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Abstract: Fatty acids have received growing interest in Leishmania biology with the characterization
of the enzymes allowing the complete fatty acid synthesis of this trypanosomatid parasite. This
review presents a comparative analysis of the fatty acid profiles of the major classes of lipids and
phospholipids in different species of Leishmania with cutaneous or visceral tropism. Specificities
relating to the parasite forms, resistance to antileishmanial drugs, and host/parasite interactions are
described as well as comparisons with other trypanosomatids. Emphasis is placed on polyunsatu-
rated fatty acids and their metabolic and functional specificities, in particular, their conversion into
oxygenated metabolites that are inflammatory mediators able to modulate metacyclogenesis and
parasite infectivity. The impact of lipid status on the development of leishmaniasis and the potential
of fatty acids as therapeutic targets or candidates for nutritional interventions are discussed.

Keywords: fatty acids; lipid mediators; trypanosomatids; leishmania; leishmania/macrophage
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1. Introduction

Leishmaniases are a complex of tropical and subtropical diseases caused by unicellular
parasites of the genus Leishmania transmitted by a sandfly vector. The localization of para-
sites either in dermal macrophages or their migration to different tissues within internal
macrophages contribute to disease establishment in the host, causing different phenotypes
such as cutaneous (CL), mucocutaneous (MCL), and visceral leishmaniasis (VL) [1–3].
Twenty Leishmania species are distributed worldwide and transmitted to humans and ani-
mals by the sandfly under the different clinical forms mentioned above. Nearly 350 million
people are exposed to leishmaniases in more than 90 countries worldwide, mainly in India
and Africa. The emergence of leishmaniases is now observed throughout the Maghreb, the
Middle East, and South America, with around 2 million new cases reported annually [4].
Canine leishmaniasis is endemic in more than 70 countries in southern Europe, Africa,
Asia, and South and Central America and it has also been reported in the United States of
America [5]. Dogs constitute a major reservoir for the Leishmania species that also affect
humans, and several hundred cases occur annually in humans in the Mediterranean basin
(WHO, 2020).

The Leishmania life cycle involves two different stages: the promastigote inside the
insect vector and the amastigote in the vertebrate’s macrophages. The promastigotes
inoculated by the vector are internalized by host macrophages via phagocytosis and un-
dergo a transformation into the amastigote stage within a parasitophorous vacuole of
phagolysosomal origin [6]. Differentiation of promastigotes into amastigotes involves
complex mechanisms including morphological changes and genomic expressions such as
surface molecules that are required for parasite infectivity and survival into macrophages.
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Entry of intracellular pathogens and cell differentiation are generally associated with the
reorganization of the plasma membrane where lipids, essentially phospholipids, glycol-
ipids, and sterols, are the main components. The host cell’s plasma membrane serves
as a portal for the entry of intracellular pathogens [7]. There are also intricate relation-
ships between parasites and host cell intracellular organelles through interactions with the
parasitophorous vacuole membranes [7–9].

During the last decades, advances in biochemical and molecular approaches have both
contributed to highlighting the importance of lipids and lipid metabolism in Leishmania
biology and the course of macrophage infection. Highly sensitive analytical techniques
such as liquid chromatography–mass spectrometry (LC-MS/MS) allow the revealing of
lipidomic signatures related to the Leishmania life cycle [10,11] and lipid alterations in
drug-resistant Leishmania strains [12,13]. Genomic and transcriptomic approaches have also
reported some correlations between lipid-related gene expression and antileishmanial drug
resistance [14,15]. To date, fatty acids (FA), phospholipids (PL), and sterols have emerged
as biological actors in Leishmania physiology and virulence [12,13].

Recent reviews have emphasized the potential of enzymes involved in lipid and FA
synthesis and metabolism to serve as targets for anti-trypanosomal drugs [12,16]. In this
review, we will focus on the specificities of Leishmania parasites in terms of FA composition
and the production of oxygenated FA derivatives in both promastigote and amastigote
forms and in interaction with host cell macrophages. We will open an opinion on the
potential of FA to reveal biomarkers for leishmaniasis and to emerge as therapeutic targets
or as candidates for nutritional intervention.

2. Leishmania Species and Leishmaniasis

The diversity of Leishmania species and their wide geographical distribution as well as
their sensitivity to treatments illustrate the influence of the environment and the microenvi-
ronment, whether of the host or reservoirs, on the development of the disease and species
tropism.

The reference method for Leishmania typing is multilocus enzyme electrophoresis
(MLEE). The most commonly used is the Montpellier system (MON) which is based on the
analysis of 15 enzymes. As an example, L. infantum is characterized by a large enzymatic
polymorphism and comprises 30 zymodemes in humans. Some of them are related to VL
(MON27, 28, 72, 77, and 187), others only to CL (MON11, 29, 33, 78, and 111), and some
zymodemes can cause both VL and CL, such as MON1 and MON24 [17–20].

Leishmania species cause different clinical forms depending on the localization of
the parasite in the host. VL or Kala Azar in the Indian subcontinent is the most serious
form and its evolution is fatal in the absence of treatment. It is caused by two species:
L. donovani, highly endemic in East Africa and the Indian subcontinent, anthroponotic and
affecting all age groups; L. infantum, zoonotic with a canine reservoir, located in countries
around the Mediterranean, the Middle East, and South America, pathogenic in children
and immunocompromised (HIV) patients [4,21]. CL is the least severe form of the disease.
It is caused by different Leishmania species such as L. major and L. tropica in the old world,
L. amazonensis, L. guyanensis, L. panamensis, and L. braziliensis in various regions of Central
and South America [22,23]. Diffuse CL is a much rarer form linked to immunosuppression
and is more difficult to treat. In the old world, it is caused by L. aethiopica, while in the new
world, it is caused by L. mexicana and L. amazonensis [24,25]. MCL or “espundia” appears
from a few days to several years after CL. It is caused by L. braziliensis, L. panamensis,
L. amazonensis, and L. guyanensis [26]. South America is the most important endemic area.
Post-kala-azar leishmaniasis (PKDL) is a nonfatal dermatological complication that occurs
in some patients with VL [27]. It is still not understood why some species of Leishmania
cause cutaneous symptoms while other species, which are fatal for humans and animals,
cause visceral symptoms. Even more challenging is the double tropism of L. infantum or the
shifting tropism from CL to VL in Leishmania/HIV co-infections [17]. It has been globally
proposed that the development of the disease depends mainly on the intrinsic metabolism
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of the parasite species, although factors in the vectors and the biological status of the host
have also been involved [28].

3. FA Profiles of Leishmania Lipids
3.1. FA Profile and Distribution in Lipids, Phospholipids, and Phospholipid Classes

Fatty acid compositions of total lipids and major lipid classes (e.g., total PL, triglyc-
erides TG, unesterified FA) have been investigated in several species of Leishmania, es-
pecially L. infantum, L. donovani, and L. major. Overall, FA composition was conserved
regardless of the lipid class or these Leishmania species, with a predominance of C16 and
C18 FA [29–36]. These include the saturated FA palmitic acid (PA, 16:0) and stearic acid (SA,
18:0), the monounsaturated oleic acid (OA, 18:1n-9) and the polyunsaturated fatty acids (PU-
FAs) essentially linoleic (LA, 18:2n-6), and to a lower extent, alpha-linolenic (ALA, 18:3n-3)
and gamma-linolenic acid (GLA, 18:3n-6). Longer chain FAs were mainly represented by
elevated levels of n-3 PUFA such as docosahexaenoic (DHA, 22:6n-3) and eicosapentaenoic
acid (EPA, 22:5n-3) in contrast to n-6 PUFA such as arachidonic acid (AA, 20:4n-6) and
docosapentaenoic acid (DPA, 22:5n-6) that are present at only trace amounts [32,34–36].
DHA was recovered in the three lipid classes; however, its proportion was the highest in
TG reaching up to 5% of total FA [35,36]. The predominance of C16 and C18 acyl chains was
recovered in TG [32]. Lipid analyses have also revealed the presence of one single major
cyclopropanated FA (CFA), cis-9,10-methyleneoctadecanoic acid (C19∆, dihydrosterculic
acid), in several Leishmania species such as L. donovani, L. infantum, L. braziliensis but not
L. major or L. tropica [37–39]. C19∆ constitutes a minor component representing less than
1% of the total FA content.

Some differences in FA distribution are also remarkable among individual PL (e.g.,
phosphatidylcholine PC, phosphatidylethanolamine PE, phosphatidylinositol PI, and sph-
ingomyelin). In L. donovani promastigotes, LA was the most abundant FA in PE with
only trace amounts of higher PUFAs; OA and ALA were major acyl chains in PC and
PI, respectively [29,31]. Longer chain PUFAs such as DHA and AA were found in high
proportions in diphosphatidylglycerol [29], PC, and PI [30]. Analyses of molecular species
showed the predominance in L. donovani of C16 and C18 acyl chains in PC, PE, and PI,
as well as DHA-containing species in PC [32]. Wassef et al. [30] showed that the relative
distributions of FA in PC, PE, and PI were different between PL isolated from whole cells
and those isolated from surface membranes, with a higher ratio of unsaturated to saturated
FA in PL surface membranes. In L. mexicana and L. infantum, C19∆ was mainly recovered
in plasmenylethanolamine, the dominant class of PE in Leishmania [37–39].

3.2. Interspecies Differences and Similarities in FA Composition

In addition to L. infantum, L. donovani, and L. major, as summarized above, FA profiles
were determined in many other Leishmania species including L. tropica, L. mexicana, L. ama-
zonensis, and L. tarentolae [29–33,35]. Using nonmetric multidimensional scaling analysis,
de Azevedo et al. showed that L. infantum/chagasi and L. amazonensis present different FA
profiles; however, the method used did not allow the identification of which FA. GCMS
analysis indicated that DHA was not detected in these two species, unlike other Leishmania
species [33].

To further investigate interspecies specificities, we have compared the FA composition
of total lipids from nine Leishmania isolates in the same series of analyses to limit methodol-
ogy variability. Isolates were of human or canine origin, causing either visceral (L. infantum)
or cutaneous (L. tropica, L. major, and L. infantum) leishmaniasis in Tunisia (Table 1). The
data indicate only small differences between the L. infantum and L. tropica strains, regardless
of the human/canine origin or the visceral/cutaneous form. These strains all contained
about 30% saturated fatty acids (SFA), 20% monounsaturated fatty acids (MUFAs), and
50% polyunsaturated fatty acids (PUFAs), with quite an even distribution between the
n-6 and the n-3 series. Within each fatty acid series, the C18 fatty acids were found in the
highest proportions, consistent with previous analyses on total lipids or lipid/PL classes
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of various Leishmania species [29–33,35]. Long-chain n-6 PUFAs were present in a much
lower proportion than the long-chain n-3 PUFA, especially AA, which accounted for 1% of
total FA compared to 10% for DHA. While the FA profiles of L. infantum and L. tropica are
broadly similar, some differences are noticeable in the L. major strains, such as a significantly
higher proportion of myristic acid (14:0) and lower proportions of n-3 FA, especially ALA
and DHA. A recent study reported the FA composition of L. major strains of different host
origins—human or rodents by combining in silico and GC–MS [36]. The authors also
pointed out some differences in L. major compared to other Leishmania species, notably
the absence of detectable ALA and DPA. From our observations and [36], L. major is the
species whose FA composition shows the most differences (high 14:0; low ALA and DHA)
compared to other Leishmania species. Of interest, 14:0 and DHA are among biologically
active FAs in Leishmania pathogenicity (see paragraph 4) and ALA is an essential precursor
for n-3 PUFA including DHA. Moreover, although the FA composition of L. major strains of
human and rodent origin is globally conserved, the rodent clones show a lower quantita-
tive abundance of LA, which is correlated with lower infectivity against macrophages [36].
Whether or not specific FAs turn out to be species biomarkers and the differences in FA
composition contribute or not to parasite pathogenicity deserves further investigation.

Table 1. Comparative FA composition of total lipids in various Leishmania species. Nine Leishmania
strains were isolated from patients in Tunisia including five L. infantum strains (A to E) with visceral or
cutaneous symptoms and canine leishmaniasis, two L. tropica (F,G), and two L. major (H,I) strains. FA
composition was determined by GC analysis. Data are expressed as mole percent and as means ± SD
of four independent determinations. a indicates significant differences compared to other strains by
ANOVA. SFAs, saturated fatty acids; MUFAs, monounsaturated fatty acids.

L. infantum L. tropica L. major
MON-1 MON-24 MON-8 MON-25

VL CanL CL CL CL

A B C D E F G H I
14:0 1.8 ± 0.1 2.1 ± 0.1 2.1 ± 0.6 2.6 ± 0.3 2.1 ± 0.1 1.9 ± 0.2 1.7 ± 0.4 6.2 ± 0.9 a 6.1 ± 1.0 a

16:0 5.2 ± 1.9 6.4 ± 1.2 5.7 ± 1.2 5.8 ± 0.6 7.2 ± 0.9 5.9 ± 2.9 6.7 ± 0.4 7.0 ± 0.7 6.6 ± 0.6
18:0 20.0 ± 1.5 20.1 ± 3.9 21.5 ± 0.9 21.8 ± 1.5 25.3 ± 1.6 17.9 ± 1.8 21.6 ± 4.1 18.9 ± 0.6 18.8 ± 1.7
20:0 0.5 ± 0.1 0.8 ± 0.1 0.6 ± 0.1 0.7 ± 0.1 0.4 ± 0.1 1.2 ± 0.3 1.9 ± 0.1 0.4 ± 0.1 0.4 ± 0.4

SFAs 27.5 29.3 29.9 30.9 35.0 26.9 31.9 32.5 31.9
16:1n-9 nd nd nd nd nd nd nd 0.3 ± 0.1 0.3 ± 0.1
16:1n-7 0.5 ± 0.1 0.5 ± 0.4 0.7 ± 0.2 0.6 ± 0.2 0.5 ± 0.2 0.5 ± 0.4 0.8 ± 0.1 1.3 ± 0.1 a 1.2 ± 0.1 a

18:1 n-9 23.4 ± 3.3 15.3 ± 2.9 21.5 ± 1.5 15.1 ± 0.6 15.8 ± 1.6 20.4 ± 1.2 22.6 ± 1.2 22.6 ± 0.7 22.7 ± 1.0
18:1n-7 1.5 ± 0.2 1.7 ± 0.1 1.7 ± 0.1 1.5 ± 0.1 1.8 ± 0.2 1.5 ± 0.2 1.7 ± 0.1 2.4 ± 0.2 a 2.3 ± 0.2 a

MUFAs 25.4 17.5 23.9 17.2 18.1 22.4 25.1 26.6 26.5
18:2n-6 21.2 ± 1.7 20.8 ± 3.4 19.1 ± 1.1 22.9 ± 1.2 19.5 ± 0.6 26.5 ± 3.4 14.6 ± 4.0 25.7 ± 0.4 27.9 ± 1.8
18:3n-6 0.5 ± 0.1 0.5 ± 0.1 0.6 ± 0.1 0.5 ± 0.1 0.7 ± 0.1 0.7 ± 0.1 0.4 ± 0.2 1.3 ± 0.3 a 1.2 ± 0.2 a

20:2n-6 1.3 ± 0.1 1.6 ± 0.1 1.2 ± 0.1 1.7 ± 0.1 1.2 ± 0.2 1.0 ± 0.1 1.0 ± 0.1 0.5 ± 0.1 a 0.6 ± 0.1 a

20:3n-6 0.9 ± 0.3 1.6 ± 0.1 1.7 ± 0.1 1.4 ± 0.1 0.8 ± 0.3 1.0 ± 0.2 0.7 ± 0.1 1.5 ± 0.3 1.3 ± 0.2
20:4 n-6 0.3 ± 0.1 0.5 ± 0.1 0.4 ± 0.1 0.3 ± 0.0 0.3 ± 0.1 1.0 ± 0.2 0.9 ± 0.2 0.6 ± 0.2 0.6 ± 0.1
Tot n-6 24.2 25.0 23.0 26.8 22.5 30.1 17.6 29.6 31.6
18:3n-3 11.2 ± 2.3 11.1 ± 0.8 9.4 ± 0.8 11.2 ± 0.7 7.6 ± 1.5 9.5 ± 1.4 10.0 ± 1.9 4.5 ± 1.0 a 3.9 ± 0.6 a

20:3n-3 1.7 ± 0.3 2.3 ± 0.2 1.4 ± 0.1 2.2 ± 0.2 1.5 ± 0.3 1.0 ± 0.4 1.9 ± 0.3 0.2 ± 0.1 a 0.2 ± 0.1 a

20:5n-3 nd nd nd nd nd nd nd nd nd
22:5n-3 2.1 ± 0.4 2.7 ± 0.1 2.7 ± 0.3 2.1 ± 0.1 5.1 ± 0.9 1.3 ± 0.3 2.5 ± 0.9 2.3 ± 0.4 2.0 ± 0.3
22:6n-3 7.8 ± 0.7 12.0 ± 1.0 9.5 ± 1.6 9.4 ± 0.6 10.1 ± 1.0 8.6 ± 2.6 11.1 ± 1.6 4.2 ± 0.3 a 3.8 ± 0.5 a

Tot n-3 22.8 28.1 23.0 24.9 24.3 20.4 25.5 11.2 9.9
n-3/n-6 0.9 1.1 1.0 0.9 1.1 0.7 1.4 0.4 0.3

3.3. Changes in FA Composition Relating to Parasite Differentiation and Drug Resistance/
Sensitivity

Some attempts have also been made to identify specific FAs as biomarkers of biological
processes in Leishmania parasites.

In this respect, we showed that the FA composition of L. donovani and L. infantum
lipids changed during the differentiation of the promastigote form into the amastigote form
inside the host macrophages [35]. The most pronounced changes in amastigotes were the
increase in total n-3 FA especially DHA in total PL, and the decrease in total n-6 FAs in all
lipid classes analyzed (total PL, TG, and free FA). Noteworthily, there was a remodeling
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in the distribution of n-6 FA in PL with a significant increase in AA at the expense of its
precursors LA and GLA which were conversely reduced. Since the FA composition of
amastigotes was close to those of host cells, we have suggested that the remodeling of
FAs in amastigote lipids could either depend on FA and/or desaturase/elongase activities
available in macrophages or the regulation of FA biosynthesis enzymes in amastigotes.

Changes in FA compositions have been observed in several Leishmania species upon
exposure to antileishmanial drugs as well as in resistant Leishmania strains. These changes
have been proposed as putative mechanisms for drug toxicity or the development of drug
resistance.

It is assumed that the unsaturation level of plasma membrane PL modulates mem-
brane fluidity, which could impact drug membrane interactions and/or drug transport. A
diminution of membrane fluidity has been reported in various Leishmania parasites resistant
to antileishmanial drugs such as miltefosine [40], amphotericin B [41], and antimony [33,42].
In Rakotomanga et al. [40], the authors described the FA changes in miltefosine-resistant
L. donovani strains. They observed a significant decrease in unsaturated alkyl chains in
PL of miltefosine-resistant parasites, such as OA, AA, and ALA chains, that could result
from reduced desaturation activities. It was proposed that the lower PL unsaturation in
miltefosine-resistant parasites would reduce membrane fluidity and impair miltefosine
affinity [43]. Decreased levels of unsaturated FAs were also reported in L. donovani strains
resistant to amphotericin B compared to sensitive strains, nevertheless, the increase in
membrane fluidity was rather attributed to sterol changes [41]. By contrast, FA profiles of
L. donovani, L. chagasi, or L. amazonensis strains resistant to antimony revealed an increased
level of unsaturation compared to sensitive strains, which was hypothesized to impair
antimony transport and therefore antimony sensitivity [44,45]. Altogether, although corre-
lations between unsaturation level and drug resistance have been reported, the data are
variable depending on Leishmania strains and/or drugs.

Several studies have pointed out variations in some fatty acids associated with drug
resistance. Exposure of L. donovani parasites to antimony induced a marked downregulation
of OA and conversely a marked upregulation of vaccenic acid (18:1n-7) and very long-chain
FAs including AA and DHA [34]. These very long-chain FAs would first be responsible for
antimony-induced killing through the generation of oxidative stress in treated parasites,
and secondarily causative of antimony resistance by increasing ergosterol synthesis. The
resistance of L. infantum/chagasi and L. amazonensis isolates to antimony was also associated
with a marked decrease in OA while AA showed the opposite trend [33,42]. Bouadid
et al. [36] showed that the rodent clone of L. major with the lowest amount of LA was the
least sensitive to miltefosine.

More extensive lipidomic studies have also highlighted specific changes in lipid
species that could turn out to be biomarkers of drug-sensitive vs. drug-resistant Leishmania
parasites. These include PE species (C19∆ or 24:0-enriched species) and inositolphos-
phoceramide (IPC) species in L. infantum or L. donovani strains resistant to miltefosine or
amphotericin B [44,45]. Gutierrez Guarnizo et al. [46] have shown that L. tropica strains
resistant to antimony exhibited a strong downregulation of PC, especially 16:1, 18:2, or
18:3-containing species, while sensitive strains strongly upregulated TG with long-chain
FAs after drug exposure.

4. FA Acquisition in Leishmania

It is commonly admitted that Leishmania parasites acquire FAs both by de novo syn-
thesis and by the uptake of lipids from their host environment [47].

4.1. De Novo Synthesis of FA and PUFA in Leishmania Parasites

The pathways of de novo FA synthesis in Leishmania have been extensively described
in recent reviews [16,48] and will only be briefly presented here. It should be noted that
comparative studies have been carried out on other trypanosomatids highlighting some
specificities for Leishmania. Most of the available data come from genomic and biochemical
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studies in L. major, T. cruzi, and T. brucei. Several enzymes involved in de novo FA synthesis
have been characterized in trypanosomatids and have emerged as potential targets for
antileishmanial drugs [16].

Trypanosoma and Leishmania use a mitochondrial type II FA synthesis pathway (FAS II)
that mediates the synthesis of caprylate (C8) and palmitate (C16). Three genes coding for
at least two of the four enzymes involved in the FAS II pathway have been identified in
L. major. Trypanosomatids also use the unconventional elongase (ELO) system to synthesize
FAs [47,49]. ELO enzymes are integral membrane proteins of the endoplasmic reticulum
that catalyze the extension of acyl chains. Genomes of L. major and T. brucei have genes
encoding putative ELO1-3 proteins to synthesize FAs from C4 to C18. ELO1 extends C4 to
C10, ELO2 extends C10 to C14, and ELO3 extends C14 to C18. Additional ELOs such as
ELO4, ELO5, and ELO6 are involved in the extension of PUFAs [47,49].

Desaturases are enzymes responsible for the synthesis of unsaturated FAs and PUFAs
by the insertion of double bonds in the FA carbon skeleton. Several desaturases including
∆4, ∆5, ∆6, ∆9, ∆12, and ∆15 were characterized in L. major; only ∆4, ∆9, and ∆12 desat-
urases were identified in T. brucei and T. cruzi [50]. Of note, as ∆12 desaturase activity is
not detected in mammals, this enzyme turned out to be a potential drug target for novel
therapeutics against trypanosomatids.

The first step common to the three parasites involves a desaturase ∆9FAD (stearyl-
Coenzyme A desaturase) which converts stearic acid 18:0 (formed de novo or captured
in the host) into 18:1n-9. Leishmania is able to synthesize 18:2n-6 and 18:3n-3 from 18:1n-9
using the enzyme ∆12Des [49]. A particularity of L. major is to express the enzyme ∆15FAD
which allows the conversion of 18:2n-6 to 18:3n-3. In this parasite, a series of reactions
makes it possible to convert 18:2n-6 into 20:4n-6 and 18:3n-3 into 20:5n-3 according to
successive stages of elongation and desaturation, which use desaturases (∆6 and ∆5FAD)
as well as an elongase (∆6ELO). ∆5ELO converts 20:4n-6 to 22:4n-6 as well as 20:5n-3 to
22:5n-3; ∆4FAD allows the synthesis of 22:5n-6 and 22:6n-3. The enzymes ∆5ELO and
∆4FAD are also present in T. brucei and T. cruzi [47]. Leishmania, therefore, have three
additional desaturases which are absent in T. brucei and T. cruzi, ∆15 FAD, ∆6, and ∆5 FAD
as well as the elongase ∆6ELO.

Cyclopropanated fatty acids (CFAs) are generated from cyclopropane fatty acid syn-
thase (CFAS) that catalyzes the transfer of a methylene group from S-adenosyl methionine
to an unsaturated FA. The gene encoding CFAS has been identified in several Leishmania
species. Including L. infantum, L. donovani, L. mexicana, and L. braziliensis, but is missing in
L. major [37]. CFAS has been characterized in both promastigote and amastigote forms of
the parasite in L. infantum and L. mexicana [37].

4.2. FA Uptake

Several studies have suggested the presence of FA binding proteins (FABP) and
FA transport protein (FATP) that would be involved in the specific uptake of FAs in
leishmanial parasites [51]. Orthologues of human FATP have been identified in the genome
of L. major [47]. The uptake of free FAs (PA, SA, and OA) and their esterification in
glycerolipids has been described in axenic amastigotes from L. mexicana [52]. We recently
showed that supplementation of the culture medium of L. infantum promastigotes with
AA or DHA led to specific FA enrichment in parasite lipids indicating that promastigotes
efficiently uptake exogenous FAs [53]. Specific FA enrichment of promastigote lipids was
also observed after supplementation with OA (unpublished observations).

Plasma lipoproteins have been described as an important source of lipids, especially
cholesterol for trypanosomatids, through internalization processes [54–56]. Low-density
lipoprotein (LDL) is likely a source of FAs as it contains large amounts of FAs esterified in
TG and cholesterol esters.
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5. Significance of FAs in Parasite/Host Interactions and Parasite Survival in Host Cell

Several studies have investigated the role of some specific FAs in Leishmania parasites
at both promastigote and amastigote stages, through the exogenous supply or inhibition
of their biosynthesis. Among them, 14:0, some PUFAs and cyclopropanated FAs have
emerged as essential or potential actors in Leishmania biology.

5.1. Myristic Acid (14:0) and Myristoylation

Myristic acid (14:0) is important for N-myristoylation which consists of the transfer
of C14 from myristoyl-CoA onto the N terminal glycine residue of cellular proteins. This
transfer is catalyzed by the enzyme N-myristoyltransferase (NMT) which has emerged as a
potentially druggable enzyme in Leishmania [57]. NMT has been characterized in L. donovani
and L. major and reported for both Leishmania species to be essential for cellular growth,
vesicular trafficking, and survival in the mammalian host [57–59]. Thirty high-confidence N-
myristoylated proteins have been identified with roles in protein phosphorylation, protein
transport, and degradation and Golgi functions in both promastigote and amastigote stages
of L. donovani [60].

The essentiality of NMT In Leishmania viability has been demonstrated by both genetic
and pharmacological approaches. Double knockout is lethal in L. donovani and L. major pro-
mastigotes [57,58]. In vivo studies using the plasmid shuffle method further demonstrated
that NMT is also essential for the viability of intracellular amastigotes of L. donovani [61].
Several pharmacological NMT inhibitors have been developed that exert killing activity
on Leishmania promastigotes although failing to inhibit axenic or intracellular amastigotes
or show low selectivity over human NMT [57,62]. Despite low activity toward L. donovani
amastigotes, Corpas-Lopez et al. have shown that the pharmacological inhibition of NMT
significantly reduced parasite burden in a mouse VL model, therefore, validating NMT as a
pharmacological target in Leishmania [63].

Myristate is also a component of glycosylphosphatidylinositol (GPI) lipid anchors that
attach major classes of surface molecules such as promastigote surface protease (or gp123)
to the plasma membrane of the Leishmania promastigote. These surface proteins with GPI
anchors play a crucial role in Leishmania recognition [59].

5.2. Cyclopropanated Fatty Acids

The functions of CFA and CFAS are not totally understood and vary depending on the
Leishmania species. Subcellular fractionation studies indicate that the cyclopropanated FA
C19∆ mainly locates in both the endoplasmic reticulum and plasma membrane-enriched
fractions in L. infantum [37]. CFAS was preferentially detected during the log and early
stationary phases of promastigotes in L. infantum and L.mexicana promastigotes and in
L. infantum amastigotes upon macrophage infection [37,39]. In L. infantum promastig-
otes, knockout of the CFAS gene lowered parasite burdens in the spleen and liver during
in vivo mice infection [37]. In L. mexicana, CFA modifies the fatty acid chain of plas-
menylethanolamine [39]. CFAS plays a key role in the regulation of the cellular shape
of L.mexicana, its resistance to acidic environments, and to cell membrane targeting of
lipophosphoglycan, but in contrast to L. infantum, is not essential for parasite virulence [39].
Increased content of C19∆ has been reported in resistance to antileishmanial drugs such as
amphotericin B and miltefosine supporting its role for the pathogenicity or survival of the
parasite [44].

5.3. PUFAs: LA, AA and DHA

PUFAs such as LA, AA, and DHA are known to play a key role in maintaining
membrane fluidity and regulating inflammatory and oxidative status. Whether they could
have an impact on parasite infectivity and survival is, therefore, an interesting but still
understudied issue.

Saini and Rai [64] showed that LA supplementation of culture medium during
macrophage infection with L. donovani promastigotes decreased parasite load by strength-
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ening macrophage inflammatory response. LA supplementation also inhibited L. donovani
promastigotes from secreting exosomes containing immunomodulatory factors.

Recently, by carrying out AA supplementation on two L. infantum strains, a visceral
MON-1, and a cutaneous MON-24, we showed that promastigote lipids became enriched
with AA, which correlated with higher infectivity toward J774 macrophages. DHA sup-
plementation induced DHA enrichment of lipids which was also associated with higher
infectivity, although specifically for MON-24 and not the MON-1 strain [53]. We proposed
that these effects could be mediated through the accumulation in supplemented promastig-
otes of PUFA-derived oxygenated metabolites exhibiting pro/anti-inflammatory activities
(see paragraph 5).

Due to their high level of unsaturation, AA and DHA are very sensitive to peroxi-
dation, thus promoting the production of reactive oxygen species (ROS) [65]. Likewise,
exogenously added AA and DHA were shown to promote ROS production in L. dono-
vani promastigotes [34]. Several studies have reported an increase in ROS production in
either murine or human macrophages during Leishmania (L. chagasi, L. amazonensis, and
L. braziliensis) infection, most likely as a defense mechanism to eliminate parasites by
activating inflammatory and immune signaling pathways [66–70]. In our AA and DHA
supplementation studies, we found that ROS production induced in macrophages upon
L. infantum infection was similar for control and supplemented parasites [53]. However,
since parameters other than ROS production (including antioxidant enzyme activity and
vitamin E level) contribute to the fine regulation of oxidative status, we cannot exclude
that infection with promastigotes supplemented with AA or DHA may actually increase
oxidative stress in macrophages.

Furthermore, it was recently shown that PUFAs including AA, EPA, and DHA stimu-
late the formation of lipid bodies (LB) in L. braziliensis and L. infantum procyclic promastig-
otes [71]. As mentioned below, LB has recently emerged as an important organelle in
Leishmania for lipid metabolism and parasite pathogenicity.

6. PUFA Oxygenated Metabolism

Once released from membranes via phospholipases, PUFAs are precursors of various
active oxygenated metabolites, also called oxylipins, such as eicosanoids derived from
AA or EPA, and docosanoids derived from DHA. These lipid mediators are formed via
the activation of pathways involving dioxygen-dependent oxidation, either enzymatically-
dependent using cyclooxygenase (COX), prostaglandin synthase (PGS), lipoxygenase
(LOX), or cytochrome P450 oxygenases (CYP), or nonenzymatic through a free radi-
cal reaction under oxidative stress conditions. Oxylipins gather prostaglandins (PG),
leukotrienes (LT), hydroxy-eicosapentaenoic (HEPE), hydroxy-eicosatetraenoic (HETE),
hydroxy-docosahexaenoic (HDoHE), epoxy-eicosatrienoic (EET), and oxo-eicosatetraenoic
(oxo-ETE) acids as well as proresolving mediators (resolvins, maresins, and protectins).
Oxygenated metabolites regulate various biological processes including inflammation,
blood coagulation, neuroprotection, and pain response. It is well established that AA is
the precursor of proinflammatory mediators, while DHA is conversely converted into
anti-inflammatory derivatives—so-called proresolving mediators [72,73]. Nonenzymatic
cyclic oxygenated metabolites, known as isoprostanes and neuroprostanes are mainly used
as biomarkers of oxidative stress [74].

Eicosanoids play an important role in Leishmania infection, as parasite infection results
in an intense inflammatory response into host cells (macrophages) associated with an
increased expression and release of proinflammatory mediators. The balance between
lipid mediators, especially leukotriene B4 (LTB4) issued from 5-LOX and prostaglandin
E2 (PGE2) issued from PGE2 synthase (PGE2S), determines the macrophage inflammatory
response and the parasite survival. The activity of 5-LOX helps macrophages in eliminating
parasite infections such as T. cruzi [75,76], L. donovani, L. amazonensis [77], and L. infan-
tum [78]. L. major-infected neutrophils release large amounts of LTB4 during the first hours
of infection [79]. LTB4 is involved in NO production and reduces parasite load in different
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cellular models of L. amazonensis infection [80–84]. With respect to PGE2, its production is
induced in macrophages infected with L. infantum and L. donovani [85,86], L. amazonensis,
and L. major [86] and benefits parasite survival [87]. Indeed, PGE2 promotes the growth of
L. major [88] and L. donovani [77] and reduces the macrophage immune response against
L. donovani [86]. In mice infected with L. mexicana and treated with a COX inhibitor, a
reduction in lesion size was observed associated with reduced levels of PGE2 in splenocyte
supernatants [89]. However, PGE2 was conversely reported to exert antileishmanial activ-
ity. It induced L. amazonensis or L. infantum killing in infected macrophages [86,87]. PGE2
released by macrophages under exposure to L.infantum was shown to mediate a proinflam-
matory response [90]. PGE2S was also highly upregulated in macrophages infected with
L. donovani [91].

Besides the production of lipid mediators by infected macrophages, trypanosomatid
parasites have also been shown to produce both proinflammatory and proresolving me-
diators, thereby modulating macrophage responses to parasite infection [71,87,92–95]
(Figure 1). These parasites possess the same classes of eicosanoids biosynthesis enzymes as
mammals, including COX, LOX, and cytochrome P450 (CYP450) as well as parasite-specific
enzymes [96]. Many parasites modulate host immune response through PG, but only a
few COX activities have been described in trypanosomatids. PGF2α synthase (PGF2S)
was identified in T. brucei [97] as well as in T. cruzi modulating the parasite infection [98].
PGF2S expression is increased during metacyclogenesis in L. infantum, L. braziliensis, and
L. amazonensis [71]. In L. infantum/chagasi, the production of PGF2S is carried out in the lipid
bodies [99]. The overexpression of PGF2S in L. braziliensis increased parasite virulence [100].
The metalloprotease gp63 was identified in L. mexicana as being responsible for COX2 activ-
ity in both promastigote and amastigote forms [101]. Several PGs, including PGE2, PGD2,
and PGF2α, are produced by trypanosomatid parasites among which PGF2α is the domi-
nant eicosanoid species in L. donovani, L. tropica, L. major, and T. brucei [102,103]. PGF2α
produced by L. infantum is important for parasite virulence and increases the parasite
burden [99].
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Figure 1. The biosynthesis of AA- and DHA-derived active lipids in trypanosomatids. LOX enzymes
are in blue, COX enzymes in red, and CYP450 enzymes in green. Arachidonic acid (AA) can be metab-
olized into thromboxanes and prostaglandins by the COX pathway; into hydroxyeicosatetraenoic acid
(HETEs), leukotrienes, oxoeicosatrienoic acids (oxoETES), dihydroxyeicosatetraenoic acid (diHETEs)
via the LOX pathway; into HETEs, epoxyeicosatrienoic acids (EETs), dihydroxyeicosatrienoic acid
(diHETrEs) via CYP450. Docosahexaenoic acid (DHA) can be metabolized into hydroxydocosahex-
aenoic acids (HDoHEs), D-resolvins (RvD1; RvD2), maresins, protectins via the LOX pathway, and
hydroxydocosahexaenoic acid (HDoHEs) via the CYP pathway. 17-hydroperoxydocosahexaenoic
acid (17-H(p)DoHE) issued from the COX pathway is the precursor of DHA-derived specialized
proresolving mediators.
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Resolution of inflammation is an active process that promotes the normal function of
infected tissues. Among proresolving mediators, resolvin D1 (RvD1) protects inflammatory
responses and restores tissue homeostasis [103]. RvD1 administration is beneficial in
Leishmania infection in the modulation of the cutaneous manifestation of the disease [87].
During T. cruzi infection, the parasite itself produces proresolving lipids such as RvD1,
RvD5, and RvE2 associated with a modulation of host cell responses to infection [92].
RvD1 also favors L. amazonensis infection by promoting intracellular parasite replication in
human macrophages [104]. Recently, Paloque and co-workers [94] reported the production
of PUFA-derived oxygenated metabolites in L. infantum. They compared proinflammatory
and proresolving mediator profiles in noninfectious (procyclic) and infectious (metacyclic)
Leishmania promastigotes, revealing that oxygenated metabolites of AA and DHA were
increased in the metacyclic form, partially depending on CYP-like enzyme activities. The
highest increases were shown for 5- and 8-HETE derived from AA, and 14- and 17-HDoHE
derived from DHA. HdoHE are the precursors for resolvins and maresins and the authors
further showed that lipid extracts of infectious promastigotes induced the production of
RvD2, maresin1, and protectin Dx in host macrophages and their polarization into the M2
phenotype. We recently showed that the L. infantum promastigote was able to convert
exogenous AA and DHA into active metabolites, leading to the accumulation of EET, 5-
and 8- HETE, and 14- and 17-HDoHE associated with an increase in parasite infectivity [53].
Another recent study quantified the production of eicosanoids in different Leishmania
species including L. infantum, L. amazonensis, and L. braziliensis in the presence of exogenous
AA. Several compounds were identified, including PGE2, PGD2, PGF2α, and numerous
HETEs [71].

An alternative mechanism for the generation of prostaglandin-like compounds is the
nonenzymatic generation of molecules called isoprostanes. Increased oxidative stress asso-
ciated with increased levels of isoprostanes was measured in sera from patients suffering
from CL [105]. Specific aldo-keto reductase (AKR) was identified in T. cruzi and L. donovani,
converting AA into isoprostanes, especially 8isoPGF2α [106].

7. Therapeutics Insights: Lipids and Fatty Acids as Druggable Targets in Leishmaniasis
7.1. Current Treatments

The treatment of leishmaniasis in its various forms is limited to a restricted number of
molecules, most of which are toxic; their administration is difficult and parasite resistance
has developed. Several current therapeutics have been shown to target lipid metabolism,
as recently reviewed by Arya et al. [16]. The major treatments and their interaction with
lipid metabolism are only briefly described below.

Pentavalent antimonials (SbV) are the first-line drugs used to treat visceral, cutaneous,
and mucocutaneous leishmaniasis. The mechanism of action of SbV and its active trivalent
form (SbIII) is not completely established but it may interfere with oxidative status and
fatty acid oxidation [52,107]. Antimonials are administered intralesionally or parenterally
and produce severe side effects, such as cardiotoxicity, nephrotoxicity, and hepatotoxicity.
These compounds have developed serious resistance in certain endemic areas, such as in
northern Bihar in India [108]. In the new world, mainly in Brazil, the effectiveness of these
drugs is over 90% while in Bihar, India, and Nepal, the treatment failure is around 60%.

Amphotericin B, the second treatment against leishmaniasis, is a polyene antibiotic
isolated from Streptomyces nodosus first used as an antifungal in the treatment of systemic
mycoses. It is currently used by parenteral administration against severe forms including
VL or forms resistant to antimonials [109]. Amphotericin B acts on both promastigotes
and amastigotes by targeting ergosterol in the parasite surface membrane and increasing
permeability [22]. It also stimulates the phagocytic capacities of macrophages. In the
new world, mainly Brazil, Amphotericin B has been used successfully to treat VL in
special conditions, including older patients, children, transplant recipients, and patients
with comorbidities such as diabetes and HIV infection, but it presents strong renal and
hematological toxicity. Liposomal amphotericin B is significantly less nephrotoxic while
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remaining very effective and is at present the treatment of choice for immunocompetent
patients in the Mediterranean region and the preferred drug for HIV/visceral leishmaniasis
co-infection. The main obstacle to its widespread use, especially in the world’s poorest
countries, is its high cost.

Miltefosine is an alkyl-lysophospholipid originally developed for the treatment of
cancer that exerts antileishmanial activity by inhibiting the biosynthesis of Leishmania
phospholipids and sterols [110]. It is the first oral drug available for the treatment of VL
and CL and shows 95% efficacy against moderate VL in the Indian subcontinent [111].
However, its use is limited due to gastrointestinal, hepatic, renal toxicity, and teratogenic
effects. Moreover, the efficiency of miltefosine is rather low in the new world, which may
be due to natural resistance in the patients in this region.

Imidazoles and triazoles (ketoconazole, fluconazole, and itraconazole) are antifungal
drugs mainly used against CL in the new world. They both act as inhibitors of lanosterol
14α-demethylase in Leishmania parasites [112]. Triazoles are metabolized more slowly,
interfere less with the synthesis of human sterols, and are, therefore, less toxic than imida-
zoles [113].

7.2. Lipid Status as Prognostic/Diagnostic Biomarker for Leishmaniasis

Although not yet fully understood, nutrition may have a strong influence on the
course and severity of leishmaniases. With respect to lipid supply, it was shown that in
children with VL and suffering from undernutrition, the development of the disease is
favored by a low-fat mass and the disease itself leads to a loss of fat mass [114]. It is now
admitted that lipids and lipoproteins play an important role in host defense as well as in
the infectivity of trypanosomatids.

Host cholesterol is widely recognized as a key lipid player in Leishmania infection [115].
It has been demonstrated that host cell cholesterol is mandatory for the binding, inter-
nalization, and development of Leishmania into macrophages [7,116] and required for the
biogenesis of the parasitophorous vacuole [9,117]. Despite the lack of cholesterol synthesis
enzymes in the parasite Leishmania, traces of cholesterol have been detected in promastig-
otes likely reflecting uptake from their environment. An increase in cholesterol content
at the expense of ergosterol, the major sterol in Leishmania parasites, has been reported in
L. infantum promastigotes during metacyclogenesis [14]. We previously showed a strong
remodeling of sterols during the intramacrophagic transformation of the L. donovani and
L. infantum promastigotes into the amastigote stage, with a marked enrichment in choles-
terol and loss of ergosterol [35]. Altogether these observations suggest that macrophage
cholesterol is a helping player in Leishmania infection.

Increased synthesis of TG and formation of LB were reported in macrophages upon
infection with L. major, L. infantum, or L. donovani [118–120], and LB of macrophage origin
were recovered in the parasitophorous vacuole [118,121]. The formation of LB was also
observed in metacyclic L. infantum and L. braziliensis promastigotes and these organelles
were recovered in the parasitophorous vacuole after macrophage infection. Regardless
of macrophage or parasite origin, LB have recently emerged as important modulators of
Leishmania pathogenicity [95,99,119].

With respect to the clinic, it was reported that VL patients had lower LDL, HDL, and
total cholesterol levels compared to controls [122,123]. The reduction in serum cholesterol
correlates with a high parasite load [124,125]. In mouse models (mice fed a high-cholesterol
diet or Apo E-deficient mice), it was demonstrated that high circulating cholesterol levels
exert protective effects against Leishmania infection [126]. In normocholesterolemic condi-
tions, L. donovani infection induces the cholesterol depletion of macrophage membranes,
which disorganizes lipid rafts and impairs host cell defense. It was shown that cholesterol
replenishment via systemic liposomal cholesterol administration offers protection in ham-
sters infected with L. donovani [114,127]. Liposomal cholesterol delivery would help the
host to outwit the Leishmania parasite by maintaining a high membrane cholesterol level
and activating macrophage immune function [128].
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Hypertriglyceridemia has been proposed as a prognostic/diagnostic marker in VL.
Patients with VL exhibit increased TG levels at diagnosis that return to normal after VL
resolution [122]. Serum TG levels were found to be significantly higher in VL than in
control subjects and correlate with the severity of the disease [129,130].

Both hypocholesterolemia and hypertriglyceridemia were measured in pediatric VL
patients [131]. Low HDL and elevated TG levels in patients with a mutation of lipoprotein
lipase and PPAR alpha genes have been proposed as risk factors for the development of
VL [131]. Feeding mice a high-sugar/high-fat diet was shown to increase parasite burden
in both the liver and spleen after infection with L. infantum/chagasi [132]. High TG and low
HDL levels were also measured in dogs infected with L. infantum [133,134].

It is noteworthy that the levels of cholesterol and triglycerides that impact Leishma-
nia infectivity can both be modulated by FAs. Hypothetic mechanisms to explore would
be that FAs may increase cholesterol esterification, therefore, reducing free cholesterol
and limiting host cell defense. In addition, FAs may modulate TG content through syn-
thesis/esterification/hydrolysis pathways, therefore, interfering with the formation of
lipid bodies.

8. Conclusions and Perspectives

So far, mainly pharmacological approaches to target specific lipid enzymatic pathways
in Leishmania parasites, especially involved in PL and sterol biosynthesis and myristoylation,
have been used for the development of antileishmanial drugs. As concluding perspectives,
we would like to highlight the potential of FAs and PUFAs to modulate parasite or host cell
lipid status and consequently parasite/host cell interactions and parasite pathogenicity.

From our data and data from others cited in this review, saturated FA myristate as
well as several PUFAs including LA, AA for the n-6 series, and ALA and DHA for the n-3
series appear as FAs of highest interest. Not only do these FAs exhibit changes associated
with infection stages, drug sensitivity, or resistance but they are also involved in Leishmania
metabolism and/or infectivity.

Developing nutritional strategies may thus be worthwhile. Interestingly, Saini et al. [135]
reported that serum LA levels were decreased in patients with VL. Macrophage supplemen-
tation with LA, either preventively or postinfection, reduced the parasite load in infected
macrophages. They suggest that the regular consumption of LA-rich oils in endemic regions
may be a valuable strategy to control leishmaniases. In another model of parasite/host
cell interaction (i.e., the freshwater crustacean Daphnia magna and its parasite Pasteuria
ramosa), Scholtz et al. [136] showed that a PUFA-enriched diet or specific AA and EPA
supplementation significantly reduced the likelihood of infection.

These PUFAs, especially LA, AA, and DHA, have been described as precursors of
oxylipins in several Leishmania species and infected macrophages. Among them, PGE2,
PGF2α, HETE, LTB4, proresolving mediators, and their precursors HDoHE, have been
proposed as being involved in Leishmania infection. Only a few studies on the oxygen
metabolism of PUFAs have been published to date and the characterization of the enzymes
has not yet been carried out. Furthermore, the biological activities of specific PUFA metabo-
lites issued from parasites are not well described and deserve further investigation. These
lipid mediators certainly open a new and promising way to better understand the role of
PUFAs in host cell/parasite interactions and bring them to the fore in therapeutic strategies.
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