 14.1 (11.3 - 17.4) 10.1** 

Sampling 1:1:4 156.2  (151.4 - 158.4) 8.2** 9.8 ( 6.2 - 14.1) -26.4** 27.4 (15.9 - 38.5) 21.6** 

Sampling 2:1:1 154.0  (152.9 - 154.5) 5.0 24.3 (23.2 - 25.0) -12.7** 9.6 ( 7.4 - 11.4) 4.2 

None 144.1  (135.2 - 148.9) ref 40.6 (37.0 - 55.8) ref 5.0 ( 2.3 -  6.6) ref 

Dropout 
Train Dropout only 153.5 (148.8 - 155.7) ref 18.8 (12.3 - 25.4) ref 10.3 ( 6.7 - 14.1) ref 

Monte Carlo Dropout 155.0  (146.0 - 157.2) 0.5 14.5 ( 9.4 - 22.5) -2.5 9.7 ( 5.1 - 14.2) -0.7 

Multilevel 

Ground 

Truth 

3 level all patients 154.7 (151.6 - 156.8) 9.4** 15.9 (10.5 - 23.6) -3.0 10.8 ( 6.8 - 15.2) 3.1 

3 level subsets 154.2  (153.0 - 156.7) 8.5** 19.9 (18.1 - 23.2) 6.0 11.1 ( 9.5 - 13.4) 5.9** 

5 level all patients 141.8  (135.3 - 151.8) ref 13.4 (10.9 - 50.7) ref 6.2 ( 4.8 -  9.5) ref 
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TABLE 4: Performance of top individual models following human papillomavirus (HPV) group combined risk stratification (Stage III of 

model selection) on Test Set 1, within the HPV-positive full-dataset and HPV-positive NHS subset. The models are in decreasing order 

of area under the receiver operating characteristics (ROC) curve (AUC) on the human papillomavirus (HPV) positive NHS subset of the 

full dataset. AVE: automated visual evaluation, which refers to the classifier; CI: confidence interval. 

*Difference  = Combined HPV+AVE AUC minus HPV-only AUC. 
 

Table 4: Selection of top individual models with best additional risk stratification 

Model 

# 
Loss Architecture 

Balancing 

strategy 

Additional risk stratification 

HPV positive 5-study (full dataset) HPV positive NHS subset 

HPV+AVE 

AUC 
Difference* 95%CI 

HPV+AVE 

AUC 
Difference* 95%CI 

36 QWK densenet121 
Remove 

controls 
0.683 0.019 0.009 - 0.041 0.887 0.164 0.086 - 0.261 

65 CE resnet50 
Balanced 

loss 
0.684 0.020 0.008 - 0.041 0.862 0.139 0.064 - 0.233 

34 QWK densenet121 
Balanced 

sampling 
0.677 0.013 0.004 - 0.031 0.859 0.137 0.063 - 0.234 

81 QWK resnet50 
Balanced 

sampling 
0.681 0.018 0.006 - 0.039 0.859 0.136 0.061 - 0.239 

79 CE resnet50 
Remove 

controls 
0.677 0.014 0.002 - 0.029 0.825 0.102 0.031 - 0.189 

77 CE densenet121 
Remove 

controls 
0.689 0.025 0.011 - 0.049 0.814 0.091 0.033 - 0.191 

76 QWK resnet50 
Remove 

controls 
0.677 0.013 0.003 - 0.029 0.807 0.084 0.028 - 0.184 

28 CE densenet121 
Balanced 

loss 
0.709 0.046 0.027 - 0.074 0.798 0.076 0.023 - 0.152 

63 CE resnet50 
Balanced 

sampling 
0.688 0.024 0.012 - 0.049 0.789 0.067 0.024 - 0.171 

30 CE densenet121 
Balanced 

sampling 
0.702 0.038 0.022 - 0.068 0.788 0.065 0.018 - 0.160 
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TABLE 5: Classification and repeatability results on Test Set 2 for top 10 best performing models, 

highlighting % precancer+ as normal (% p as n) and % normal as precancer+ (% n as p), the % 2-class 

disagreement between image pairs across women (% 2-Cl. D.), and the quadratic weighted kappa 

(QWK) values on the discrete class outcomes for paired images across women, for each model. EM: 

extreme misclassifications. 

 

Table 5: Classification and Repeatability results on Test Set 2 for top performing models 

Model # Loss Architecture Balancing Strategy 
Classification (EM) Repeatability 

% p as n % n as p %2-Cl. D. QWK 

36 QWK densenet121 Remove controls 5.85% 4.16% 0.69% 0.856 

65 CE resnet50 Balanced loss 6.43% 9.26% 2.48% 0.819 

34 QWK densenet121 Balanced sampling 11.11% 3.64% 1.10% 0.833 

81 QWK resnet50 Balanced sampling 5.85% 5.97% 0.96% 0.839 

79 CE resnet50 Remove controls 8.19% 1.30% 0.41% 0.855 

77 CE densenet121 Remove controls 15.20% 1.73% 0.55% 0.833 

76 QWK resnet50 Remove controls 10.53% 3.72% 0.69% 0.840 

28 CE densenet121 Balanced loss 2.92% 13.77% 3.99% 0.774 

63 CE resnet50 Balanced sampling 11.70% 4.24% 2.20% 0.789 

30 CE densenet121 Balanced sampling 18.71% 6.67% 3.44% 0.783 
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SUPPLEMENTARY INFORMATION 1 

SUPPLEMENT SECTION 1: SUPPLEMENTARY METHODS 2 

(A) INDIVIDUAL DATASET DESCRIPTIONS  3 

 4 

(i) Natural History Study (NHS)  5 

The Natural History Study (NHS) is a population-based prospective study carried out in 6 

Guanacaste Costa Rica between 1993 and 2000 (35). This cohort enrolled women 7 

followed in either an active cohort with visits every 6-12 months or a passive cohort 8 

screened once during follow-up between 5-7 years after enrollment. Screening visits 9 

included collection of specimens for cytology, human papillomavirus (HPV) testing, and 10 

digital images, while histology was collected among women with abnormal colposcopic 11 

evaluation. Cytology was assessed via both conventional and liquid-based methods as 12 

well as a first-generation automated approach. HPV testing by MY09/MY11 polymerase 13 

chain reaction (PCR) consensus primers was performed on samples collected by 14 

Dacron swabs, however, these results were not used for colposcopy referral during the 15 

study. Two cervical images per visit were collected at each screening visit using a 16 

Cervigram cerviscope, which were later digitized and compressed for storage (55). 17 

 18 

(ii) ASCUS/LSIL Triage Study for Cervical Cancer (ALTS) 19 

The ASCUS/LSIL Triage Study for Cervical Cancer (ALTS) is a multi-center randomized 20 

trial of US women conducted between 1996 and 2000. This study enrolled women 21 

attending colposcopy clinics with referral cytology of either atypical squamous cells of 22 

undetermined significance (ASCUS) or low-grade squamous intraepithelial lesion 23 

(LSIL). Women were followed for 2 years with screening visits every 6 months. 24 

Screening visit specimen collection included two cervical specimens, one for liquid-25 

based cytology and one for HPV testing, as well as cervical images. Referral to 26 

colposcopy and histologic sampling varied by study visit, including enrollment referral 27 

following the referral cytology result as well as the randomized HPV result, referral from 28 

follow-up visit due to high-grade squamous intraepithelial lesion (HSIL) cytology, and 29 

exit colposcopy for all women. Type-specific HPV results were not used for patient 30 

management (56). Cytologic diagnosis were based on ThinPrep slides created from 31 
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cytobrush collected exfoliated cells eluted into PreservCyt-media specimens, with both 32 

clinical and quality control (QC) evaluations performed. HPV typing was performed by 33 

PCR on specimens collected in PreservCyt. A cerviscope was used to collect two 34 

images per screening visit and were later converted to a digital format in the same 35 

process used for NHS images. 36 

 37 

(iii) Costa Rica Vaccine Trial (CVT) 38 

The CVT study is a double-blind, controlled, randomized, phase III study of the efficacy 39 

of an HPV16/18 virus-like particle (VLP) vaccine in the prevention of advanced cervical 40 

intraepithelial neoplasia (cervical intraepithelial neoplasia (CIN) 2, CIN3, 41 

adenocarcinoma in situ (AIS) and invasive cervical cancer) associated with HPV 16 or 42 

HPV 18 cervical infection in healthy young adult women in Costa Rica, Guanacaste, 43 

and parts of the Puntarenas provinces (57). Women were randomized to either the 44 

HPV16/18 or control group and followed up for 4 years as part of this study. Images 45 

were collected from women who were only referred for colposcopic evaluation, who 46 

remained at colposcopy until they had two consecutive results within normal limits. 47 

Images were acquired using a Nikon digital single-lens reflex (DSLR) camera with a 48 

beam splitter of colposcopy imaging and were subsequently collected using a boundary 49 

marking tool. 50 

 51 

(iv) Biopsy study (Biop): 52 

The Biopsy Study (Biop) was a population-based study of women referred to 53 

colposcopy for abnormal cervical cancer screening results conducted at the University 54 

of Oklahoma Health Sciences Center (OUHSC) from February 2009 to August 2011, 55 

designed with the goal of utilizing biopsies to improve detection of cervical precancer. 56 

HPV testing was conducted via the LINEAR ARRAY® multiplexed PCR-based assay. 57 

Histologic interpretation of biopsy and LEEP specimens was conducted using CIN 58 

terminologies. All women enrolled in the study had a colposcopy performed and at least 59 

one biopsy. Images were acquired using a Nikon DSLR camera with a beam splitter of 60 

colposcopy imaging and were subsequently annotated and collected using the 61 

boundary marking tool (59). 62 



 

39 

 

(v) Biopsy Study – Europe (D Biop) 63 

Fifth, we used data and images from a European study (D Biop) designed to investigate 64 

high-risk HPV genotypes in women with histologic CIN2/3 referred on the basis of 65 

abnormal cytology. HPV typing was done on cytology and CIN2/3 biopsies. If the whole-66 

tissue section of the biopsy was positive for multiple high-risk HPV types, LCM-PCR 67 

was performed. Images were acquired using a DSLR camera (60). 68 

 69 

 70 
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SUPPLEMENT SECTION 2: SUPPLEMENTARY TABLES AND FIGURES 

Histology Cytology HPV 
Study 

NHS ALTS CVT Biop D Biop 

Cancer   Cancer Cancer Cancer Cancer Cancer 

CIN3/AIS   Precancer Precancer Precancer Precancer Precancer 

CIN2  

Onco+ Precancer Precancer Precancer Precancer Precancer 

Onco- Gray High Gray High Gray High Gray High Gray High 

Missing Gray High Gray High  Gray High Gray High 

CIN1  Onco+ Gray Middle  

Normal or 

no histology 

Multiple HSIL 
HPV16+ Precancer 

 
Onco+, not HPV16 Gray High 

HSIL 

Onco+ Gray Middle Gray High Gray High Gray High Gray High 

Onco- Gray Low Gray Low Gray Low Gray Low Gray Low 

Missing Gray Low Gray High Gray High  Gray High 

ASCUS/LSIL Onco+ Gray Middle Gray Middle Gray Middle Gray Middle Gray Middle 

LSIL Onco- Gray Low Gray Low Gray Low Gray Low Gray Low 

ASCUS 
Onco- Normal Normal Normal Normal Normal 

Missing Normal Gray Low Gray Low  Gray Low 

NILM 

Onco+ Gray Low Gray Low Gray Low Gray Low Gray Low 

Onco- Normal Normal Normal Normal Normal 

Missing  Normal Normal Normal Normal 

Missing 
Onco+ 

 
Gray Low 

Onco- Normal 

Supplementary Table 1. Detailed breakdown of ground truth definitions by study. 
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Supplementary Table 2: Detailed breakdown of full 5-study dataset by set (train, validation, test 1, test 2), study and ground truth. ni=total # images; nw=total # women; (a) Ground 

truth ratios (by images or women) within each set (train/validation/test 1/test 2) = Total # (images or women) in the ground truth category of set ÷ Total # (images or women) in the 

set; (b) Proportion of total (images or women) in each set (train/validation/test 1/test 2) = Total # (images or women) in the set ÷ Total # (images or women) in the full dataset.

Supplementary Table 2: Detailed breakdown of full 5-study dataset by set (train, validation, test 1 or test 2), study and ground truth 

STUDY 

GROUND TRUTH CATEGORIES GRAND TOTAL BY STUDY 

(ni=17013, nw=9462) no. (%) 

Normal (ni=11630, nw=6092) Gray Zone (ni=3586, nw=2314) Precancer+ (ni=1797, nw=1056) no. (%) 

# images # women # images # women # images # women # images # women 

Train Set 

NHS 5407 (77.4%) 2711 (74.2%) 330 (15.3%) 165 (11.9%) 206 (19.0%) 104 (16.4%) 5943 (58.1%) 2980 (52.4%) 

ALTS 1129 (16.2%) 566 (15.5%) 853 (39.6%) 430 (30.9%) 434 (40.1%) 218 (34.3%) 2416 (23.6%) 1214 (21.4%) 

CVT 253 (3.6%) 253 (6.9%) 336 (15.6%) 335 (24.1%) 121 (11.2%) 119 (18.7%) 710 (6.9%) 707 (12.4%) 

Biop 93 (1.3%) 40 (1.1%) 192 (8.9%) 88 (6.3%) 164 (15.2%) 79 (12.4%) 449 (4.4%) 207 (3.6%) 

D Biop 105 (1.5%) 85 (2.3%) 444 (20.6%) 374 (26.9%) 157 (14.5%) 116 (18.2%) 706 (6.9%) 575 (10.1%) 

TOTAL 6987 (100.0%) 3655 (100.0%) 2155 (100.0%) 1392 (100.0%) 1082 (100.0%) 636 (100.0%) 10224 (100.0%) 5683 (100.0%) 

(a) 68.3% 64.3% 21.1% 24.5% 10.6% 11.2% 100.0% 100.0% 

(b)  60.1% 60.1% 

Validation Set 

NHS 903 (77.6%) 452 (73.6%) 55 (15.1%) 28 (12.3%) 34 (19.2%) 17 (16.7%) 992 (58.2%) 497 (52.6%) 

ALTS 187 (16.1%) 94 (15.3%) 142 (39.0%) 71 (31.1%) 72 (40.7%) 36 (35.3%) 401 (23.5%) 201 (21.3%) 

CVT 48 (4.1%) 48 (7.8%) 53 (14.6%) 53 (23.2%) 17 (9.6%) 17 (16.7%) 118 (6.9%) 118 (12.5%) 

Biop 10 (0.9%) 6 (1.0%) 35 (9.6%) 14 (6.1%) 29 (16.4%) 13 (12.7%) 74 (4.3%) 33 (3.5%) 

D Biop 15 (1.3%) 14 (2.3%) 79 (21.7%) 62 (27.2%) 25 (14.1%) 19 (18.6%) 119 (7.0%) 95 (10.1%) 

TOTAL 1163 (100.0%) 614 (100.0%) 364 (100.0%) 228 (100.0%) 177 (100.0%) 102 (100.0%) 1704 (100.0%) 944 (100.0%) 

(a) 68.3% 65.0% 21.4% 24.2% 10.4% 10.8% 100.0% 100.0% 

(b)  10.0% 10.0% 

Test Set 1 

NHS 1798 (77.3%) 903 (74.1%) 108 (15.3%) 55 (11.9%) 70 (19.1%) 35 (16.2%) 1976 (58.1%) 993 (52.3%) 

ALTS 376 (16.2%) 189 (15.5%) 285 (40.3%) 143 (31.0%) 146 (39.8%) 73 (33.8%) 807 (23.7%) 405 (21.3%) 

CVT 86 (3.7%) 86 (7.1%) 110 (15.6%) 110 (23.8%) 42 (11.4%) 42 (19.4%) 238 (7.0%) 238 (12.5%) 

Biop 30 (1.3%) 13 (1.1%) 60 (8.5%) 29 (6.3%) 55 (15.0%) 27 (12.5%) 145 (4.3%) 69 (3.6%) 

D Biop 35 (1.5%) 28 (2.3%) 144 (20.4%) 125 (27.1%) 54 (14.7%) 39 (18.1%) 233 (6.9%) 192 (10.1%) 

TOTAL 2325 (100.0%) 1219 (100.0%) 707 (100.0%) 462 (100.0%) 367 (100.0%) 216 (100.0%) 3399 (100.0%) 1897 (100.0%) 

(a) 68.4% 64.3% 20.8% 24.4% 10.8% 11.4% 100.0% 100.0% 

(b)  20.0% 20.0% 

Test Set 2 

NHS 902 (78.1%) 452 (74.8%) 54 (15.0%) 27 (11.6%) 34 (19.9%) 17 (16.7%) 990 (58.7%) 496 (52.9%) 

ALTS 187 (16.2%) 94 (15.6%) 144 (40.0%) 72 (31.0%) 72 (42.1%) 36 (35.3%) 403 (23.9%) 202 (21.5%) 

CVT 37 (3.2%) 37 (6.1%) 56 (15.6%) 56 (24.1%) 17 (9.9%) 17 (16.7%) 110 (6.5%) 110 (11.7%) 

Biop 14 (1.2%) 7 (1.2%) 28 (7.8%) 15 (6.5%) 27 (15.8%) 13 (12.7%) 69 (4.1%) 35 (3.7%) 

D Biop 15 (1.3%) 14 (2.3%) 78 (21.7%) 62 (26.7%) 21 (12.3%) 19 (18.6%) 114 (6.8%) 95 (10.1%) 

TOTAL 1155 (100.0%) 604 (100.0%) 360 (100.0%) 232 (100.0%) 171 (100.0%) 102 (100.0%) 1686 (100.0%) 938 (100.0%) 

(a) 68.5% 64.4% 21.4% 24.7% 10.1% 10.9% 100.0% 100.0% 

(b)  9.9% 9.9% 

GRAND TOTAL BY GROUND TRUTH 

no. (%) 
11630 6092 3586 2314 1797 1056 17013 9462 

(68.4%) (64.4%) (21.1%) (24.5%) (10.6%) (11.2%) (100.0%) (100.0%) 
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Supplementary Table 3: Detailed breakdown of rebalanced dataset after “remove controls” balancing strategy, by set (train, validation, test 1, test 2), study and ground truth. n i=total # images; 

nw=total # women; (a) Ground truth ratios (by images or women) within each set (train/validation/test 1/test 2) = Total # (images or women) in the ground truth category of set ÷ Total # (images 

or women) in the set; (b) Proportion of total (images or women) in each set (train/validation/test 1/test 2) = Total # (images or women) in the set ÷ Total # (images or women) in the full dataset

Supplementary Table 3: Detailed breakdown of rebalanced dataset after applying “remove controls” balancing strategy, by set ( train, validation, test 1 or test 2), study and ground truth 

STUDY 

Ground truth categories GRAND TOTAL BY STUDY 

(ni=17013, nw=9462) no. (%) 

Normal (ni=11630, nw=6092) Gray Zone (ni=3586, nw=2314) Precancer+ (ni=1797, nw=1056) no. (%) 

# images # women # images # women # images # women # images # women 

Train Set 

NHS 1887 (77.6%) 946 (74.4%) 330 (15.3%) 165 (11.9%) 206 (19.0%) 104 (16.4%) 2423 (42.7%) 1215 (36.8%) 

ALTS 387 (15.9%) 194 (15.3%) 853 (39.6%) 430 (30.9%) 434 (40.1%) 218 (34.3%) 1674 (29.5%) 842 (25.5%) 

CVT 88 (3.6%) 88 (6.9%) 336 (15.6%) 335 (24.1%) 121 (11.2%) 119 (18.7%) 545 (9.6%) 542 (16.4%) 

Biop 35 (1.4%) 13 (1.0%) 192 (8.9%) 88 (6.3%) 164 (15.2%) 79 (12.4%) 391 (6.9%) 180 (5.5%) 

D Biop 35 (1.4%) 31 (2.4%) 444 (20.6%) 374 (26.9%) 157 (14.5%) 116 (18.2%) 636 (11.2%) 521 (15.8%) 

TOTAL 2432 (100.0%) 1272 (100.0%) 2155 (100.0%) 1392 (100.0%) 1082 (100.0%) 636 (100.0%) 5669 (100.0%) 3300 (100.0%) 

(a) 42.9% 38.5% 38.0% 42.2% 19.1% 19.3% 100.0% 100.0% 

(b)  33.3% 34.9% 

Validation Set 

NHS 291 (76.0%) 146 (71.6%) 55 (15.1%) 28 (12.3%) 34 (19.2%) 17 (16.7%) 380 (41.1%) 191 (35.8%) 

ALTS 65 (17.0%) 33 (16.2%) 142 (39.0%) 71 (31.1%) 72 (40.7%) 36 (35.3%) 279 (30.2%) 140 (26.2%) 

CVT 19 (5.0%) 19 (9.3%) 53 (14.6%) 53 (23.2%) 17 (9.6%) 17 (16.7%) 89 (9.6%) 89 (16.7%) 

Biop 4 (1.0%) 2 (1.0%) 35 (9.6%) 14 (6.1%) 29 (16.4%) 13 (12.7%) 68 (7.4%) 29 (5.4%) 

D Biop 4 (1.0%) 4 (2.0%) 79 (21.7%) 62 (27.2%) 25 (14.1%) 19 (18.6%) 108 (11.7%) 85 (15.9%) 

TOTAL 383 (100.0%) 204 (100.0%) 364 (100.0%) 228 (100.0%) 177 (100.0%) 102 (100.0%) 924 (100.0%) 534 (100.0%) 

(a) 41.5% 38.2% 39.4% 42.7% 19.2% 19.1% 100.0% 100.0% 

(b)  5.4% 5.6% 

Test Set 1 

NHS 5930 (77.4%) 2974 (74.1%) 108 (15.3%) 55 (11.9%) 70 (19.1%) 35 (16.2%) 6108 (69.9%) 3064 (65.3%) 

ALTS 1240 (16.2%) 622 (15.5%) 285 (40.3%) 143 (31.0%) 146 (39.8%) 73 (33.8%) 1671 (19.1%) 838 (17.9%) 

CVT 280 (3.7%) 280 (7.0%) 110 (15.6%) 110 (23.8%) 42 (11.4%) 42 (19.4%) 432 (4.9%) 432 (9.2%) 

Biop 94 (1.2%) 44 (1.1%) 60 (8.5%) 29 (6.3%) 55 (15.0%) 27 (12.5%) 209 (2.4%) 100 (2.1%) 

D Biop 116 (1.5%) 92 (2.3%) 144 (20.4%) 125 (27.1%) 54 (14.7%) 39 (18.1%) 314 (3.6%) 256 (5.5%) 

TOTAL 7660 (100.0%) 4012 (100.0%) 707 (100.0%) 462 (100.0%) 367 (100.0%) 216 (100.0%) 8734 (100.0%) 4690 (100.0%) 

(a) 87.7% 85.5% 8.1% 9.9% 4.2% 4.6% 100.0% 100.0% 

(b)  51.3% 49.6% 

Test Set 2 

NHS 902 (78.1%) 452 (74.8%) 54 (15.0%) 27 (11.6%) 34 (19.9%) 17 (16.7%) 990 (58.7%) 496 (52.9%) 

ALTS 187 (16.2%) 94 (15.6%) 144 (40.0%) 72 (31.0%) 72 (42.1%) 36 (35.3%) 403 (23.9%) 202 (21.5%) 

CVT 37 (3.2%) 37 (6.1%) 56 (15.6%) 56 (24.1%) 17 (9.9%) 17 (16.7%) 110 (6.5%) 110 (11.7%) 

Biop 14 (1.2%) 7 (1.2%) 28 (7.8%) 15 (6.5%) 27 (15.8%) 13 (12.7%) 69 (4.1%) 35 (3.7%) 

D Biop 15 (1.3%) 14 (2.3%) 78 (21.7%) 62 (26.7%) 21 (12.3%) 19 (18.6%) 114 (6.8%) 95 (10.1%) 

TOTAL 1155 (100.0%) 604 (100.0%) 360 (100.0%) 232 (100.0%) 171 (100.0%) 102 (100.0%) 1686 (100.0%) 938 (100.0%) 

(a) 68.5% 64.4% 21.4% 24.7% 10.1% 10.9% 100.0% 100.0% 

(b)  9.9% 9.9% 

GRAND TOTAL BY GROUND TRUTH 

no. (%) 
11630 6092 3586 2314 1797 1056 17013 9462 

(68.4%) (64.4%) (21.1%) (24.5%) (10.6%) (11.2%) (100.0%) (100.0%) 
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