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Abstract: The advancement in epigenetics research over the past several decades has led to the
potential application of epigenome-editing technologies for the treatment of various diseases. In
particular, epigenome editing is potentially useful in the treatment of genetic and other related
diseases, including rare imprinted diseases, as it can regulate the expression of the epigenome of the
target region, and thereby the causative gene, with minimal or no modification of the genomic DNA.
Various efforts are underway to successfully apply epigenome editing in vivo, such as improving
target specificity, enzymatic activity, and drug delivery for the development of reliable therapeutics. In
this review, we introduce the latest findings, summarize the current limitations and future challenges
in the practical application of epigenome editing for disease therapy, and introduce important factors
to consider, such as chromatin plasticity, for a more effective epigenome editing-based therapy.
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1. Introduction

Genome-editing technologies, such as zinc-finger nuclease (ZFN), transcription
activator-like effector (TALE) nuclease (TALEN), clustered regulatory interspaced short
palindromic repeats (CRISPR)-associated protein (Cas) (CRISPR-Cas), and other related
technologies, are rapidly developing. Combined with DNA-cleaving enzymes (such as
Fok I and Cas proteins), which have RNA or protein domains that recognize target DNA
sequences, these technologies more readily facilitate the repair or modification of target
genes or genomic loci than do conventional gene-targeting methods [1–5]. In addition, these
technologies are optimized to induce changes in target DNA sequences, which make them
ideal for repairing genomic DNA or introducing mutations. Studies on the application of
genome-editing technologies for treating human genetic disorders and infectious diseases,
such as human immunodeficiency virus (HIV), are ongoing [6]. Genome-editing therapies
have just begun clinical trials, and approved drugs have not yet been commercialized [7–10].
For genome editing to be applicable to humans, DNA repair must be complete, and the
repaired genome must be error-free. However, these goals are currently difficult to achieve
through the intrinsic DNA repair mechanism, as the DNA repair pathway is complex [11].

An alternative approach to regulate gene function is to rewrite the epigenetic land-
scape to control gene expression with no or minimal changes in the underlying DNA
sequence. Epigenome editing is considered a potential therapeutic approach for various
genetic diseases and certain cancers [12,13]. These genetic diseases mainly involve gain-of-
function genes [14,15], as loss-of-function genetic diseases can be alternatively treated via
conventional gene therapy [16]. Epigenome editing is also considered for the treatment
of nonhereditary diseases (or nongenetic diseases), as the target gene expression can be
increased or decreased by modifying the epigenome associated with the target gene [17,18].

Int. J. Mol. Sci. 2023, 24, 4778. https://doi.org/10.3390/ijms24054778 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms24054778
https://doi.org/10.3390/ijms24054778
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-9766-203X
https://orcid.org/0000-0003-4674-0883
https://doi.org/10.3390/ijms24054778
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms24054778?type=check_update&version=2


Int. J. Mol. Sci. 2023, 24, 4778 2 of 21

Moreover, epigenome editing is a practical approach to artificially manipulate the chro-
matin structure of arbitrary genomic regions, thereby enhancing our understanding of the
basic epigenomic research [19]. This review outlines the fundamentals of epigenetics and
epigenome editing and focuses on the current status and potential of epigenome editing,
including ethical considerations, in the treatment of various diseases.

2. Overview of Epigenetics and Epigenome Editing

All cells in the human body have the same genetic information. However, during cell
differentiation, dynamic chromatin remodeling sorts the necessary genes from unnecessary
genes. The changes in chromatin structure ensure that the necessary genes are actively
transcribed, and the unnecessary genes are not transcribed because of the formation of
heterochromatin structures [20–22]. These structures and phenotypes are maintained after
each cell division. This process is called epigenetics, and intimately involves the chemical
modifications of DNA, histones, chromatin proteins, and noncoding RNAs (e.g., small
interfering RNAs (siRNAs), microRNAs (miRNAs), PIWI-interacting RNAs (piRNAs), and
long noncoding RNAs (lncRNAs)) [23–25]. Except during DNA recombination in immune
cells, the genomic DNA sequence of most cell types is retained, regardless of differentiation
fate. In particular, when histone tails are acetylated, the chromatin structures become
relaxed and accessible to RNA polymerases and basic transcription factors that activate
the transcription of the gene [26]. On the other hand, when DNA is methylated, or histone
tails undergo repressive post-translational modifications, the chromatin is condensed and
inaccessible to RNA polymerases and other transcription factors; thus, gene expression
is repressed [21].

For instance, lysine and arginine residues of histones H3 and H4 are known to be
methylated, exhibiting different results depending on the site of modification (Figure 1).
Specifically, methylation of the 4th (H3K4) and 36th (H3K36) lysine residues of H3 is closely
related to transcriptional activation and elongation, respectively. In contrast, the methy-
lation of the 9th or 27th lysine residue (H3K9 or H3K27) of the same H3 is involved in
transcriptional repression and heterochromatin structure formation [27–29]. These differ-
ences are caused by the different “reader” proteins that recognize the methylation sites.
Therefore, the chromatin state of the modification site is determined by the type of “reader”
protein that binds during methylation and post-translational modification. Although the
individual chemical modifications involved in epigenetics are reversible, the chromatin
structure (the so-called “epigenome”) changes are often stable and robust once the cell
has established its identity, largely due to the influence of the “reader” proteins [21,25,30].
Thus, the “reader” proteins ultimately determine the chromatin state. Specifically, the chro-
modomain (CD) of the heterochromatin protein 1 (HP1) recognizes H3K9 methylation [31],
which is observed in the nuclear structure after the phase separation [32,33].

Epigenomic-modifying enzymes, such as histone acetyltransferases, DNA methyl-
transferases (such as DNA methyltransferase 3 (DNMT3) alpha (DNMT3A)), and ten-eleven
translocation methylcytosine dioxygenase 1 (TET1), which is a methylcytosine dioxyge-
nase that demethylates methylated DNA, play pivotal roles in altering the epigenome.
However, with a few exceptions, such as PR/SET Domain 9 (Prdm9) [34], most epigenomic-
modifying enzymes do not exhibit genome sequence-binding specificity, as they do not
have a DNA-binding domain that determines a target sequence. Instead, their target speci-
ficity depends on the type of transcription factors with which they form complexes [35–38].
As transcription factors bind to several target genes (often hundreds to thousands) and the
length of the target sequence of an individual transcription factor ranges from a few to a
dozen bases [36,39,40], it is difficult to artificially turn on or off the expression of any gene
of interest using an epigenome-editing enzyme with a transcription factor DNA-binding
domain. Therefore, the DNA-binding domain of a transcription factor is not suitable for
targeting epigenomic-modifying enzymes. Hence, for epigenome editing, a programmable
RNA or protein domain that recognizes target DNA sequences (in most cases, a target
sequence of approximately 20 bp) and the catalytic domain from epigenomic-modifying
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enzymes (so-called “EpiEffectors”) are fused to create an artificial enzyme [41,42] (Figure 2).
By using these artificial enzymes, the EpiEffector can specifically modify the epigenome
of the target site. In the next section, we will describe the different types of EpiEffectors
which are used in epigenome editing.
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Figure 1. Schematic showing how lysine (K) methylation (Me) is recognized by different domains 
of “reader” proteins and their outcomes. (A) Each lysine residue on the histone can either be mono-
, di-, or trimethylated. Each of these post-translational modifications is recognized by different 
“reader” proteins. (B) Methylation of lysine residues of H3 and H4 and the protein domains that 
recognize them. The binding proteins, and not histone modification, change the chromatin struc-
ture. ADD—Alpha-thalassemia intellectual disability syndrome X-linked (ATRX)-DNMT3-
DNMT3L; CD—chromodomain; MBD—methyl-lysine-binding domain; MBT—malignant brain tu-
mor; PHD—plant homeodomain; PWWP—conserved Pro-Trp-Trp-Pro motif; TTD—tandem Tudor 
domain; zf-CW—zinc-finger CW. 
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Figure 1. Schematic showing how lysine (K) methylation (Me) is recognized by different domains of
“reader” proteins and their outcomes. (A) Each lysine residue on the histone can either be mono-,
di-, or trimethylated. Each of these post-translational modifications is recognized by different
“reader” proteins. (B) Methylation of lysine residues of H3 and H4 and the protein domains that
recognize them. The binding proteins, and not histone modification, change the chromatin struc-
ture. ADD—Alpha-thalassemia intellectual disability syndrome X-linked (ATRX)-DNMT3-DNMT3L;
CD—chromodomain; MBD—methyl-lysine-binding domain; MBT—malignant brain tumor;
PHD—plant homeodomain; PWWP—conserved Pro-Trp-Trp-Pro motif; TTD—tandem Tudor domain;
zf-CW—zinc-finger CW.
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Figure 2. Schematic diagram of the DNA recognition domains available for epigenomic-modifying 
enzymes. (A) In zinc-finger arrays, each zinc-finger module recognizes three nucleotides. (B) In 
transcription activator-like effectors (TALEs), each repeat recognizes one nucleotide. (C) In clus-
tered regulatory interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 
(Cas9) (CRISPR/Cas9), one strand of the target site is recognized through Watson–Crick base pairing 
by a bound guide RNA. The attached effector domain (EpiEffector) is indicated by a blue shape. For 
details on EpiEffectors, please refer to Table 1 and earlier reviews [37,41,43–45]. 

Table 1. Summary of EpiEffectors and their induced effects. 
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H3K27 acetylation 
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P300 [46–55] 
cAMP-response element binding protein (CREB)-
binding protein (CBP) [56] 
P300 and/or CBP [57] 
VP64 + P300 [54] 
MS2-P65-HSF1 (MPH) [58] 

Increase in H3K27 acetylation, H3 acetylation 
Enhanced expression of target genes 
Enhanced expression of target genes 
Increase in H3K4 trimethylation and H3K27 acetylation 

H3K27 deacetylation Histone deacetylase 3 (HDAC3) [59] Decrease in H3K27 acetylation 
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SET and MYND domain-containing protein 3 
(SMYD3) [60] 
PR domain zinc finger protein 9 (PRDM9) [61] 
Disruptor of telomeric silencing 1-like (DOT1L) 
[61] 
Ubiquitin-conjugating enzyme E2 A (UBE2A) [61] 
BRG1/BRM associated factor (BAF) (SS18 subu-
nit) [62] 

Increase in H3K4 methylation 
Increase in H3K4 trimethylation 
Increase in H3K79 trimethylation 
Loss of H3K27 trimethylation and increase in H3K4 trimethylation 

H3K9 and H3K27 methyla-
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Lysine-specific demethylase 1 (LSD1) [54,63] 
Krüppel-associated box (KRAB) [14,15,54–56,63–
70] 
JUMONJI (JMJ) [71] 
G9A (also known as Euchromatic histone-lysine 
N-methyltransferase 2 (EHMT2)) [65] 
Suppressor of Variegation 3–9 Homolog 1 
(SUV39H1) [65] 
Enhancer of zeste homolog 2 (EZH2) [65,66,68,72] 
Friend of GATA protein 1 (FOG1) [65,68] 
LSD1 + KRAB [54] 
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Decrease in H3K27 acetylation and increase in H3K27 trimethylation 
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Increase in H3K9 trimethylation 
Increase in H3K9 trimethylation 
Increase in H3K27 trimethylation 
Decrease in H3K27 acetylation and increase in H3K27 trimethylation 
Decrease in H3K4 mono- and dimethylation  
Increase in H3K9 trimethylation 

DNA methylation 
(Gene repression) 

DNMT3A [65,66,73–83] 
DNMT3A + DNMT3L [70,84–86] 
KRAB/EZH2/FOG1 + DNMT3A [65] 

Increase in DNA methylation 
Increase in DNA methylation 

Figure 2. Schematic diagram of the DNA recognition domains available for epigenomic-modifying
enzymes. (A) In zinc-finger arrays, each zinc-finger module recognizes three nucleotides. (B) In
transcription activator-like effectors (TALEs), each repeat recognizes one nucleotide. (C) In clustered
regulatory interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)
(CRISPR/Cas9), one strand of the target site is recognized through Watson–Crick base pairing by
a bound guide RNA. The attached effector domain (EpiEffector) is indicated by a blue shape. For
details on EpiEffectors, please refer to Table 1 and earlier reviews [37,41,43–45].
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Table 1. Summary of EpiEffectors and their induced effects.

Application EpiEffector Induced Epigenetic Changes

H3K27 acetylation
(Gene activation)

P300 [46–55]
cAMP-response element binding protein
(CREB)-binding protein (CBP) [56]
P300 and/or CBP [57]
VP64 + P300 [54]
MS2-P65-HSF1 (MPH) [58]

Increase in H3K27 acetylation, H3
acetylation
Enhanced expression of target genes
Enhanced expression of target genes
Increase in H3K4 trimethylation and
H3K27 acetylation

H3K27 deacetylation Histone deacetylase 3 (HDAC3) [59] Decrease in H3K27 acetylation

H3K4 methylation
(Gene activation)

SET and MYND domain-containing
protein 3 (SMYD3) [60]
PR domain zinc finger protein 9 (PRDM9)
[61]
Disruptor of telomeric silencing 1-like
(DOT1L) [61]
Ubiquitin-conjugating enzyme E2 A
(UBE2A) [61]
BRG1/BRM associated factor (BAF) (SS18
subunit) [62]

Increase in H3K4 methylation
Increase in H3K4 trimethylation
Increase in H3K79 trimethylation
Loss of H3K27 trimethylation and
increase in H3K4 trimethylation

H3K9 and H3K27 methylation
(Gene repression)

Lysine-specific demethylase 1 (LSD1)
[54,63]
Krüppel-associated box (KRAB)
[14,15,54–56,63–70]
JUMONJI (JMJ) [71]
G9A (also known as Euchromatic
histone-lysine N-methyltransferase 2
(EHMT2)) [65]
Suppressor of Variegation 3–9 Homolog 1
(SUV39H1) [65]
Enhancer of zeste homolog 2 (EZH2)
[65,66,68,72]
Friend of GATA protein 1 (FOG1) [65,68]
LSD1 + KRAB [54]
heterochromatin protein 1 (HP1) [62]

Decrease in H3K9 dimethylation and
H3K27 acetylation
Decrease in H3K27 acetylation and
increase in H3K27 trimethylation
Decrease in H3K4 trimethylation
Increase in H3K9 trimethylation
Increase in H3K9 trimethylation
Increase in H3K27 trimethylation
Decrease in H3K27 acetylation and
increase in H3K27 trimethylation
Decrease in H3K4 mono- and
dimethylation
Increase in H3K9 trimethylation

DNA methylation
(Gene repression)

DNMT3A [65,66,73–83]
DNMT3A + DNMT3L [70,84–86]
KRAB/EZH2/FOG1 + DNMT3A [65]
KRAB + DNMT3A (+ DNMT3L) [47,70]
M. SssI MQ1 [87–90]
DNMT1 [78]
DNMT3B [78]

Increase in DNA methylation
Increase in DNA methylation

DNA demethylation
(Gene activation)

TET1 [47,70,73,83,91–94]
TET3 [95]
CRISPR activation (CRISPRa) + TET1 [96]

Decrease in DNA methylation
Increase in 5-hydroxymethylcytosine
Decrease in DNA methylation

3. Description of EpiEffector Molecules

EpiEffectors are the enzymatic domain of a group of enzymes involved in epigenetic
modifications of DNA and histone proteins that do not themselves bind to specific DNA
sequences. Typical examples of EpiEffectors are shown in Table 1. The herpes simplex
virus-encoded protein VP16 is involved in the post-translational modification (acetylation)
of histone tails and contributes to transcriptional activation. TET1 demethylates methylated
DNA, which is a well-known to repress transcription. In contrast, some EpiEffectors, includ-
ing DNA methyltransferases, are responsible for transcriptional repression. Nevertheless,
the chromatin structure is altered, but the DNA sequence is retained in both cases. Although
several enzymes are involved in epigenetic regulation (Table 1), only a few EpiEffectors are
currently used for epigenome editing in vivo (Table 2). As described in the next section,
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VP16 and VP64 (four VP16s) are commonly used as EpiEffectors that activate transcription,
whereas Krüppel-associated box (KRAB), the transcriptional repressor domain of Kox-1
(also known as ZNF10); a mammalian de novo DNA methyltransferase, DNMT3A; and
a bacterial DNA methyltransferase, MQ1, are commonly used for gene repression. In
addition, attempts have been made to combine DNMT3A with DNMT3-like (DNMT3L),
a stimulator of the catalytic activity of de novo DNA methyltransferases, to extend the
duration of epigenome editing in the cell [70,84,85]. Furthermore, epigenome modification
approaches, such as the use of synergistic activation mediators (SAM), CRISPRon, and
CRISPRoff (single artificial genes containing multiple EpiEffectors), which simultaneously
express multiple types of EpiEffectors, are more effective than those that express a single
type of EpiEffector [54,70,97]. These EpiEffectors were selected based on their efficacy
in vivo, their well-understood properties, and their small gene size favoring in vivo gene
transfer (Table 2). For further details on the types of EpiEffectors in epigenomic-modifying
enzymes, please refer to earlier reviews [37,41,43–45].

Table 2. Epigenome-editing studies in vivo.

Platform EpiEffectors Species Target
Diseases Effects

Carrier, Gene
Delivery
Methods

Reference

1 Zinc-finger
protein

Kox-1 KRAB
domain Mouse Huntington’s

disease
Repression of
mutant htt gene

Stereotaxic
injection [14]

2 dCas9

VP64 or three
copies of
transcriptional
repressor
domain SRDX

Arabidopsis Not
applicable

Activation or
repression of target
genes (activation:
AtPAP1, miR319;
repression:
AtCSTF64,
miR159A,
miR159B)

Transgenic plant [98]

3 dCas9-
SunTag scFV-TET1 Mouse Not

applicable

Demethylation of
Gfap regulatory
region.

Electroporation [91]

4 dCas9 DNMT3A or
TET1 Mouse Not

applicable

Demethylation of
BDNF promoter or
de novo
methylation of
CTCF motifs

Stereotaxic
injection of
lentivirus

[73]

5 dCas9

An engineered
prokaryotic DNA
methyltrans-
ferase
MQ1

Mouse Not
applicable

DNA methylation
of H19 locus

Microinjection of
gene expressing
plasmid

[89]

6 TALE

A bacterial CpG
methyltrans-
ferase MQ1
(SssI)

Mouse Not
applicable

Methylation of
major satellite
DNA

Microinjection of
mRNA into the
embryo

[87]

7
dCas9 + dead
sgRNA
(dgRNA)

MS2-P65-HSF1
(MPH) Mouse

Duchenne
muscular
dystrophy,
acute kidney
injury,
diabetes

Activation of
Klotho, Utrophin,
Fst, and Pdx1

Tail vein
injection of
AAV9

[58]
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Table 2. Cont.

Platform EpiEffectors Species Target
Diseases Effects

Carrier, Gene
Delivery
Methods

Reference

8 Staphylococcus
aureus dCas9 KRAB Mouse

To lower
low-density
lipoprotein
cholesterol
levels

Repression of
Pcsk9 expression

AAV, dual-vector
AAV8 system [67]

9 high-fidelity
dCas9

TET3 catalytic
domain Mouse Fibrosis

Activation of
Rasal1 and Klotho
expression

Renal
artery/vein
injection of
lentivirus

[95]

10
CRISPR-
Act2.0 and
mTALE-Act

VP64 Arabidopsis Not
applicable

Activation of
multiple (CSTF64,
GL1, and
RBP-DR1) genes

Transgenic plant [99]

11 dCas9 TET1 Mouse Fragile X
syndrome

Activation of
FMR1 expression

Epigenome-
edited neural
precursor cells
were injected
into the brain

[92]

12 dCas9 VP64 Mouse Obesity Activation of Mc4r
expression

Stereotaxic
injection of
AAV-DJ

[100]

13 dCas9 VP64 Mouse Muscular
dystrophy

Activation of
Lama1 expression

Tail vein
injection of
AAV9

[101]

14 dCas9 DNMT3A or
TET1 Mouse Not

applicable

Repression or
activation of Avy

locus
Microinjection [83]

15 dCas9 Oryzias latipes
EZH2 Medaka Not

applicable

H3K27
methylation of
Arhgap35, Nanos3,
Pfkfb4a, Dcx,
Tbx16, and
Slc41a2a

Injection of
mRNA [72]

16 dCas9-
SunTag scFv-C11orf46 Mouse

Hypoplasia
of the corpus
callosum

Normalization of
Sema6a expression

In utero
electroporation [102]

17 Zinc-finger
protein KRAB Mouse Huntington’s

disease
Repression of
mutant htt

Stereotaxic
injection of
AAV2/6 or
AAV2/9

[15]

18 dCas9 VP64 Mouse Dravet
syndrome

Activation of
Scn1a expression

Intracerebroven-
tricular injection
of AAV9

[103]

19 dCas9 VPR Mouse Blindness
Activation of
Opn1mw
expression

Dual adeno-
associated viral
vectors

[104]

20 dCas9-
SunTag

TET1 catalytic
domain Mouse

Generation of
Silver–
Russell
syndrome
disease
model

Demethylation of
H19-DMR and
repression of Igf2

Microinjection of
mRNA,
transgenic mice

[93]
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Table 2. Cont.

Platform EpiEffectors Species Target
Diseases Effects

Carrier, Gene
Delivery
Methods

Reference

21 dCas9-
SunTag

scFv-TET1
catalytic domain Mouse Not

applicable
Activation of Fgf21
expression

Hydrodynamic
tail vein injection [94]

22 enCRISPRi LSD1 and KRAB Mouse Not
applicable

Perturbation of
enhancers during
hematopoiesis

Tetracycline-
inducible
knock-in mice

[54]

23 Staphylococcus
aureus dCas9 KRAB Mouse

To lower
low-density
lipoprotein
cholesterol
levels

Repression of
Pcsk9 expression

Tail vein
injection of
AAV8

[69]

24 dCas9

A bacterial
CG-specific DNA
methyltrans-
ferase MQ1
Q147L

Arabidopsis Not
applicable

Repression of FWA
expression Transgenic plant [90]

25 dCas9 P300 or KRAB Rat Alcohol use
disorder

Activation or
repression of Arc
expression

Stereotaxic
injection of
lentivirus

[55]

26 dCas9 VP64, JMJ Arabidopsis Not
applicable

Repression of
APX2 expression Transgenic plant [71]

4. Description of Epigenome-Editing Methods

Early studies using epigenome-editing enzymes with target sequence specificity were
performed using zinc-finger and TALE domains that were originally used for genome
editing [37,41,43]. Both are artificial enzymes that fuse the EpiEffector molecule with a
DNA-binding domain that recognizes the target sequence. Several examples of epigenome
editing at the cellular level have previously been reported [41,44], whereas those at the
organismal level have been increasing in recent years (Table 2) [12]. In particular, Garriga-
Canut et al. used zinc-finger and KRAB to specifically repress the mutant huntingtin gene
(htt) in the brain tissue from an animal model of Huntington’s disease [14]. Zeitler et al.
also used zinc-finger and KRAB to specifically suppress the mutant htt gene in cells derived
from patients with Huntington’s disease, as well as in an animal disease model [15]. In
contrast, Yamazaki et al. fused the gene encoding for the CpG methyltransferase from
Mollicutes spiroplasma (M. SssI, strain MQ1) with TALE and successfully methylated repeat
sequences in the pericentromeric region of chromosomes in early mouse embryos [42,87].
This study demonstrates the possibility of epigenome editing in a wide genome region
(i.e., genomic DNA size that can be observed under an optical microscope). As transposon
activation is a problem in the xenotransplantation [105], inactivation through epigenome
editing of numerous repetitive sequences and transposons in the genome may become
an important research area in the future. Although these approaches using zinc fingers
and TALEs have some advantages (discussed in later sections), they have not yet been
widely adopted by the scientific community because of the long period of time required to
synthesize target sequence recognition domains [106].

In addition to zinc-finger and TALE systems, CRISPR systems have been developed
using dead Cas (dCas) proteins that do not cleave DNA (“dead,” as the Cas protein has
lost its endonuclease activity), but possess a programmable DNA-binding activity. The
CRISPR-Cas system uses RNA for target site recognition, which makes it easier to recognize
target DNA sequences compared with zinc-finger and TALE systems. The advent of
these systems has changed the landscape of genome editing [45,106,107]. Among the
dCas proteins, dCas9 was first explored for the CRISPR-Cas system, and methods were
developed to manipulate the epigenome using dCas9 to achieve various effects and actions.
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The following is a brief description of the applications of the CRISPR/dCas system in
epigenome editing.

First, the direct effector fusion approach uses the effector-fused dCas9 to interfere with
transcription through sterically inhibiting RNA polymerase binding and transcription elon-
gation [108,109]. This strategy has been successfully applied in prokaryotes, which reduced
the mRNA expression approximately 300-fold when targeting dCas9 using a single guide
RNA (sgRNA) and up to 1000-fold when two sgRNAs are combined to inhibit transcrip-
tion elongation [108,109]. However, in mammalian cells, only an approximately two-fold
reduction in transcription levels was achieved [109]. For dCas9 to potently regulate gene
expression in mammalian cells, specific effectors, such as transcriptional activation (VP64
and P65) and repression domains (KRAB and Sin3a-interacting domain (SID)) are required.
Either of these active or inhibitory domains is then genetically fused with dCas9 to produce
a single functional recombinant protein [110]. The dCas fusion proteins that activate or
repress transcription are called CRISPR activation (CRISPRa) [111–113] or interference
(CRISPRi) proteins, respectively [109,113,114]. The second approach, called indirect effector
recruitment, incorporates an additional effector protein-recruiting motif into the basic
design, of which the SUperNova tag (SunTag) is a representative example [115]. The third
approach, called spatiotemporal control of activity, uses split-dCas9 or split-dCas9-effector
proteins [116]. In this approach, DNA-binding complexes assemble and function under
various conditions, such as chemical or light induction [117,118].

Using these approaches, the therapeutic applications of epigenome-editing have been
studied in animal models of genetic diseases (Table 2) [45]. In particular, Matharu et al.
successfully treated haploinsufficiency disease in mice through increasing target gene
expression to normal levels using Streptococcus pyogenes dCas9-VP64 [100]. Thakore et al.
also combined Staphylococcus aureus dCas9 with the transcriptional repressor KRAB to
suppress the expression of the target gene Pcsk9, which regulates cholesterol levels, in the
liver. In this study, the effect of a single dose of dCas9-KRAB lasted for up to 24 weeks [67].
Furthermore, Horii et al. successfully used dCas9-SunTag and single-chain fragment
variable (scFv)-TET1 antibody to generate animal models of Silver–Russell syndrome,
which is a disease related to genomic imprinting disorders [93]. More recently, Bohnsack
et al. used dCas9-P300 to activate the activity-regulated cytoskeleton-associated protein
(Arc) expression and observed the attenuation of adult anxiety and excessive alcohol use
disorder in rats [55].

When considering the application of platforms used in genome editing to disease
treatment, CRISPR-Cas systems are uniquely DNA- or RNA-based therapies because of the
use of guide RNA, whereas epigenomic-modifying enzymes based on zinc fingers or TALEs
are applicable as protein drugs and can be administered similarly to available commercial
drugs. As protein-drug immunogenicity has been studied more widely than gene therapies,
the availability of zinc fingers and TALEs as protein drugs could be a major advantage
in developing epigenomic-modifying enzymes as therapeutic drugs [119,120]. Moreover,
epigenome editing technologies using CRISPR-Cas and TALE are potentially immunogenic
in that they contain non-human materials [121]. In contrast, zinc-finger-based technologies
have the advantage of being less immunogenic than CRISPR-Cas and TALE because they
are composed of polypeptides encoded in the human genome. In any case, one of the
challenges for the future will be determining how to reduce the immunogenicity of the
components of epigenome editing technologies.

The main feature of epigenome editing, which is the preservation of the nucleotide
sequence, has been considered to be both a weakness and strength, as the disease-causing
gene is not altered. Instead, epigenome editing suppresses the expression of disease-causing
genes or increases the expression of checkpoint genes, such as cell cycle and other sup-
pressed genes. Therefore, except for the different target specificities, epigenomic-modifying
enzymes are similar to the available molecularly targeted drugs against epigenomic-
modifying enzymes, such as the DNA methyltransferase inhibitor, azacitidine (trade name
Vidaza), and the histone deacetylase inhibitor, vorinostat (trade name Zolinza) [122,123].
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Molecular drugs that target epigenomic-modifying enzymes deliver therapeutic efficacy
by inhibiting the activity of specific enzymes. As they inhibit all functions involving the
enzyme, they affect the entire genome (i.e., “epigenome remodeling” of treated cells) and
result in substantial side effects in the patient [124,125]. In contrast, epigenome remodeling
via an epigenome-editing strategy may result in fewer adverse effects, as it targets only
one or a few sequences within the genome and does not act on the epigenomic-modifying
enzymes. Furthermore, the modified chromatin structures are maintained after cell di-
vision, as they employ the endogenous epigenetic maintenance mechanism within the
cells [12]. Consequently, epigenome editing may be suitable for the treatment of domi-
nant genetic diseases, such as those caused by gain-of-function type mutations. Aside
from epigenomic-modifying enzymes, miRNAs and siRNAs that target RNA transcripts
are being developed as drug candidates for the treatment of genetic diseases, some of
which have begun clinical trials for the treatment of dominant genetic disorders, such as
Huntington′s disease [126,127]. Another advantage of epigenome editing is its reversible
effects compared with the irreversible DNA sequence changes in genomic editing. Accord-
ingly, as with existing drugs, such as molecularly targeted drugs, the dosage, duration of
administration, and other factors in epigenome editing may be adjusted according to the
patient′s condition.

5. Challenges in Epigenome-Editing Technologies

In the treatment of various diseases, including hereditary diseases, epigenome editing
is applied to regulate the transcription of target genes without causing substantial side
effects [17,18]. To achieve this, five factors must be considered: the off-target effects,
undesired genomic mutations caused by the treatment, nuclear structure, cell types, and
method of administration. This section summarizes the status of these challenges and
possible approaches to overcome them.

5.1. Target Specificity in Epigenome Editing

In recent years, the problem of specificity in epigenome editing has been gradually
addressed. Although the risks are small, potential problems must be carefully minimized
for a successful clinical application. Unlike genome editing that targets coding regions
(e.g., exons), epigenome editing targets the transcriptional regulatory regions with similar
sequences in several genes, thereby making it relatively difficult to find sequences unique
to a specific gene [38,128]. Moreover, most genes are simultaneously and synergistically
regulated and controlled by a common set of transcription factors during development and
differentiation [36,38,128,129]. In particular, the transcription factors OCT4 and NANOG
synergistically form the inner cell mass of the blastocyst [130]. Together with SOX2, these
transcription factors regulate several thousands of genes in mouse embryonic stem (ES)
cells [36]. This suggests that DNA-binding protein domains and RNAs that recognize
target DNA sequences should be designed for longer target sequences when used for
epigenome editing. Therefore, instead of the widely used type II CRISPR-dCas9 system [1],
the type I-E Cas3 complex, which recognizes a 27 bp target sequence (longer than that in
Cas9), may provide advantages in terms of specificity in epigenome editing [131–133]. This
may be especially useful when applying the dCas3 system to ex vivo studies. However,
when EpiEffector targets a transcriptional regulatory region of about 20 nucleotides, it
should be noted that the effect of epigenome editing may become local, and the gene
may be transcribed normally through alternative splicing and alternative promoter mech-
anisms [134]. Accordingly, the possibility of such splicing should be considered when
applying this technology.

5.2. Avoidance of Undesirable Genomic Mutations Caused by Epigenome Editing

Although CRISPR/dCas systems are widely used for epigenome editing because of
their easily designed target sequences, the potential for dCas systems to alter genomic
sequences remains a concern [135,136]. Laughery et al. reported dCas9 binding and R-loop
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formation as the main causes of background mutations caused by the dCas9 system. dCas9-
induced mutations were particularly prominent when targeting the antisense strand of a
gene. Several of the induced mutations resulted from cytosine deamination events induced
by dCas9 on the nontarget strand of the R-loop, whereas the other mutations were related
to homopolymer instability or translesion DNA synthesis. The results indicate that DNA
binding by dCas9 is mutagenic, which is possible because dCas9 induces the formation of
R-loops at its target sites [135].

As TALEs and zinc fingers only bind to DNA and have no enzymatic activity to cleave
DNA, another cause of background mutation unique to the dCas system could be the
residual DNA cleavage activity of dCas proteins. Therefore, if dCas proteins are to be used
for human epigenome editing, their DNA-cleaving activity must be eliminated.

5.3. Importance of Nuclear Structure in Epigenome Editing

The plasticity of the nuclear structure (genomic organization) of a cell is lost as cell
differentiation occurs, and certain diseases are known to have abnormal nuclear struc-
tures [137–140]. During differentiation, the cells change their nuclear structure and translo-
cate transcribed genes (i.e., genes that are used by the cell) to the euchromatic region near
the center of the nucleus. Genes that are not transcribed (i.e., genes that are not used
by the cell) are translocated near the nuclear periphery, where they become part of the
heterochromatin and consequently, are inaccessible to the molecules necessary for tran-
scription, such as RNA polymerases and basic transcription factor machinery. DNA and
the histone proteins that fold DNA undergo various chemical modifications, which are
eventually recognized by different “reader” proteins, as described previously. Once formed,
the chromatin and nuclear structures are maintained and difficult to reverse.

In epigenome editing, the epigenomic-modifying enzymes must be applied in cells
with loose nuclear structure and dynamic and plastic chromatin, such as in early embryos
and stem cells. This is because nuclear structures and chromatin are likely to be fixed in dif-
ferentiated cells (Figures 3 and 4A) [137–139,141,142], and a single epigenomic-modifying
enzyme alone is insufficient to alter nuclear structures and chromatin [47,59]. Furthermore,
the simultaneous introduction of several factors is necessary to change the expression
state or epigenome of a gene of interest [47,54,70]. In addition, the nucleosome structure
may affect the epigenome editing [143]. Specifically, heterochromatin reorganization re-
quires the cooperation of numerous energy-consuming factors, including ATP-dependent
chromatin-remodeling factors, to release the heterochromatin state [144,145]. This indicates
that epigenome editing in differentiated cells has a poorer therapeutic effect than that
in stem cells and thus, is not sustainable. Repeated dosing or increasing the dose of the
epigenomic-modifying enzyme may address this problem. Repeated dosing has been
applied in existing drugs, such as those targeting epigenomic-modifying enzymes (e.g.,
azacytidine). Nevertheless, it is important to consider the chromatin structure of the cells to
be treated, as the therapeutic effects (including side effects) of the epigenomic-modifying
enzyme may depend on the cell type.

Notably, conventional gene targeting was made possible by the development of ES
cells [146]. One of the most important characteristics of ES cells is their high chromatin plas-
ticity [137,141]. Accordingly, chromatin plasticity must be considered in human epigenome
editing studies.
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Chromatin plasticity must be considered for more effective and efficient epigenome editing. (B) Type
I-E CRISPR effector is composed of CRISPR RNA (crRNA), Cas3 (possesses helicase and nuclease
activity), and a large Cascade complex, which contains Cas5, Cas6, multiple Cas7, Cas8 (Cse1),
recognizing the protospacer adjacent motif (PAM), and two Cas11 (Cse2) [131,133]. Although the
dead Cas3 (dCas3) complex has not been used for epigenome editing, it would be important to
determine its effect on epigenome editing. VP64 is shown as an example of the EpiEffector. (C) A
scheme for CRISPR–dCas9 and a peptide repeat-based amplification of transcriptional activity using
VP64 as an example of a SUperNova tag (SunTag) system. dCas9 fused with a peptide repeat can
recruit multiple copies of single-chain fragment variable (scFv)-fused VP64 antibody [115]. Thus,
multiple copies of VP64 can activate the target gene more efficiently. (D) A scheme for amplification
of transcriptional activity using the dual-activator enCRISPRa system. P300 and VP64 are shown
as examples of transcriptional activation EpiEffectors. VP64 is fused with MS2 coat protein (MCP),
and MCP-VP64 fusion protein binds to MS2 hairpins within the single guide RNA (sgRNA) [54,115].
P300 and VP64 act synergistically to activate the target gene. CRISPRon and CRISPRoff (not shown
in the figure; single artificial genes containing multiple EpiEffectors together with dCas9) are similar
systems in which multiple EpiEffectors are simultaneously expressed to activate or repress a target
gene [70]. (E) Targeting multiple loci within the target gene using epigenomic-modifying enzymes is
a simple approach to effectively modulate the epigenome [98,99]. Three dCas9-VP64 targeting three
different loci are shown as examples.

5.4. Selection of Cell Types to Be Subjected to Epigenome Editing

It is important to increase the target sequence specificity of epigenomic-modifying
enzymes. It is also equally important to consider the cell types subjected to epigenome edit-
ing (Figure 4A). Specifically, to suppress the expression of a target gene through epigenome
editing in the cell where that gene is strongly expressed, it is likely that transcription of the
entire chromosomal region where the target gene resides will be activated. Although gene
expression is suppressed by a target-specific epigenomic-modifying enzyme, the enzyme
may not be sufficient, and the effect may not be sustained. Therefore, when the target
gene is in the transcription factory, and its expression is active, a large-scale chromatin
remodeling is required to suppress its expression, and a single epigenomic-modifying
enzyme without chromatin remodeling may not be sufficient. Conversely, a target gene
within an inactivated chromosome and heterochromatic region would be inaccessible for
expression. Accordingly, the type I CRISPR-dCas3 system possesses epigenomic-modifying
and helicase enzymatic activities and can edit long regions of genomes (0.5–100 kbp).
Furthermore, compared with conventional systems, the CRISPR-dCas3 system may be
more suitable as an epigenomic-modifying enzyme once the problem of genome size is
addressed (Figure 4B) [131,133]. Alternatively, the SunTag system, in which multiple
EpiEffector molecules are assembled in a scaffold to amplify the epigenomic-modifying
enzymatic activity (Figure 4C) [115], is more effective for epigenome editing than a single
EpiEffector domain [90,93,94,99,102,147]. Another approach related to the SunTag system is
to combine different EpiEffectors to enhance transcriptional activation or repression, which
is shown to be successful in vivo (Figure 4D) [54,58]. Finally, targeting multiple loci within
the target gene using epigenomic-modifying enzymes may be effective in modulating the
epigenome (Figure 4E) [98,99].

Overall, the chromatin plasticity of the target cells for epigenome editing must be
sufficiently high to allow alterations to the chromatin. If the chromatin plasticity of the cells
to be treated is lost, several epigenomic-modifying enzymes are necessary; however, this
may result in off-target effects. Consequently, cell type must be considered when opting for
epigenome editing as a therapy.

5.5. Method of Administration

Epigenome editing requires more components than genome editing. This inevitably
increases the overall genome size of the gene transfer vector. Accordingly, the methods
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for delivering epigenome editing-based therapeutics to target cells, tissues, and organs,
including miniaturization, must be optimized [17,148–153]. The application and function
of drug delivery systems via viruses, lipids, compressed DNA nanoparticles, or gold
nanoparticles must be improved to deliver engineered epigenomic-modifying enzymes
to target cells before their terminal differentiation (specific somatic stem cells in which
the chromatin structure is not fully immobilized) [12,150,154–158]. As discussed in the
previous section, if epigenome editing can be performed on cells with high genomic
plasticity, the treatment may be developed with fewer EpiEffectors, which can potentially
address the problem of genome size. In gene delivery, it is also important to consider
the method of transferring epigenomic-modifying enzymes into specific cells with higher
genomic plasticity.

When epigenome editing is applied to humans in situ, the size of the epigenome-
editing system is critical for successful delivery. Among the developed systems, the
adeno-associated viruses (AAVs) have attracted significant attention (Table 2). Specifi-
cally, the AAV type 2 vector has lost the site-specific insertion into human chromosome
19 via mutation. Site-specific insertion is a major characteristic of AAVs, possibly because
the gene encoding for the Rab-escort protein-1 (REP1) is removed from the vector plas-
mid [159]. In this regard, AAV vectors have attracted particular attention as gene carriers
for epigenomic-modifying enzymes. However, although the gene may be incorporated
into the chromosome of the transduced cell, the probability and degree of such incorpo-
ration are considerably reduced. Furthermore, the expression of the gene of interest can
be maintained for a long period of time [12,67,160]. In addition, AAVs are ideal delivery
systems because of their low immunogenicity, high serotype abundance, and ability to
preferentially infect specific tissues. A limitation of using AAVs for gene delivery is that
the suitable gene size for epigenome editing must be less than 4.7 kbp (including promoter
regions) [161]. However, for several epigenome editing systems, such as the type I and
II CRISPR-Cas, consisting of large genome sizes, AAVs are not suitable gene delivery
methods. Several approaches have been developed to overcome this limitation. Specifically,
instead of using S. pyogenes Cas9, smaller dCas9 orthologues, such as SaCas9, SadCas9,
CjCas9, and NmeCas9, and Casϕ, originating from large phages, have been developed and
shown to be successfully incorporated into AAVs [67,69,100,162–166]. In addition, because
the size of EpiEffector molecules is generally large, it will be necessary to downsize and
optimize EpiEffector molecules in future studies.

Regarding the size limitation, various systems have been studied to allow the delivery
of larger genomes. These include the dual/triple vector, concatamerization/trans-splicing,
overlapping, hybridizing, protein trans-splicing, single vectors, and mini-gene strate-
gies [167–169]. Another approach to overcome the size limitations is to use split inteins.
Split inteins are a pair of naturally occurring polypeptides that mediate protein trans-
splicing, similar to introns in pre-mRNA splicing when located at the terminus of two
proteins [170]. In 2015, Fine et al. [171] discovered the split-intein, SpCas9, which exhibits
a moderate genome editing rate in HEK293T cells compared with full-length SpCas9. In
2016, Chew et al. [172] developed an spCas9-AAV toolbox that retains the gene-targeting
ability of full-length SpCas9. This set of plasmids includes the AAV-Cas9C-VPR for targeted
gene activation. Split inteins are also used to express base editors. Another approach is
nanotechnology-based delivery, such as the use of gold nanoparticles or quantum dots,
which have been applied to the CRISPR/Cas9 system [173]. Nanocarriers, such as lipo-
somes, polymers, and inorganic nanoparticles, have also been used for gene delivery of
CRISPR/Cas gene-editing systems, which suggests that small particles are a viable alter-
native for large gene transfer [174,175]. However, when using nanoparticles in humans,
the risk of epigenetic alterations must be considered [176]. Other possible methods are ex
vivo epigenome editing, in which somatic stem cells or other cells are extracted from the
patient, epigenome-edited, and then returned to the body of the patient [12,177]. In this
case, it is easier to introduce epigenomic-modifying enzymes into the cells, which may be
advantageous, depending on the type of disease.
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Collectively, the application and function of drug delivery systems via viruses, lipids,
compressed DNA nanoparticles, or gold nanoparticles must be improved to successfully
deliver engineered epigenomic-modifying enzymes to target cells before their terminal
differentiation (specific somatic stem cells in which the chromatin structure is not fully
immobilized) [12,150,154–158]. In addition, since epigenetics is reversible, repeated admin-
istration of epigenomic-modifying enzymes may be necessary if the target gene needs to
be repressed or activated for an extended period. Accordingly, a dosage form that allows
repeated administration is also desirable and should be taken into consideration.

6. Future Perspectives

Epigenome editing has several important applications in basic research and offers
potential novel treatments for various diseases. Although it is still in its infancy, several
experimental studies have demonstrated the capability and promise of this technology.
In addition, as the size of EpiEffector molecules responsible for the enzymatic activity
in epigenome editing is generally large, it will be necessary to downsize and optimize
EpiEffector molecules in future studies.

Several challenges in epigenome editing have been discussed: improving target speci-
ficity, selecting optimal cell types for epigenome editing, avoiding undesirable genomic
mutations, considering nuclear structure, and selecting optimal administration methods.
Once these challenges are addressed, and if highly effective epigenomic-modifying enzymes
can be delivered to target cells, epigenome editing poses a huge potential for application in
human therapies, such as in improving therapeutic efficacies and extending drug responses.
Directing epigenomic-modifying enzymes to target sequences is beneficial for the devel-
opment of therapeutic agents with a lower risk of side effects than existing drugs, such as
molecularly targeted drugs. Thus, epigenomic-modifying enzymes could be a promising
option for the treatment of various diseases, including genetic diseases. In addition to
epigenome editing of single disease-causing genes, future studies on epigenome editing
that stabilizes or alters the entire chromosome structure are also important for the treatment
of diseases associated with genome instability and chromosomal structural abnormali-
ties [178]. As epigenome editing is relatively safer than genome editing, especially when
targeting transposons or repeat sequences that are present in the genome in thousands of
copies, further investigations are necessary.

Finally, because epigenome editing does not involve modification of the genome itself,
it is currently considered to have a lower impact on germ cells than genome editing. Thus,
epigenome editing has the potential to overcome important scientific and ethical issues of
concern with genome editing. However, because of the uncertainties associated with new
medical technologies, deliberation is essential on how to clear social and ethical issues and
develop safe and appropriate strategies and policies [179].
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