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 28 

Abstract 29 

 30 

High-content omic technologies coupled with sparsity-promoting regularization methods (SRM) have 31 

transformed the biomarker discovery process. However, the translation of computational results into a 32 

clinical use-case scenario remains challenging. A rate-limiting step is the rigorous selection of reliable 33 

biomarker candidates among a host of biological features included in multivariate models. We propose 34 

Stabl, a machine learning framework that unifies the biomarker discovery process with multivariate 35 

predictive modeling of clinical outcomes by selecting a sparse and reliable set of biomarkers. Evaluation 36 

of Stabl on synthetic datasets and four independent clinical studies demonstrates improved biomarker 37 

sparsity and reliability compared to commonly used SRMs at similar predictive performance. Stabl readily 38 

extends to double- and triple-omics integration tasks and identifies a sparser and more reliable set of 39 

biomarkers than those selected by state-of-the-art early- and late-fusion SRMs, thereby facilitating the 40 

biological interpretation and clinical translation of complex multi-omic predictive models. 41 

The complete package for Stabl is available online at https://github.com/gregbellan/Stabl. 42 

  43 



Introduction 44 

 45 

High-content omic technologies, such as transcriptomics, metabolomics, or cytometric immunoassays, 46 

are increasingly employed in biomarker discovery studies.1,2 The ability to measure thousands of 47 

molecular features in each biological specimen provides unprecedented opportunities for development 48 

of precision medicine tools across the spectrum of health and disease. Omic technologies have also 49 

dictated a shift in statistical analysis of biological data. The traditional univariate statistical framework is 50 

maladapted to large omic datasets characterized by a high number of molecular features 𝑝 relative to the 51 

number of samples 𝑛. The 𝑝 ≫ 𝑛 scenario drastically reduces the statistical power of univariate analyses, 52 

a problem that cannot be easily overcome by increasing the value of 𝑛 due to cost or sample availability 53 

constraints.3,4  54 

 55 

Statistical analysis in biomarker discovery research comprises three related yet distinct tasks, all of which 56 

are necessary for translation into clinical use and impacted by the 𝑝 ≫ 𝑛 problem: 1) prediction of the 57 

clinical endpoint via identification of a multivariate model with high predictive performance (predictivity), 58 

2) selection of a limited number of features as candidate clinical biomarkers (sparsity), and 3) confidence 59 

that the selected features are among the true set of features  (i.e., truly related to the outcome, reliability).  60 

 61 

Several machine-learning methods, including sparsity-promoting regularization methods (SRMs), such 62 

as least absolute shrinkage and selection operator (Lasso)5 or elastic net (EN),6 provide predictive 63 

modeling frameworks adapted to 𝑝 ≫ 𝑛 omic datasets, but the selection of a sparse and reliable set of 64 

candidate biomarkers remains an important challenge. Most rely on an L1-regularization to limit the 65 

number of features used in the final model. However, the learning phase of the model is often performed 66 

on a limited number of samples, such that small perturbations in the training data can yield wide 67 

differences in the features selected in the predictive model.7–9 This undermines confidence in the features 68 

selected, as current SRMs do not provide objective metrics to determine whether these features are truly 69 

related to the outcome. This inherent limitation of SRMs can result in poor sparsity and reliability, thereby 70 

hindering the biological interpretation and clinical significance of the predictive model. As such, few omic 71 

biomarker discovery studies progress to further clinical development phases.1–4,10,11 72 

 73 

High-dimensional feature selection methods such as stability selection (SS) or Model-X knockoff improve 74 

reliability by controlling for false discoveries in the selected set of features.12,13 However, in these 75 

methods, the threshold for feature selection or the target false discovery rate (FDR) are defined a priori, 76 

which uncouples the feature selection from the multivariate modeling process. Without prior knowledge 77 

on the data, these methods can lead to suboptimal feature selection, requiring multiple iterations to 78 

identify a desired threshold. This limitation also precludes optimal integration of multiple omic datasets 79 

into a unique predictive model, as a single fixed selection threshold may not be suited to the specificities 80 

of each dataset. 81 

 82 

Here we introduce Stabl, a supervised machine learning framework that bridges the gap between 83 

multivariate predictive modeling of high-dimensional omic data and the sparsity and reliability 84 

requirements of an effective biomarker discovery process. Stabl combines the injection of knockoff-85 

modeled noise or random permutations into the original data, a data-driven signal-to-noise threshold, and 86 

integration of selected features into a predictive model. Systematic benchmarking of Stabl against Lasso, 87 

EN, and SS using synthetic datasets, three existing real-world omic datasets, and a newly generated 88 

multi-omic clinical dataset demonstrates that Stabl overcomes the shortcomings of state-of-the-art SRMs: 89 

Stabl yields highly reliable and sparse predictive models while identifying biologically plausible features 90 

amenable to further development into diagnostic or prognostic precision medicine assays.  91 

 92 

The complete package for Stabl is available online at https://github.com/gregbellan/Stabl. 93 

 94 

Results 95 

 96 

Selection of reliable predictive features using estimated false discovery proportion (FDP)  97 

 98 



When applied to a single cohort drawn at random from the population, SRMs will select informative 99 

features (i.e., truly related to the outcome) with a higher probability, on average, than uninformative 100 

features (i.e., unrelated to the outcome).5,12 However, as uninformative features typically outnumber 101 

informative features in high-dimensional omic datasets,1,2,11 the fit of an SRM model on a single cohort 102 

can lead to selection of many uninformative features despite a low probability of selection.12,14 To address 103 

this issue, Stabl implements the following strategy (Fig. 1 and methods): 104 

 105 

1. Stabl fits SRM models (e.g., Lasso or EN) on subsamples of the data using a procedure similar 106 

to SS.12 Subsampling mimics the availability of multiple random cohorts and estimates each 107 

feature’s frequency of selection across all iterations. However, this procedure does not provide 108 

an optimal frequency threshold to discriminate between informative and uninformative features 109 

objectively. 110 

2. To define the optimal frequency threshold, Stabl creates artificial features unrelated to the 111 

outcome (noise injection) via random permutations1–3 or knockoff sampling,13,15,16 which we 112 

assume behave similarly to uninformative features in the original dataset17 (see theoretical 113 

guarantees in methods). The artificial features are used to construct a surrogate of the false 114 

discovery proportion (FDP+). We define the “reliability threshold”, 𝜃, as the frequency threshold 115 

yielding the minimum FDP+ across all possible thresholds. This method for determining 𝜃 is 116 

objective, in that it minimizes a proxy for the FDP. It is also data-driven, as it is tailored to individual 117 

omic datasets. 118 

 119 

As a result, Stabl provides a unifying procedure that selects features above the reliability threshold while 120 

building a multivariate predictive model. Stabl is amenable to classification and regression tasks and 121 

extends to integration of multiple datasets of different dimensions and from different omic modalities.  122 

 123 

Stabl improves sparsity and reliability while maintaining predictivity: synthetic modeling  124 

 125 

We benchmarked Stabl against Lasso and EN using synthetically generated training and validation 126 

datasets containing known informative and uninformative features (Fig. 2a). Simulations representative 127 

of real-world scenarios were performed, including variations in the sample size (n), total features (p), and 128 

informative features (S). Models were evaluated using three performance metrics (Fig. 2b):  129 

 130 

1. Sparsity: the average number of features selected compared to the number of informative 131 

features.  132 

2. Reliability: overlap between the features selected by the algorithm and the true set of informative 133 

features (Jaccard Index).  134 

3. Predictivity: mean square error (MSE). 135 

Before performing benchmark comparisons, we tested whether the FDP+ defined by Stabl experimentally 136 

controls the FDR at the reliability threshold 𝜃, as the true value of the FDR is known for the synthetic 137 

dataset. We observed that FDP+ (𝜃) was indeed greater than the true FDR value (Fig. 2c and S1). These 138 

observations experimentally confirmed the validity of Stabl in optimizing the frequency threshold for 139 

feature selection. Furthermore, under the assumption that the uninformative features and the artificial 140 

features are interchangeable, we bound the probability that FDP exceeds a multiple of the proximity to 141 

FDP+ (𝜃), thus providing a theoretical validation of our experimental observations (see theroretical 142 

guarantee in methods). 143 

 144 

Stabl was tested using a random permutation method (Fig. 2 and S2-5) or model-X knockoffs (Fig. S5) 145 

for noise generation. In each case, Stabl achieved higher sparsity compared to Lasso or EN (Fig. S6), 146 

as the number of features selected by Stabl was lower across all conditions tested and converged 147 

towards the true number of informative features (Fig. 2d). The reliability was also higher for Stabl than 148 

for Lasso or EN, such that the features selected by Stabl were closer to the true set of informative features 149 

(Fig. 2e). Meanwhile, Stabl had similar or better predictivity compared to Lasso or EN (Fig. 2f). 150 

 151 

Further modeling experiments tested the impact of the data-driven computation of 𝜃 while building the 152 

multivariate model compared to SS (i.e., choosing a fixed frequency threshold a priori). Three 153 



representative frequency thresholds were evaluated: 30%, 50%, or 80% (Fig. 2g-i and S7-9). The 154 

performance of models built using a fixed frequency threshold varied greatly depending on the simulation 155 

conditions. For example, for a small sample size (n	<	75), the 30% threshold had the best sparsity and 156 

reliability. However, for a large sample size (n	 >	 500), the 80% threshold resulted in greater 157 

performances. In contrast, Stabl models systematically reached optimal sparsity, reliability, and 158 

predictivity performances. Further, we show that 𝜃 varied greatly with the sample size (Fig. 2j and S10), 159 

illustrating how Stabl adapts to datasets of different dimensions to identify an optimal frequency threshold 160 

solution. 161 

 162 

In sum, synthetic modeling results show that Stabl achieves better sparsity and reliability compared to 163 

Lasso or EN while preserving predictivity and that the set of features chosen by Stabl is closer to the true 164 

set of informative features. The results also emphasize the advantage of the data-driven adaptation of 165 

the frequency threshold to each dataset’s unique characteristics rather than using an arbitrarily fixed 166 

threshold. 167 

 168 

Stabl enables effective biomarker discovery in clinical omic studies  169 

 170 

We evaluated Stabl’s performance on four independent clinical omic datasets. Three were previously 171 

published with standard SRM analyses, while the fourth is a newly generated dataset introduced and 172 

analyzed for the first time here. Because clinical omic datasets can vary greatly with respect to 173 

dimensionality, signal-to-noise ratio, and technology-specific data preprocessing, we tested Stabl on 174 

datasets representing a range of bulk and single-cell omics technologies, including RNA sequencing 175 

(RNA-Seq), high-content proteomics (SomaLogic and Olink platforms), untargeted metabolomics, and 176 

single-cell mass cytometry.  177 

 178 

For each dataset, Stabl was compared to Lasso and EN on single-omic data or to early fusion and late 179 

fusion on multi-omic data over 50 random repetitions using a repeated five-fold cross-validation (CV) 180 

strategy. As the true set of informative features is not known for real-world datasets, the performance 181 

metrics differed from those used for the synthetic datasets: 182 

 183 

1. Sparsity: determined by the average number of features selected throughout the CV procedure.  184 

2. Reliability: assessed using univariate statistics in the absence of a known true set of features. 185 

3. Predictivity: the area under the receiver operator characteristic curve (AUROC) and the area 186 

under the precision-recall curve (AUPRC) for classification tasks or the MSE for regression tasks. 187 

 188 

Identification of sparse, reliable, and predictive candidate biomarkers from single-omic clinical datasets 189 

 190 

Stabl was first applied to two single-omic clinical datasets featuring a robust biological signal with 191 

significant diagnostic potential. The first example is a large-scale plasma cell-free RNA dataset (p = 192 

37,184 cfRNA features) isolated from pregnant patients with the aim of classifying normotensive or 193 

preeclamptic (PE) pregnancies (Fig. 3a,b).18,19 The second example is a high-plex proteomic dataset (p 194 

= 1,463 proteomic features, Olink) collected from two independent cohorts (a training and a validation 195 

cohort) of SARS-CoV-2-positive patients to classify COVID-19 disease severity (Fig. 3c,d).20,21 In these 196 

two examples, although both Lasso and EN models achieved very good predictive performance (AUROC 197 

> 0.80, Fig. 3, S11-12), the lack of sparsity or reliability hindered the identification of a manageable 198 

number of candidate biomarkers, necessitating additional feature selection methods that were decoupled 199 

from the predictive modeling process.18–21 200 

 201 

Consistent with the results obtained using synthetic data, Stabl achieved comparable predictivity to Lasso 202 

(Fig. 3e,f) and EN (Fig. S11a,b) when applied to the single-omic datasets. However, Stabl identified 203 

sparser models. For the PE dataset, the average number of features selected by Stabl was reduced over 204 

20-fold compared to Lasso (Fig. 3g) or EN (Fig. S11c) respectively. For the classification of patients with 205 

mild or severe COVID-19, the number of features selected by Stabl was reduced by a factor of 2.7 206 

compared to Lasso (Fig. 3h) and 4.5 compared to EN (Fig. S11d).  207 

 208 



Stabl’s reliability performance was also improved compared to Lasso and EN. The univariate p-values 209 

(Mann-Whitney test) for the features selected by Stabl were lower than for those selected by Lasso (Fig. 210 

3i,j) or EN (Fig. S11e,f). Independent evaluation of the COVID-19 validation dataset confirmed these 211 

results (Table S1): 100% of features selected by Stabl passed a 5% FDR threshold (Benjamini-Hochberg 212 

correction) on the COVID-19 validation dataset (mean -log[p-value] = 9.0), compared to 91% for Lasso 213 

(mean -log[p-value] = 6.7, Fig. 3k) and 85% for EN (mean -log[p-value] = 6.2, Fig. S11g). 214 

 215 

Stabl was also compared to SS using 30%, 50%, and 80% fixed frequency thresholds (Table S2). 216 

Consistent with the synthetic modeling analyses, the predictivity and sparsity performances of SS varied 217 

greatly with the choice of threshold, while Stabl provided a solution that optimized sparsity while 218 

maintaining predictive performance. For example, using SS with a 30% compared to a 50% threshold 219 

resulted in a 42% decrease in predictivity for the COVID-19 dataset (AUROC30% = 0.85 vs. AUROC50% = 220 

0.49), with a model selecting no features. Conversely, for the PE dataset, fixing the frequency threshold 221 

at 30% vs. 50% resulted in a 5.3 fold improvement in sparsity with only a 6% decrease in predictivity 222 

(AUROC30% = 0.83 vs. AUROC50% = 0.78).  223 

 224 

Identification of fewer and more reliable features using Stabl facilitated the biomarker discovery process, 225 

pinpointing the most informative biological features associated with the clinical outcome. For example, 226 

three out of thirteen (23%) cfRNA features (CDK10,22
 TRIO,23 and PLEK224) selected by the final Stabl 227 

PE model encoded proteins with fundamental cellular function, providing biologically-plausible biomarker 228 

candidates. Other features were non-coding RNAs or pseudogenes, with yet unknown biological function 229 

(Table S3). For the COVID-19 dataset, several features identified by Stabl echoed key pathobiological 230 

mechanisms of the host inflammatory response to COVID-19. For example, CCL20 is a known element 231 

of the COVID-19 cytokine storm,25,26 CRTAC1 is a newly identified marker of lung function,27–29 PON3 is 232 

a known biomarker decreased during acute COVID-19 infection,30 and MZB1 is a protein associated with 233 

high neutralization antibody titers after COVID-19 infection (Fig. 3j).20 The Stabl model also selected 234 

MDGA1, a previously unknown biomarker candidate of COVID-19 severity (Table S4).  235 

 236 

Together, the results show that Stabl improves the reliability and sparsity of biomarker discovery in two 237 

single-omic datasets of widely different dimensionality while maintaining predictivity performance.  238 

 239 

Stabl successfully extends to multi-omic data integration  240 

 241 

We extended the assessment of Stabl to complex clinical datasets combining multiple omic technologies. 242 

In this case, the algorithm first selects a reliable set of features at the single-omic level, then integrates 243 

the features selected for each omic dataset in a final learner algorithm, such as linear or logistic 244 

regression.  245 

 246 

We compared Stabl to early and late fusion Lasso, two commonly employed strategies for multi-omic 247 

modeling, on the prediction of a continuous outcome variable from a triple-omic dataset. The analysis 248 

leveraged a unique longitudinal biological dataset collected in independent training and validation cohorts 249 

of pregnant individuals, together with curated clinical information (Fig. 4a).31 The study aimed to predict 250 

the difference in days between the time of blood sample collection and spontaneous labor onset (i.e., 251 

time to labor). The study addresses an important clinical need for improved prediction of labor onset in 252 

term and preterm pregnancies as standard predictive methods are inaccurate.32,33 253 

 254 

The triple-omic dataset contained a proteomic dataset (p = 1,317 features, Somalogic), a metabolomic 255 

dataset (p = 3,529 untargeted mass spectrometry features), and a single-cell mass cytometry dataset (p 256 

= 1,502 immune cell features, see methods). When compared to early and late fusion Lasso, Stabl 257 

estimated the time to labor with comparable predictivity (Fig. 4b training and validation cohorts), while 258 

selecting fewer and more reliable features (Fig. 4c). Importantly, Stabl calculated a different reliability 259 

threshold for each omic sublayer (𝜃[Proteomics] = 36%, 𝜃[Metabolomics] = 35%, 𝜃[mass cytometry] = 260 

52%, Fig. 4g-i). On the validation dataset, available for the proteomic and mass cytometry data only, 26% 261 

of features selected by Stabl passed a 5% FDR threshold (Benjamini-Hochberg correction), compared to 262 

4% for early fusion Lasso and 5% for late fusion Lasso, showing that Stabl selected more reliable features 263 

(Table S5). These results emphasize the advantage of the data-driven threshold, as fixing a common 264 



frequency threshold across all omic layers would have been suboptimal, risking over- or under-selecting 265 

features in each omic dataset to be integrated into the final predictive model.  266 

 267 

From a biological standpoint, Stabl streamlined the interpretation of our prior multivariate analyses,31 268 

honing in on sentinel elements of a systemic biological signature predicting the onset of labor that could 269 

be leveraged for development of a blood-based diagnostic test. The Stabl model highlighted dynamic 270 

changes in 11 metabolomic, 17 proteomic, and two immune cell features with approaching labor (Fig. 4j-271 

l, Table S6), including a regulated decrease in innate immune cell frequencies (e.g., neutrophils) and 272 

their responsiveness to inflammatory stimulation (e.g., pSTAT1 signaling response to IFNα in NK 273 

cells34,35), along with a synchronized increase in pregnancy-associated hormones (e.g., 17-274 

Hydroxyprogesterone36), placental-derived (e.g., Siglec-6,37 Angiopoietin 2/sTie238), and immune 275 

regulatory plasma proteins (e.g., IL-1R4,39 SLPI40).  276 

 277 

Stabl identifies promising candidate biomarkers from a newly generated multi-omic dataset  278 

 279 

Application of Stabl to the three existing omic datasets demonstrated the algorithm’s performance in the 280 

context of biomarker discovery studies with a known biological signal. To complete its systematic 281 

evaluation, Stabl was applied to our newly generated multi-omic clinical study performing an unbiased 282 

biomarker discovery task. The aim of the study was to develop a model to predict which patients will 283 

develop a postoperative surgical site infection (SSI) from analysis of pre-operative blood samples (Fig. 284 

5a). A cohort of 274 patients undergoing major abdominal surgery were enrolled and preoperative blood 285 

samples were collected. Using a matched, nested case-control design, 93 patients were selected from 286 

the larger cohort to minimize the effect of clinical or demographic confounders on identified predictive 287 

models (Table S7). These samples were analyzed using a combined single-cell mass cytometry (Fig. 288 

S13) and plasma proteomics (Somalogic) approach.  289 

Stabl merged all omic datasets into a final model that accurately classified patients with and without SSI 290 

(AUROCStabl = 0.80 [0.69, 0.89]). When compared to early and late fusion Lasso, Stabl had comparable 291 

predictive performance (Fig. 5b, S14), yet superior sparsity (Fig. 5c) and reliability performance (Fig. 292 

5h,i). As a result of the frequency-matching procedure, there were no differences in major demographic 293 

and clinical variables between the two patient groups, suggesting that model predictions were primarily 294 

driven by pre-operative biological differences in patients’ susceptibility to develop an SSI. 295 

 296 

Stabl selected four mass cytometry and 25 plasma proteomic features that were combined into a 297 

biologically interpretable immune signature predictive of SSI. Examination of Stabl features revealed cell-298 

type specific immune signaling responses associated with SSI (Fig. 5h) that resonated with circulating 299 

inflammatory mediators (Fig. 5i, Table S8). Notably, the STAT3 signaling response to IL-6 in neutrophils 300 

was increased before surgery in patients predisposed to SSI. Correspondingly, patients with SSI had 301 

elevated plasma levels of IL-1β and IL-18, two potent inducers of IL-6 production in response to 302 

inflammatory stress.41,42 Other proteomic features selected by the model included CCL3, which 303 

coordinates recruitment and activation of neutrophils, and the canonical stress response protein HSPH1. 304 

These findings are consistent with previous studies showing that heightened innate immune cell 305 

responses to inflammatory stress, such as surgical trauma,43,44 can result in diminished defensive 306 

response to bacterial pathogens,39 thus increasing a patient’s susceptibility to subsequent infection.  307 

 308 

Altogether, application of Stabl in the setting of a new biomarker discovery study provided a manageable 309 

number of candidate biomarkers of SSI, pointing at plausible biological mechanisms that can be targeted 310 

for further diagnostic or therapeutic development. 311 

 312 

Discussion 313 

 314 

Stabl is a machine learning method for analysis of high-dimensional omic data designed to unify the 315 

biomarker discovery process by identifying sparse and reliable biomarker candidates within a multivariate 316 

predictive modeling framework. Application of Stabl to several real-world biomarker discovery tasks 317 

demonstrates the versatility of the algorithm across a range of omic technologies, single- and multi-omic 318 

datasets, and clinical endpoints. Results from these diverse clinical use cases emphasize the advantage 319 



of Stabl’s data-driven adaptation to the specificities of each omic dataset, which enables reliable selection 320 

of biologically interpretable biomarker candidates conducive to further clinical translation.  321 

 322 

Stabl builds on previous methods, including Bolasso, SS, and Model-X knockoff. These methods improve 323 

reliability of sparse learning algorithms by employing a bootstrap procedure, or using artificial 324 

features.5,12,14,16 However, these methods rely on a fixed or user-defined frequency threshold to 325 

discriminate between informative and uninformative features. In practice, in the 𝑝 ≫ 𝑛 context, objective 326 

determination of the optimal frequency threshold is difficult without prior knowledge of the data, as shown 327 

by the results from our synthetic modeling. The requirement for prior knowledge impairs the capacity for 328 

predictive model building, limiting these previous methods to sole feature selection. 329 

 330 

Stabl improves on these methods by experimentally, and, under certain assumptions, theoretically, 331 

generalizing previous false discovery rate control methods devised for model-X knockoffs and random 332 

permutation noise.13,45,46 Minimization of the FDP surrogate (FDP+) offers two main benefits. First, it 333 

expresses a trade-off between reliability and sparsity, as it is the sum of an increasing and a decreasing 334 

function of the threshold. Second, assuming exchangeability between artificial and uninformative features 335 

Stabl’s procedure guarantees a stochastic upper bound to the FDP using the reliability threshold 336 

estimate, which ensures reliability in the optimization procedure. By minimizing this function ex-ante, 337 

Stabl objectively defines a model fit from the procedure without requiring prior knowledge of the data.  338 

 339 

On a synthetic dataset, we experimentally demonstrate that Stabl selects an optimal reliability threshold 340 

by minimizing the FDP+ and allows for improved reliability and sparsity compared to Lasso or EN at 341 

similar predictivity performance. When tested on real-world omic studies, Stabl also performed favorably 342 

compared to Lasso and EN. For each case study, the identification of a manageable number of reliable 343 

biomarkers facilitated the interpretation of the multivariate predictive model. Prior analyses of similar 344 

datasets18,20,21,31 required suboptimal analysis frameworks: either post-hoc analyses were performed 345 

using user-defined cut-offs for feature selection after an initial model fit, or features associated with the 346 

clinical endpoint were selected before modeling, thus risking overfitting. In contrast, Stabl embeds the 347 

discovery of reliable candidate biomarkers within the predictive modeling, alleviating the need for 348 

separate analyses.  349 

 350 

Stabl extended readily to analysis of multi-omic datasets where a predictive model can utilize features 351 

from different biological systems. Here, Stabl offers an alternative that avoids the potential shortcomings 352 

of early and late fusion strategies. In the case of early fusion, all omic datasets are first concatenated 353 

before applying a statistical learner. This leads to optimization on all omics combined, regardless of the 354 

specific properties (e.g., dimensions, correlation structure, underlying noise) of individual omic 355 

datasets.47–50 In contrast, the late fusion method trains the learner on each omic data layer independently 356 

and merges the predictions into a final dataset.19,21,31,51–53 In this case, although a model is adapted to 357 

each omic, the resulting model does not weigh features from different omics directly against each other. 358 

Stabl analyzes each omic data layer independently and fits specific reliability thresholds before selecting 359 

the most reliable features to be merged in a final layer, thus combining the advantages of both methods. 360 

Multi-omic data integration with Stabl was particularly useful for analysis of our newly generated dataset 361 

in patients undergoing surgery. In this case, the Stabl model comprised several features that were 362 

biologically consistent across the plasma and single-cell datasets, revealing a patient-specific immune 363 

signature predictive of SSI that appears to be programmed before surgery.  364 

  365 

Our study has several limitations. Although we demonstrate the validity and performances of Stabl 366 

experimentally and theoretically under the assumption of exchangability between artificial and 367 

uninformative features, a more general theoretical underpinning of the method will require further 368 

guarantee. In addition, our evaluation of Stabl’s performance focused on fitting Lasso and EN models as 369 

gold standard SRMs. Further development of Stabl will be needed to allow for fitting of any SRM. While 370 

Stabl is designed to simultaneously optimize reliability, sparsity, and predictivity performances, other 371 

algorithms have been developed to address each of these performance tasks individually, such as double 372 

machine learning54 for reliability, Boruta55 for sparsity, and random forest56 or gradient boosting57 for 373 

predictivity. Additional studies are required to systematically evaluate each method’s performance in 374 

comparison to, or integrated with, the Stabl statistical framework. Finally, multi-omic data integration is 375 



an active area of research. Integrating emerging algorithms such as cooperative multiview learning58 may 376 

further improve Stabl’s performance in multi-omic modeling tasks.  377 

 378 

Analysis of high-dimensional omic data has transformed the biomarker discovery process but 379 

necessitates new machine learning methods to facilitate clinical translation. Stabl addresses key 380 

requirements of an effective biomarker discovery pipeline offering a unified supervised learning 381 

framework that bridges predictive modeling of clinical endpoints with selection of reliable candidate 382 

biomarkers. Stabl enabled identification of biologically plausible biomarker candidates across multiple 383 

real-world single- and multi-omic datasets, providing a robust machine learning pipeline that we believe 384 

can be generalized to all omic data. 385 
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Figures 397 

 398 

 399 
 400 
Fig. 1 | Overview of the Stabl algorithm. a. An original dataset of size n x p is obtained from measurement of p molecular features in each 401 
one of n samples. b. Among the observed features, some are informative (related to the outcome, red), and others are uninformative (unrelated 402 
to the outcome, grey). p artificial features (orange), all uninformative by construction, are injected into the original dataset to obtain a new dataset 403 
of size n x 2p. c. 𝐵 sub-sample iterations are performed from the original cohort of size n. At each iteration 𝑘, Lasso models varying in their 404 
regularization parameter 𝜆 are fitted on the subsample, which results in a different set of selected features for each iteration. d. In total, for a 405 
given 𝜆, 𝐵 sets or selected features are generated. The proportion of sets in which feature 𝑖 is present defines the feature selection frequency 406 
𝑓!
	(𝜆). Plotting	𝑓!

	(𝜆) against 1/𝜆 yields a stability path graph. Features whose maximum frequency is above a frequency threshold (t) are selected 407 
in the final model. e. Stabl uses the reliability threshold (𝜃), obtained by computing the minimum to the false discovery proportion surrogate 408 
(FDP+, see methods). f,g. The set of features with a selection frequency larger than 𝜃 (i.e, reliable features) is included in a final predictive 409 
model.  410 
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 411 
Fig. 2 | Synthetic dataset benchmarking. a. A synthetic dataset consisting of N = 50,000 samples x p = 1,000 features was generated. Some 412 
features are correlated with the outcome (informative features, light blue), while the others are not (uninformative features, grey). Forty thousand 413 
samples are held out for validation. Out of the remaining 10,000, 50 sets ranging of sample sizes n ranging from 30 to 1,000 are drawn randomly. 414 
c. Three metrics are used to evaluate performance: sparsity (average number of selected features compared to the number of informative 415 
features), reliability (Jaccard Index, JI, comparing the true set of informative features to the selected feature set), and predictivity (mean squared 416 
error, MSE). c. The surrogate for the false discovery proportion (FDP+, red line) and the experimental false discovery rate (FDR, dotted line) are 417 
shown as a function of the frequency threshold. An example is shown for n = 150 samples and 25 informative features (all other conditions are 418 
shown in Fig. S1). The FDP+ estimate approaches the experimental FDR around the reliability threshold, 𝜃. d-f. Sparsity (d), reliability (JI, e), 419 
and predictivity performances (MSE, f) of Stabl (red box plots) and least absolute shrinkage and selection operator (Lasso, grey box plots) as a 420 
function of the number of samples (n, x-axis) for 10 (left panels), 25 (middle panels), or 50 (right panels) informative features. g-i. Sparsity (g), 421 
reliability (h), and predictivity (i) performances of models built using a data-driven reliability threshold 𝜃 (Stabl, red lines) or a fixed frequency 422 
threshold (i.e., SS) of 30% (light grey lines), 50% (Lasso, dark grey lines), or 80% (black lines). The feature set selected by Stabl remains closer 423 
in number (sparsity) and composition (reliability) to the true set of informative features, while achieving a superior or comparable predictive 424 
performance to models built using a fixed threshold. j. The reliability threshold chosen by Stabl is shown as a function of the sample size (n, x-425 
axis) for 10 (left panel), 25 (middle panel), or 50 (right panel) informative features. Benchmarking of Stabl against elastic net (EN) is shown in 426 
Fig. S6. 427 
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 428 
Fig. 3 | Performance of Stabl compared to Lasso on transcriptomic and proteomic data. a. Clinical case study 1: Classification of individuals 429 
with normotensive pregnancy or preeclampsia (PE) from the analysis of circulating cell-free RNA (cfRNA) sequencing data. Number of samples 430 
(n) and features (p) are indicated. b. UMAP visualization of the cfRNA transcriptomic features, node size and color are proportional to the 431 
strength of the association with the outcome calculated as the p-value in a univariate Mann-Whitney test using a -log10 scale. c. Clinical case 432 
study 2: Classification of mild vs. severe COVID-19 in two independent patient cohorts from the analysis of plasma proteomic data (Olink). d. 433 
UMAP visualization of the proteomic data. Node characteristics as in (b). e. Predictivity performances of Stabl and Lasso for the PE datasets. 434 
AUROCStabl = 0.83 [0.76, 0.90], AUROCLasso = 0.84 [0.78, 0.90] (p-value = 0.28, Bootstrap test); AUPRCStabl = 0.85 [0.77, 0.93], AUPRCLasso = 435 
0.89 [0.83, 0.94] (p-value = 0.18) f. AUROC comparing predictive performance of Stabl and Lasso on training (left panel) and validation (right 436 
panel) cohorts for the COVID-19 dataset. Training: AUROCStabl = 0.85 [0.74, 0.94], AUROCLasso = 0.86 [0.75, 0.94] (p-value = 0.37). Validation: 437 
AUROCStabl = 0.75 [0.71, 0.79], AUROCLasso = 0.76 [0.71, 0.81] (p-value = 0.44). AUPRC are shown in Fig. S12. g-h. Left panels. Sparsity 438 
performances for the PE (g, number of features selected across cross-validation iterations, medianStabl = 11.0, IQR = [7.8,16.0], medianLasso = 439 
225.5, IQR = [147.5,337.5], p-value < 1e-16) and COVID-19 (h, medianStabl = 7.0, IQR = [4.8,13.0], medianLasso = 19.0, IQR = [8.0,100.0], p-value 440 
= 4e-10) datasets. Right panels. Stability path graphs showing the regularization parameter against the selection frequency. The reliability 441 
threshold (𝜃), is indicated (dotted line) i-k. Volcano plots depicting the reliability performances of Stabl and Lasso for the PE (i), COVID-19 442 
training (j) and COVID-19 validation (k) datasets. The maximum frequency of selection of each feature is plotted against the -log10 p-value 443 
using a univariate Mann-Whitney test. Features selected by Stabl/Lasso only are colored in red/black respectively. Features selected by Stabl 444 
are labeled. PE: mean -log10(p-value)Stabl = 8.2; mean -log10(p-value)Lasso = 3.3. COVID-19 training: mean -log10(p-value)Stabl = 5.5; mean -log10(p-445 
value)Lasso = 5.2. COVID-19 validation: mean -log(p-value)Stabl = 9.7; mean -log10(p-value)Lasso = 7.8. Benchmarking of Stabl against elastic net 446 
(EN) is shown in Fig. S11. 447 
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 448 
Fig. 4 | Stabl’s performances on a triple-omic data integration task. a. Clinical case study 3. Prediction of the time to labor from the 449 
longitudinal assessment of plasma proteomic (Olink), metabolomic (untargeted mass spectrometry), and single-cell mass cytometry datasets in 450 
two independent longitudinal cohorts of pregnant individuals. b. Predictivity performances (MSE, median, and IQR) for early-fusion (EF), late-451 
fusion (LF) Lasso and Stabl, on the training (left panel) and validation (right panel) cohorts. c. Sparsity performances (number of features 452 
selected across cross-validation iterations, medianStabl = 25.0, IQR = [22.0,29.0], medianEF = 73.0, IQR = [61.8,87.3], p-value < 1e-16, medianLF 453 
= 191.5, IQR = [175.8,218.8], p-value < 1e-16. d-f. UMAP visualization of the metabolomic (d), plasma proteomic (e), and single-cell mass 454 
cytometry (f) datasets. Node size and color are proportional to the strength of the association with the outcome. g-i. Stability path graphs 455 
depicting the selection of metabolomic (g), plasma proteomic (h), and single-cell mass cytometry (i) features by Stabl. The data-driven reliability 456 
threshold 𝜃 is computed for individual omic datasets and indicated by a dotted line. j-l. Volcano plots depicting the reliability performances of 457 
Stabl and Lasso for each independent omic data: the metabolomics (j), plasma proteomic (k), and single-cell mass cytometry (l) datasets. The 458 
maximum frequency of selection of each feature is plotted against the -log10 p-value using a univariate Mann-Whitney test. Features selected 459 
by Stabl/Lasso only are colored in red/black respectively. Features selected by Stabl are labeled.  460 
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 461 
Fig. 5 | Candidate biomarker identification using Stabl for analysis of a newly generated multi-omic clinical dataset. a. Clinical case 462 
study 4. Prediction of postoperative surgical site infections (SSI) from the combined plasma proteomic and single cell mass cytometry 463 
assessment of pre-operative blood samples in patients undergoing abdominal surgery. b. Predictivity performances (AUROC) for Stabl, early 464 
fusion (EF) and late fusion (LF) Lasso. c. Sparsity performances (number of features selected across cross-validation iterations, medianStabl = 465 
17.0, IQR = [15.0,20.0], medianEF = 44.5, IQR = [29.0,69.3], p-value < 1e-16, medianLF = 62.0, IQR = [32.0,89.5], p-value < 1e-16. d-e. UMAP 466 
(left panel), stability paths (middle panel), and volcano plots (right panels) visualization of the single-cell mass cytometry (d) and plasma 467 
proteomics (e) datasets. The data-driven reliability threshold 𝜃 is computed for individual omic datasets and indicated by a dotted line on the 468 
volcano plots.   469 
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