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Abstract: The use of mesenchymal stem cells (MSCs) has become a new strategy for treating diabetic
kidney disease (DKD). However, the role of placenta derived mesenchymal stem cells (P-MSCs) in DKD
remains unclear. This study aims to investigate the therapeutic application and molecular mechanism of
P-MSCs on DKD from the perspective of podocyte injury and PINK1/Parkin-mediated mitophagy at
the animal, cellular, and molecular levels. Western blotting, reverse transcription polymerase chain reac-
tion, immunofluorescence, and immunohistochemistry were used to detect the expression of podocyte
injury-related markers and mitophagy-related markers, SIRT1, PGC-1α, and TFAM. Knockdown, over-
expression, and rescue experiments were performed to verify the underlying mechanism of P-MSCs in
DKD. Mitochondrial function was detected by flow cytometry. The structure of autophagosomes and
mitochondria were observed by electron microscopy. Furthermore, we constructed a streptozotocin-
induced DKD rat model and injected P-MSCs into DKD rats. Results showed that as compared with
the control group, exposing podocytes to high-glucose conditions aggravated podocyte injury, repre-
sented by a decreased expression of Podocin along with increased expression of Desmin, and inhibited
PINK1/Parkin-mediated mitophagy, manifested as a decreased expression of Beclin1, the LC3II/LC3I
ratio, Parkin, and PINK1 associated with an increased expression of P62. Importantly, these indicators
were reversed by P-MSCs. In addition, P-MSCs protected the structure and function of autophagosomes
and mitochondria. P-MSCs increased mitochondrial membrane potential and ATP content and de-
creased the accumulation of reactive oxygen species. Mechanistically, P-MSCs alleviated podocyte injury
and mitophagy inhibition by enhancing the expression of the SIRT1-PGC-1α-TFAM pathway. Finally,
we injected P-MSCs into streptozotocin-induced DKD rats. The results revealed that the application
of P-MSCs largely reversed the markers related to podocyte injury and mitophagy and significantly
increased the expression of SIRT1, PGC-1α, and TFAM compared with the DKD group. In conclusion,
P-MSCs ameliorated podocyte injury and PINK1/Parkin-mediated mitophagy inhibition in DKD by
activating the SIRT1-PGC-1α-TFAM pathway.

Keywords: diabetic kidney disease; placenta derived mesenchymal stem cells; podocyte injury;
mitophagy; SIRT1-PGC-1α-TFAM pathway

1. Introduction

Diabetic kidney disease (DKD), also known as diabetic nephropathy, is a renal com-
plication of diabetes, is one of the main causes of morbidity and mortality in patients
with diabetes mellitus [1]. Epidemiological studies have shown that, compared with other
diabetic complications, the prevalence of DKD has not changed significantly in recent
decades [2]. DKD has become a global public health issue and has imposed a tremendous
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economic burden onto society and public health systems. Nearly 40% of people with
diabetes mellitus will develop DKD, which is the leading cause of chronic kidney disease
and end-stage renal disease worldwide [3]. Albuminuria is a significant clinical symptom
of DKD and is closely associated with podocyte damage [4]. Podocytes are terminally
differentiated glomerular visceral epithelial cells that can maintain the integrity of the
glomerular filtration barrier [5,6]. The injury and loss of podocytes comprise an early
feature of DKD that predicts its progressive course [7]. Silencing information regulator 2
related enzyme 1 (sirtuin1, SIRT1), an NAD(+)-regulated deacetylase, plays a significant
role in cellular senescence [8]. Protective effects of SIRT1 on podocyte injury in DKD have
been reported [9,10]. Hence, maintaining the normal structure and function of podocytes
and preventing podocyte damage are important measures in the prevention and treatment
of DKD.

Autophagy plays a crucial role in maintaining lysosome homeostasis in podocytes un-
der diabetic conditions, and its impairment is an important pathophysiological mechanism
of DKD [11]. Mitophagy is a highly conserved autophagic process that selectively removes
damaged or unnecessary mitochondria, and it plays an important role in maintaining the
stability of the intracellular environment [12]. Phosphatase and tensin homolog-induced
kinase 1 (PINK1)/Parkin-mediated mitophagy is a hotspot for research in mammalian
cells [13]. Damaged mitochondria accumulate PINK1 in the mitochondrial outer membrane,
which then recruits and activates Parkin, resulting in the ubiquitination of mitochondrial
proteins. These proteins can then be bound by the autophagic proteins p62/SQSTM1
and LC3, resulting in the degradation of mitochondria by mitophagy [14]. Peroxisome
proliferator-activated receptor γ coactivator-1alpha (PGC-1alpha, PGC-1α) and transcrip-
tion factor A, mitochondrial (TFAM) are involved in mitochondrial biogenesis [15]. Im-
paired mitophagy and persistent mitochondrial dysfunction play a crucial role in the early
stages and progression of DKD [16,17]. Unfortunately, there is no efficient therapy to
prevent or even reverse podocyte injury and mitophagy inhibition in DKD.

In recent years, the application of mesenchymal stem cells (MSCs) in the treatment of
DKD has shown good prospects [18,19]. Placenta derived mesenchymal stem cells (P-MSCs)
have many advantages, such as an extensive sources, convenient drawing, less ethical
controversy, and strong proliferative ability. Studies have shown that human umbilical cord
MSCs prevented podocyte damage in DKD by inhibiting the Toll-like receptor signaling
pathway and depressing inflammation [20]. However, no studies have reported the effect
of P-MSCs on podocyte injury and mitophagy in DKD, and the underlying mechanism
remains unclear. From this background, we will investigate the therapeutic effect of P-MSCs
on DKD and the corresponding molecular mechanism from the perspective of podocyte
injury and mitophagy inhibition.

2. Results
2.1. Podocyte Injury and PINK1/Parkin-Mediated Mitophagy Inhibition Induced by High Glucose
in the Mouse Podocyte Cell Line

First, we determined whether high glucose (HG)-aggravated podocyte injury and
decreased PINK1/Parkin-mediated mitophagy. We selected the mouse podocyte cell line,
the MPC5 cell line, for the cell experiments. MPC5 was treated with different concentrations
of glucose (30 mM, 40 mM, and 50 mM) for 48 h. The results showed that as compared with
the control group, exposing podocytes to HG conditions inhibited PINK1/Parkin-mediated
mitophagy, manifested as a decreased expression of Beclin1, the LC3II/LC3I ratio, Parkin,
PINK1 associated with an increased expression of P62 (Figure 1A,B), and aggravated
podocyte injury, represented by a decreased expression of Podocin along with an increased
expression of Desmin (Figure 1C,D). Moreover, HG suppressed PINK1/Parkin-mediated
mitophagy and exacerbated podocyte injury in a concentration-dependent manner. Then,
to evaluate the optimal intervention time for HG, we treated MPC5 with HG (50 mM) for
24, 48, and 72 h. Results suggested that the expression of Beclin1 and the LC3II/LC3I ratio
were significantly decreased, and the expression of P62 and Desmin were significantly
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increased after 48 h of HG intervention compared with 24 h and 72 h (Figure 1E–H). Hence,
in the subsequent experiments, HG was used at 50 mM for 48 h.
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Figure 1. Podocyte injury and PINK1/Parkin-mediated mitophagy inhibition induced by HG.
(A,B) Representative Western blot analysis of Beclin1, LC3II/LC3I ratio, P62, Parkin, and PINK1 in
MPC5 treated with different concentrations of glucose. (C,D) Representative Western blot analysis of
Podocin and Desmin in MPC5 treated with different concentrations of glucose. (E,F) Representative
Western blot analysis of Beclin1, LC3II/LC3I ratio, P62, Parkin, and PINK1 in MPC5 treated with
HG for 24 h, 48 h, and 72 h. (G,H) Representative Western blot analysis of Podocin and Desmin in
MPC5 treated with HG for 24 h, 48 h, and 72 h. n = 3 for (A–H). β-actin was used as loading control.
* p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001 vs. control; ns = not significant.
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2.2. P-MSCs Attenuated HG-Induced Podocyte Injury and PINK1/Parkin-Mediated
Mitophagy Inhibition

In recent years, MSCs have played an increasingly crucial role in diabetes and its
complications [21,22]. We investigated whether P-MSCs could ameliorate podocyte in-
jury and regulate PINK1/Parkin-mediated mitophagy in DKD. To this purpose, we used
western blot (WB) and reverse transcription–polymerase chain reaction (RT-PCR) to de-
tect PINK1/Parkin-mediated mitophagy/podocyte injury-related proteins and mRNAs
in MPC5 cells. WB analysis showed that the P-MSCs group had an increased expression
of Beclin1, the LC3II/LC3I ratio, Parkin, PINK1, Tom20, and Podocin as compared with
the HG group, and a decreased expression of P62 and Desmin (Figure 2A,B). The results
of the RT-PCR analysis were consistent with those of the WB analysis, except for Podocin
(Figure 2C). Furthermore, immunofluorescence analysis revealed that P-MSCs attenuated
podocyte injury by increasing the expression of Podocin and decreasing the expression of
Desmin (Figure 2D–G). These results illustrated that P-MSCs could reduce the degree of
HG-induced podocyte injury and increase the level of PINK1/Parkin-mediated mitophagy.
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Figure 2. P-MSCs attenuated HG-induced podocyte injury and PINK1/Parkin-mediated mitophagy
inhibition. (A,B) Representative Western blot analysis of Beclin1, LC3II/LC3I ratio, P62, Parkin,
PINK1, and Tom20 as well as Podocin and Desmin in MPC5. (C) Representative RT-PCR anal-
ysis of Beclin1, LC3II/LC3I ratio, P62, Parkin, PINK1, and Tom20, as well as Desmin in MPC5.
(D–G) Immunofluorescence staining of Podocin and Desmin in MPC5 (Magnification, 400×). Scale
bars: 50 µm for (D,E). n = 3 for (A–E). Values are expressed as the mean ± SD. β-actin was used as
loading control. ** p < 0.01 and *** p < 0.001 vs. control, # p < 0.05, ## p < 0.01, and ### p < 0.01 vs. HG.
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In addition, we used transmission electron microscopy to observe the structure
and quantity of the nuclear membrane, autophagosomes, and lysosomes. As shown in
Figure 3A, the nuclear membrane was intact along with more autophagosomes (red arrows)
and lysosomes (green arrows) in the control group. However, the integrity of the nuclear
membrane was disrupted, and was accompanied by fewer autophagosomes and lyso-
somes under HG conditions. Interestingly, P-MSCs reduced nuclear damage and increased
autophagosomes and lysosomes.
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Figure 3. Transmission electron microscopy analysis of autophagosomes and mitochondria. (A) The
integrity of the nuclear membrane was disrupted (blue arrows) accompanied by fewer autophago-
somes (red arrows) and lysosomes (green arrows) in the HG group compared with the control group.
P-MSCs reduced nuclear damage and increased autophagosomes and lysosomes. (B) Mitochondria
were columnar or reticular, with clear mitochondrial cristae, normal matrix density, and intact mito-
chondrial membranes in the control group. Mitochondrial structures were significantly damaged in
the HG group. P-MSCs improved the structures of mitochondria. Scale bars: 500 nm for (A,B).

2.3. P-MSCs Extenuated HG-Mediated Mitochondrial Dysfunction and Reactive Oxygen
Species Accumulation

We observed mitochondria structure using transmission electron microscopy. As
shown in Figure 3B, mitochondria were columnar or reticular, with clear mitochondrial
cristae, normal matrix density, and intact mitochondrial membranes in the control group.
Mitochondrial structures were significantly damaged in the HG group. Nevertheless, P-
MSCs improved the structure of mitochondria (Figure 3B). Additionally, a growing number
of studies have implicated that mitochondrial dysfunction was associated with podocyte
damage and albuminuria [23,24]. In this study, we measured mitochondrial membrane po-
tential (∆Ψm) and ATP content in different groups, representing the level of mitochondrial
function. The results implied that ∆Ψm (Figure 4A,C) and ATP content (Figure 4D) were
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significantly decreased in the HG group as compared with the control group, indicating
that mitochondrial function was seriously damaged under HG states. Furthermore, in
conditions of hyperglycemia, accumulation of reactive oxygen species (ROS) was observed
(Figure 4B,E), which indirectly contributes to podocyte injury. Interestingly, the effects
of HG on ∆Ψm, ROS, and ATP content were reversed by P-MSCs, suggesting an overall
improvement of mitochondrial function (Figure 4A–E).
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Figure 4. P-MSCs extenuated HG-mediated mitochondrial dysfunction and ROS accumulation.
(A) Mitochondrial membrane potential was measured by flow cytometry. (B) Mitochondrial mem-
brane potential was quantified in MPC5. (C) ATP levels were quantified in MPC5. (D) ROS was
measured by flow cytometry. (E) ROS were quantified in MPC5. n = 3 for (A–E). Data are shown
as the means ± SD from three independent experiments. ** p < 0.01 and *** p < 0.001 vs. control,
# p < 0.05 and ## p < 0.01 vs. HG.
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2.4. P-MSCs Alleviated HG-Induced Podocyte Injury and PINK1/Parkin-Mediated Mitophagy
Inhibition by Activating the SIRT1-PGC-1α-TFAM Signaling Pathway

We performed the following experiments to further explore the mechanism by which
P-MSCs affected podocyte injury and PINK1/Parkin-mediated mitophagy. Recent studies
have reported that mitophagy is initiated by upregulation of SIRT1 [25,26]. In addition,
PGC-1α and TFAM proteins appear to be vital factors in SIRT1-associated
mitophagy [27,28]. Hence, we detected the expression levels of SIRT1, PGC-1α, and
TFAM in different groups first and foremost. The results of the WB and RT-PCR analyses
suggested that the expressions of SIRT1, PGC-1α, and TFAM were notably decreased in
the HG group as compared with the control group. However, the influence of HG on the
expressions of SIRT1, PGC-1α, and TFAM was reverted by P-MSCs (Figure 5A–C). Im-
munofluorescence analysis also consistently revealed the same results as WB and RT-PCR
analyses (Figure 5D–I).

Subsequently, to confirm whether SIRT1 was necessary for P-MSCs to regulate podocyte
injury and PINK1/Parkin-mediated mitophagy, SIRT1 expression was overexpressed. We
verified the overexpression efficiency using both WB analysis (Figure 6C,D) and RT-PCR
analysis (Figure 6E). The changes of the podocyte injury and mitophagy-related pro-
teins and mRNAs after SIRT1 overexpression were then detected again. WB analysis
(Figure 6A,B) and RT-PCR analysis (Figure 6F) showed that as compared with the negative
control vector (OE-NC) group, the expressions of Beclin1, the LC3II/LC3I ratio, Parkin,
PINK1, Tom20, and Podocin were increased. In contrast, the expressions of P62 and Desmin
were decreased in the SIRT1 overexpression (OE-SIRT1) group, indicating that by upreg-
ulating the expression of SIRT1, P-MSCs play a protective role in HG-induced podocyte
injury and PINK1/Parkin-mediated mitophagy. Interestingly, we found that the expression
of PGC-1α and TFAM was increased along with SIRT1 overexpression (Figure 6C–E). Fur-
thermore, siRNA was used to knock down the expression of SIRT1. The WB and RT-PCR
analyses determined podocyte injury-related markers and mitophagy-related markers. The
results demonstrated that the inhibition of SIRT1 expression aggravated podocyte injury,
inhibited PINK1/Parkin-mediated mitophagy, and decreased the expression of PGC-1α
and TFAM (Figure S1A–G).

In addition, to determine whether P-MSCs protected podocytes from damage and
enhanced PINK1/Parkin-mediated mitophagy through the SIRT1-PGC-1α-TFAM signaling
pathway, we performed rescue experiments. WB analysis data showed that the expres-
sions of Beclin1, the LC3II/LC3I ratio, Parkin, PINK1, Tom20, and Podocin increased,
whereas the expressions of P62 and Desmin decreased after SIRT1 overexpression. Nev-
ertheless, when the expression of PGC-1α was inhibited, the expression of Beclin1, the
LC3II/LC3I ratio, Parkin, PINK1, Tom20, and Podocin were decreased, and the expression
of P62 and Desmin were increased. Notably, mitophagy-related proteins and podocyte
injury-related proteins were reversed when SIRT1 was overexpressed and PGC-1α was
inhibited at the same time, suggesting that P-MSCs play a protective role in podocyte injury
and PINK1/Parkin-mediated mitophagy inhibition through the SIRT1-PGC-1α signaling
pathway (Figure 7A,B). Furthermore, when the expression of SIRT1 was overexpressed, the
expression of TFAM also increased correspondingly. Meanwhile, the expression of TFAM
decreased along with the decrease of PGC-1α expression. Interestingly, when SIRT1 was
overexpressed and PGC-1α was inhibited simultaneously, the expression of TFAM was re-
verted at both protein (Figure 7C,D) and mRNA (Figure 7E) levels, indicating that P-MSCs
play a protective role in podocytes via the SIRT1-PGC-1α-TFAM signaling pathway.
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Figure 5. P-MSCs increased the expressions of SIRT1, PGC-1a, and TFAM in MPC5.
(A,B) Representative Western blot analysis of SIRT1, PGC-1a, and TFAM in MPC5. (C) Repre-
sentative RT-PCR analysis of SIRT1, PGC-1a, and TFAM in MPC5. D-I: Immunofluorescence staining
of SIRT1, PGC-1a, and TFAM in MPC5 (Magnification, 400×). Scale bars: 50 µm for (D,F,H). n = 3
for (A–I). Values are expressed as the mean ± SD. B-actin was used as loading control. ** p < 0.01,
*** p < 0.001, and **** p < 0.0001 vs. control, # p < 0.05, ## p < 0.01, and ### p < 0.001 vs. HG.
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Figure 6. SIRT1 overexpression alleviated podocyte injury and PINK1/Parkin-mediated mitophagy
inhibition. (A,B) Representative Western blot analysis of Beclin1, LC3II/LC3I ratio, P62, Parkin,
PINK1, and Tom20, as well as Podocin and Desmin in MPC5. (C,D) Representative Western blot
analysis of SIRT1, PGC-1a, and TFAM in MPC5. (E) Representative RT-PCR analysis of SIRT1, PGC-1a,
and TFAM in MPC5. (F) Representative RT-PCR analysis of Beclin1, LC3II/LC3I ratio, P62, Parkin,
PINK1, and Tom20, as well as Desmin in MPC5. n = 3 for (A–F). β-actin was used as loading control.
* p < 0.05, ** p < 0.01, *** p < 0.001 and **** p < 0.0001 vs. the negative control vector (OE-NC).
# p < 0.05, ## p < 0.01, ### p < 0.001, and #### p < 0.0001 vs. OE-NC; ns = not significant.
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Figure 7. Overexpression of SIRT1 and inhibition of PGC-1a expression were performed (rescue
experiments). (A,B) Representative Western blot analysis of Beclin1, LC3II/LC3I ratio, P62, Parkin,
PINK1, and Tom20, as well as Podocin and Desmin in MPC5. (C,D) Representative Western blot
analysis of SIRT1, PGC-1a, and TFAM in MPC5. (E) Representative RT-PCR analysis of SIRT1, PGC-1a,
and TFAM in MPC5. n = 3 for (A–E). β-actin was used as loading control. * p < 0.05, ** p < 0.01,
*** p < 0.001, and **** p < 0.0001 vs. control; ns = not significant.

2.5. P-MSCs Ameliorated Streptozotocin-Induced Podocyte Injury and PINK1/Parkin-Mediated
Mitophagy in DKD Rats

Our group had previously constructed an streptozotocin (STZ)-induced DKD rat
model and successfully injected P-MSCs into DKD rats via the tail vein. The results showed
that treatment with P-MSCs can effectively improve blood glucose, serum creatinine,
blood urea nitrogen, urinary albumin/creatinine ratio, renal hypertrophy index, and renal
pathological injury in DKD rats [29]. To validate the protective effect of P-MSCs on DKD rats
in vivo from the perspective of podocyte injury and PINK1/Parkin-mediated mitophagy,
we performed an immunohistochemical analysis in this study. The results showed that
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compared with the control group, the expression of Beclin1, LC3, Parkin, PINK1, and Tom20
were decreased, and the expression of P62 and Desmin were increased in the DKD group.
However, the application of P-MSCs largely reversed the markers related to podocyte
injury and PINK1/Parkin-mediated mitophagy (Figure 8A–C), meaning that P-MSCs could
alleviate podocyte injury and PINK1/Parkin-mediated mitophagy inhibition in DKD rats.
Furthermore, the expressions of SIRT1, PGC-1α, and TFAM were markedly decreased in
the DKD group compared with the control group. Nevertheless, the injection of P-MSCs
into DKD rats significantly increased the expression of SIRT1, PGC-1α, and TFAM in DKD
rats (Figure 8D,E).
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Figure 8. P-MSCs ameliorated STZ-induced podocyte injury and PINK1/Parkin-mediated mitophagy
in DKD rats. (A–C) Immunohistochemical analysis of Beclin1, LC3, P62, Parkin, PINK1, and Tom20,
as well as Desmin in DKD rats (Magnification, 400×). (D,E) Immunohistochemical analysis of SIRT1,
PGC-1a, and TFAM in DKD rats (Magnification, 400×). Scale bars: 40 µm for (A,E). n = 6 rats/group
for (A,E). Values are expressed as the mean ± SD. *** p < 0.001 vs. control, # p < 0.05, ## p < 0.01, and
### p < 0.001 vs. DKD + NS.
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3. Discussion

The therapeutic effect of P-MSCs on DKD has not been reported until now. We evalu-
ated for the first time whether P-MSCs ameliorated podocyte injury and PINK1/Parkin-
mediated mitophagy inhibition in DKD and further explored the underlying molecular
mechanisms. Based on our data, we can draw the following conclusions. First, we found
that hyperglycemia induced podocyte injury and PINK1/Parkin-mediated mitophagy inhi-
bition in the cell experiments. Second, P-MSCs not only alleviated HG-induced podocyte
injury and PINK1/Parkin-mediated mitophagy inhibition but also prevented mitochondrial
dysfunction. In addition, through knockdown, overexpression, and rescue experiments, we
demonstrated that P-MSCs extenuated HG-induced podocyte injury and PINK1/Parkin-
mediated mitophagy inhibition by activating the SIRT1-PGC-1α-TFAM signaling pathway.
Finally, we further verified that P-MSCs improved renal function and attenuated podocyte
injury and PINK1/Parkin-mediated mitophagy inhibition induced by STZ in DKD rats.
Briefly, P-MSCs ameliorated podocyte injury and PINK1/Parkin-mediated mitophagy
inhibition in DKD through the SIRT1-PGC-1α-TFAM signaling pathway. Targeting the
PINK1/Parkin-mediated mitophagy and SIRT1-PGC-1α-TFAM signaling pathways may
provide a new potential therapeutic approach for P-MSCs in DKD.

It is well known that podocytes are highly differentiated epithelial cells attached
to the glomerular basement membrane and play a significant role in maintaining the
normal filtration function of the kidney [30]. Podocyte injury is a crucial factor in DKD
progression [31]. Hence, we wanted to know whether P-MSCs improved podocyte injury in
DKD. Previous validation studies have shown that Desmin, a podocyte injury marker, was
upregulated in DKD. In contrast, Podocin, a key component of the podocyte slit diaphragm,
was downregulated [32–34]. These results were consistent with our findings. However, the
effect of P-MSCs on podocyte injury in DKD was investigated in this study. Our results
found that P-MSCs increased the expression of Podocin and decreased the expression of
Desmin, implying that P-MSCs could indeed alleviate podocyte injury in DKD.

Mitophagy is a process in which damaged or dysfunctional mitochondria are selec-
tively delivered to lysosomes for degradation [35]. In mammals, it is primarily regulated
by the PINK1/Parkin signaling pathway. PINK1/Parkin-mediated mitophagy contributes
to maintaining mitochondrial quantity and quality in a variety of cell types [13]. Recent
observations have reported that PINK1/Parkin-mediated mitophagy is one pathogenesis
of DKD [36,37]. P62/SQSTM1, as an autophagy adaptor, interacts with LC3 and then
participates in the process of PINK1/Parkin-mediated mitophagy [38]. Tom20, a functional
protein of mitochondria, was associated with mitophagy and mitochondrial function [39].
He et al. showed that when the level of mitophagy was reduced, Beclin1, the LC3II/LC3I
ratio, Parkin, PINK1, and Tom20 levels increased and P62 levels decreased. Our results are
in accordance with previous studies.

We next evaluated the effect of P-MSCs on PINK1/Parkin-mediated mitophagy in
DKD. A growing but limited number of studies have found that MSCs can improve cell
metabolism and function through mitophagy [40,41] and MSCs prevent the progression
of DKD by reversing mitochondrial dysfunction in renal tubular epithelial cells [42]. P-
MSCs have the advantages of abundant sources, strong proliferation potential, and low
immunogenicity, which make them a valuable biological resource for the promotion of
tissue repair. A previous study reported that P-MSCs can improve tissue damage of the
testis by promoting autophagy and reducing apoptosis [43]. Li et al. demonstrated that
P-MSCs can reduce the damage of pulmonary microvascular endothelial cells and improve
mitochondrial function by enhancing autophagy [44]. Some studies have also shown that
P-MSCs upregulated markers related to mitophagy and adjusted mitochondrial energy
metabolism in trophoblast cells [45,46]. However, no studies have reported the ability
of P-MSCs to repair renal injury through mitophagy in DKD. In this study, we found
that P-MSCs increased the levels of mitophagy-related markers in in vitro and in vivo
experiments. The results of WB, RT-PCR, and immunohistochemical analysis showed that
as compared with the HG group, the P-MSCs group increased the expression of Beclin1,
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the LC3II/LC3I ratio, Parkin, and PINK1 and decreased the expression of P62. Moreover,
P-MSCs reduced ROS accumulation and mitochondrial dysfunction, which was manifested
by the increase in ∆Ψm and ATP content.

Finally, we further explored the mechanism of P-MSCs on podocyte injury and
PINK1/Parkin-mediated mitophagy in DKD. SIRT1 has good potential as a clinical tar-
get for preventing and treating DKD [47]. By increasing the expression of SIRT1, MSCs
can reduce inflammasome signaling and apoptosis [48]. Studies have also suggested that
the expression of PGC-1α and TFAM are decreased in human podocytes under HG [49].
Mitochondria from MSCs were transferred to macrophages in a co-culture system consist-
ing of MSCs and macrophages. MSCs also ameliorated kidney injury in mice with DKD
through mitochondrial transfer, which is dependent on PGC-1α-mediated mitochondrial
biogenesis [50]. TFAM is essential for maintaining mitochondrial DNA and mitochondrial
biogenesis [51]. Furthermore, the activation of the SIRT1/PGC-1α pathway can increase
the level of mitophagy [52], and the SIRT1-PGC-1α-TFAM pathway played a crucial role
in regulating mitochondrial function [28]. Based on the above reported literature, we
wanted to prove whether P-MSCs alleviated podocyte injury and PINK1/Parkin-mediated
mitophagy through the SIRT1-PGC-1α-TFAM signaling pathway. The results of the WB,
RT-PCR, immunofluorescence, and immunohistochemistry analyses confirmed that, as
compared with the control group, the expression of SIRT1, PGC-1α, and TFAM in the
HG group was significantly decreased. The effects of HG on SIRT1, PGC-1α, and TFAM
were reversed by P-MSCs. Furthermore, we also demonstrated that P-MSCs attenuated
podocyte injury and PINK1/Parkin-mediated mitophagy inhibition via the activation of
the SIRT1-PGC-1α-TFAM signaling pathway through knockdown, overexpression, and
rescue experiments. Our results suggest that the SIRT1-PGC-1α-TFAM signaling pathway
plays an important role in the attenuation of podocyte injury and PINK1/Parkin-mediated
mitophagy in DKD for P-MSCs.

We not only evaluated the therapeutic efficacy and cellular mechanisms of P-MSCs
on DKD, but also affirmed that the therapeutic measures of P-MSCs are safe and effective.
However, our study also has some limitations. Firstly, in our vivo experiments, we merely
demonstrated the role of P-MSCs in STZ rats instead of db/db mice. However, rats are more
similar to humans in cognitive behavior compared to mice. Secondly, in vitro experiments,
we only investigated the beneficial effects of P-MSCs on podocyte injury and mitophagy
in DKD, so the protective effects of P-MSCs on renal tubular cell injury require further
evaluation. Finally, it has been reported in the literature that P-MSCs provide promising
applications for clinical treatments [53]. However, we did not continue to further explore
the mechanism of P-MSCs in DKD at the organizational level. Consequently, we will
continue to carry out relevant clinical studies for the benefit of patients with DKD.

In summary, our findings provide important experimental evidence that P-MSCs play
an essential role in the treatment of DKD, not only at the cellular level, but also at the animal
level. We probed the therapeutic effect of P-MSCs in DKD mainly from the perspective
of podocyte injury and PINK1/Parkin-mediated mitophagy inhibition. Interestingly, we
detected that the SIRT1-PGC-1α-TFAM signaling pathway played a crucial role in DKD.

4. Materials and Methods
4.1. Reagents and Antibodies

Fetal bovine serum (FBS) was purchased from Gibco (HyClone, Logan, UT, USA). Lipo-
fectamine 2000 was acquired from Invitrogen (Waltham, MA, USA). Anti-Beclin1 (11306-1-
AP), anti-LC3B (14600-1-AP), anti-PINK1 (23274-1-AP), anti-Tom20 (11802-1-AP), anti-PGC-
1α (66369-1-Ig), and anti-Podocin (20384-1-AP) were purchased from Proteintech (Rose-
mont, IL, USA). Anti-P62 (ab109012), anti-Parkin (ab77924), anti-Desmin (ab32362), and
anti-SIRT1 (ab189494) were purchased from Abcam (Boston, MA, USA). TFAM (AF0531)
was obtained from Affinity Biosciences (Cincinnati, OH, USA). Anti-beta actin (anti-β-actin)
and horseradish peroxidase-conjugated secondary antibodies were acquired from Beijing
Zhong Shan Golden Bridge Biological Technology Co., Ltd. (Beijing, China).
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4.2. Cell Culture

The MPC5 cell line was purchased from GuangZhou Jennio Biotech Co., Ltd.
(Guangzhou, China). P-MSCs were kindly provided and prepared in the GMP laboratory of
the Stem Cell Engineering Research Center of Jiangxi Province (Shangrao, China). P-MSCs
were isolated based on methods previously described [54–56]. Briefly, human placenta
was obtained from a healthy mother. Informed consent was obtained from participants
in all studies. Placental tissues were treated with collagenase II (Gibco, Grand Island, NY,
USA) at 37 ◦C for 1 h and further digested with trypsin (Gibco) at 37 ◦C for 30 min with
gentle agitation. The surface markers and differentiation capacity of P-MSCs have been
previously identified [57].

P-MSCs and MPC5 were seeded separately in T25 flasks (Corning, NY, USA) and
cultured in Dulbecco’s Modified Eagle’s Medium (Gibco) containing 10% FBS at 37 ◦C in
a 5% CO2 humidified incubator. MPC5 was divided into different groups, which were
treated with normal glucose (5.6 mM), HG (30 mM, 40 mM, and 50 mM), and HG plus
P-MSCs. P-MSCs and MPC5 were co-cultured at a ratio of 1:10.

4.3. Transfections of Plasmids and Small Interfering RNAs

To effect changes in SIRT1, MPC5 was treated with SIRT1 plasmid using Lipofec-
tamine 2000 as the transfection reagent and nonsense strand negative control (NC) as
controls. Full sequences of SIRT1 plasmid can be found in Supplementary Table S1. Briefly,
cells were starved for 2 h in six-well plates before transfection. Lipofectamine 2000 was
mixed with 250 µL Opti-MEM, whereas SIRT1 plasmid was mixed with 250 µL Opti-MEM
at a 1 µg target dose (the plasmid group was supplemented with 10 µL Lipofectamine
2000 reagent/well). The two commixtures were mixed together for 20 min and then added
to the cell culture medium. After 6 to 8 h, the transfection medium was removed, and the
cells were treated with corresponding stimuli. Cells were incubated for 48 h, and then
collected for subsequent experiments.

Predesigned and validated small interfering RNAs (siRNAs) specific for SIRT1 (sense:
CAUCUUGCCUGAUUUGUAATT; antisense: UUACAAAUCAGGCAAGAUGTT), PGC-
1α (sense: CCAAGACUCUAGACAACUATT; antisense: UAGUUGUCUAGAGUCUUG-
GTT), and NC were obtained from Santa Cruz Biotechnology (Santa Cruz, CA, USA).
Transfection was performed using Lipofectamine 2000 according to the manufacturer’s
instructions. Transfection and intervention were similar to the experiments described in
the previous phase. Each experiment was carried out at least in triplicate.

4.4. WB Assay

Cell total protein was extracted using RIPA lysis buffer (APPLYGEN) supplemented
with a protease inhibitor and phosphatase inhibitor (GLPBIO). The protein concentration
was quantified by the bicinchoninic acid protein assay kit (TransGen Biotech,
Beijing, China). Equal amounts of protein samples were separated by sodium dode-
cyl sulfate/polyacrylamide gel electrophoresis and then transferred to polyvinylidene
difluoride membranes (Millipore, Burlington, MA, USA). After sealing with 5% nonfat
dry milk in phosphate-buffered saline (PBS) with Tween 20 (PBST) for 60 min, the mem-
brane was incubated with the primary antibodies anti-Beclin1 (1:1000), anti-Lc3B (1:2000),
anti-Pink1 (1:800), anti-Tom20 (1:10,000), anti-PGC-1α (1:10,000), anti-Podocin (1:600), anti-
P62 (1:40,000), anti-Parkin (1:2000), anti-Desmin (1:50,000), anti-SIRT1 (1:1000), and TFAM
(1:1000) overnight at 4 ◦C. The membrane was washed three times with PBST and incubated
with the horseradish peroxidase-conjugated secondary antibody for 2 h at room temper-
ature to combine with the primary antibodies. Finally, images of the target protein were
developed and collected using a gel imaging system (Bio-Rad, Hercules, CA, USA). Protein
bands were visualized by enhanced chemiluminescent (TIANGEN Biotech, Beijing, China)
detection reagents. The expressions were quantified by ImageJ software. To eliminate
deviations, each assay was repeated at least three times.
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4.5. RT-PCR

Total RNA was isolated from the cell lines using a TRIzol reagent (TransGen Biotech)
and reverse-transcribed into cDNA with an EasyScript® One-Step gDNA Removal and
cDNA Synthesis SuperMix (TransGen Biotech) according to the manufacturer’s instructions.
RT-PCR was performed using the QuantiNova™ SYBR Green PCR (QIAGEN, Hilden, Ger-
many). All primers were designed and synthesized by Generay Biotech Co., Ltd. (Shanghai,
China) and are listed in Table S2. The relative mRNA expression was quantified using the
2−∆∆CT method. β-actin was used for normalization. Three independent experiments were
performed for each sample.

4.6. Immunofluorescence

Cells were washed in PBS, fixed with 4% paraformaldehyde for 20 min, made perme-
able with 0.1% Triton X in PBS for 5 min, and sealed with 3% bovine serum albumin in PBS
for 30 min. Subsequently, primary antibody was added overnight at 4 ◦C, and secondary
antibody was added at room temperature for 30 min in darkness. DAPI was incubated
for 5 min and then washed with PBS. Finally, we observed the cells under a confocal laser
scanning microscope and quantified the results using ImageJ v1.8.0 The average integrated
optical density value was used to represent the protein expression.

4.7. ∆Ψm, ATP Content, and ROS Determination

∆Ψm and ROS were detected using the JC-1 assay kit (Beyotime Biotechnology, Beijing,
China) and ROS assay kit (Beyotime Biotechnology), respectively, and then analyzed by
flow cytometry. The production of ATP was measured using an ATP assay kit (Nanjing
Jiancheng Bioengineering Institute, Nanjing, Jiangsu, China) according to the manufac-
turer’s instructions.

4.8. Transmission Electron Microscopy

Cells were washed in PBS and fixed with 2.5% glutaraldehyde for eight hours. After
fixation, cells were rinsed three times with 0.1 M phosphate buffer (pH 7.4) for 15 min
each and fixed with 1% osmium acid and 0.1 M phosphate buffer for two hours at room
temperature. Then, cells were observed with an electron microscope after dehydration,
permeabilization, embedding, sectioning, and staining.

4.9. Experimental Animals

Six-week-old male Sprague–Dawley rats (specific pathogen-free grade), 160–180 g,
purchased from Hunan SJA Laboratory Animal Co., Ltd. (Changsha, Hunan, China) were
injected intraperitoneally with normal saline (control, n = 6) or STZ (60 mg/kg body weight).
Seventy-two hours after the STZ injection, tail vein blood glucose levels were detected. If
the random blood glucose level was higher than 16.7 mmol/L for three consecutive tests,
the diabetes model was considered to be successful. Eight weeks after STZ injection, the
rats were randomly divided into the following two groups: DKD model group (n = 10)
and P-MSCs treatment group (tail vein injection, 1 × 106 in 2 mL PBS, per rat, n = 10). The
animal license number is SYXK (Gan) 2021-0003.

4.10. Immunohistochemistry

After dewaxing, rehydration, antigen retrieval, inactivating endogenous peroxidase
activity, and blocking, the renal tissue sections were incubated with various primary
antibodies: anti-Beclin1 (11306-1-AP, Proteintech), anti-P62 (bs-2951R, Bioss, Woburn,
MA, UA), anti-Desmin (ab32362, Abcam), anti-SIRT1 (ab189494, Abcam), anti-PGC-1α
(sc-518025, Santa Cruz Biotechnology), and anti-TFAM (AF0531, Affinity Biosciences) at
4 ◦C overnight. The sections were then incubated with secondary antibody for 30 min after
washing with PBS for three times. Diaminobenzidine was used as the chromogen. Finally,
sections were stained with hematoxylin and examined using a microscope.
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4.11. Statistical Analysis

All data collected in our experiments are expressed as means ± standard devia-
tion. Student’s t test was used to compare two groups. Three or more groups were
compared using one-way analysis of variance. p values < 0.05 were considered to be
statistically significant.

5. Conclusions

This is the first study to investigate whether P-MSCs ameliorate podocyte injury and
PINK1/Parkin-mediated mitophagy inhibition, and we found for the first time that P-MSCs
play a therapeutic role via the SIRT1-PGC-1α-TFAM signaling pathway. We propose that
enhancing PINK1/Parkin-mediated mitophagy and the expression of SIRT1, PGC-1α, and
TFAM in podocytes may be a novel strategy for the treatment of DKD.
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