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Abstract: Two related tumor suppressor genes, BRCA1 and BRCA2, attract a lot of attention from both
fundamental and clinical points of view. Oncogenic hereditary mutations in these genes are firmly
linked to the early onset of breast and ovarian cancers. However, the molecular mechanisms that
drive extensive mutagenesis in these genes are not known. In this review, we hypothesize that one of
the potential mechanisms behind this phenomenon can be mediated by Alu mobile genomic elements.
Linking mutations in the BRCA1 and BRCA2 genes to the general mechanisms of genome stability
and DNA repair is critical to ensure the rationalized choice of anti-cancer therapy. Accordingly,
we review the literature available on the mechanisms of DNA damage repair where these proteins
are involved, and how the inactivating mutations in these genes (BRCAness) can be exploited in
anti-cancer therapy. We also discuss a hypothesis explaining why breast and ovarian epithelial tissues
are preferentially susceptible to mutations in BRCA genes. Finally, we discuss prospective novel
therapeutic approaches for treating BRCAness cancers.
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1. Introduction

The first case of hereditary cancer was described in 1866 by Pierre Paul Broca, when he
documented the development of breast and ovarian cancers within his wife’s family. It took
almost 130 years to decipher the genetic mechanism behind this hereditary cancer syndrome.
This was completed by Mary Claire-King and her colleagues, who published a linkage
analysis of families with an early onset of breast cancer (BC) and identified the gene locus of
BRCA1 (BReast CAncer 1) at 17q21 [1]. The gene responsible for this phenotype was cloned
in 1994. Shortly thereafter, the BRCA2 gene was linked to chromosome 13, and cloned [2].
The products of these genes are functionally classified as tumor suppressors, meaning
that inactivation of both copies of either gene is strongly associated with carcinogenesis.
BRCA1 and BRCA2 proteins lack obvious structural homology, whereas a segment of
BRCA1 is homologous to its partner, the BARD1 protein. In contrast to the canonical
tumor suppressor inactivation mechanism, whereby one allele of a tumor suppressor
gene is mutated and the other is either deleted or epigenetically inactivated (“loss of
heterozygosity” principle, LOH), the BRCA-mutated cancerous cells frequently bear the
remaining alleles in the wild-type state [3]. In this case, mutations in the BRCA1 or
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BRCA2 genes are often preceded by mutations in other critical tumor suppressor genes,
PTEN and/or TP53 [4]. Reversion of germline BRCA mutations in growing cancers is
also common [5]. This indicates that haploinsufficiency may be the major basis for early
development of BC in BRCA1/2 pathogenic mutation carriers. Importantly, since the
products of these genes are involved in the DNA damage response, the BRCA mutation
status has profound significance for the selection of appropriate therapeutic interventions.

2. Epidemiology of Cancer and BRCA1,2 Mutations
2.1. Pan-Cancer Overview

Despite their close functional connection, BRCA1 and BRCA2 have somewhat different
effects on cancer development and progression. For example, BRCA1 and BRCA2 each
correlate with different subtypes of BC. BRCA1 mutations are linked preferentially to the
triple negative form of BC (estrogen receptor negative, progesterone receptor negative, and
HER2 negative, TNBC), whereas BRCA2-associated breast cancers are generally estrogen
receptor-positive [6], and phenotypically different (mostly luminal-like BC) [7]. Further-
more, mutations in BRCA2 are more often associated with other types of epithelial cancer,
including male BC, pancreatic cancer, and prostate cancer, than BRCA1 mutations [8]. The
expectancy for OC to occur in either of these genes in various tumors is also different. For
example, for BRCA1 mutations, the risk of OC is 40 to 45%, compared to 10–20% for BRCA2,
as well as an earlier onset of OC for BRCA1 cases [9].

Mutations in the BRCA1 gene are mostly associated with hereditary cancers and are
rarely found in sporadic cancers (compare more than 300 germline mutations for familial
BC and/or OC, with only a few somatic ones in sporadic BC [10]). However, these rare cases
are quite interesting, since they may result either from functional inactivation of BRCA1
due to low gene expression, or from incorrect subcellular localization of the encoded
protein [11].

Since BRCA1 is a tumor suppressor, and is directly involved in the double-strand
break (DSB) repair process, it is not surprising that the mutation status of this gene serves
as a prediction marker for a high risk of carcinogenesis. Carriers of germline mutations
in the BRCA1 gene are prone to developing mostly BC and/or OC [12]. Although BRCA
mutations are also found in many other types of tumors, they apparently do not have any
detectable effect on cancer incidence in the brain, colon, bladder, kidneys, cervix, or lungs,
nor an increased risk of melanoma [13,14]. However, BRCA mutation status often correlates
with the severity of the disease and a shorter overall survival [15].

2.2. Ovarian Cancer

In total, 90% of ovarian cancers (OCs) are identified as epithelial OC (EOC), which is
further subdivided according to histological characteristics into: low-grade serous; clear
cell; endometrioid and mucinous [16]; and the most common, high-grade serous (HGSOC).
The latter accounts for about 70% of all cases of EOC [17]. Importantly, approximately
15–20% of patients with HGSOC have germline mutations in BRCA1 or BRCA2 [18,19]. The
presence of such BRCA mutations has also been reported in other histological subtypes of
EOC [19,20].

Hereditary ovarian cancers are characteristic of three autosomal dominant familial
syndromes: BC and/or OC, site-specific OC, and Lynch (hereditary non-polyposis colorec-
tal cancer) syndrome [21]. Meanwhile, a familial history of OC, especially when associated
with BRCA1 mutations, poses a significant lifetime risk of developing the disease. Thus,
39–44% of women who inherit a BRCA1 oncogenic-driving mutation develop OC by age
70–80 [22], and diagnosis at a later stage significantly worsens prognosis [23]. However,
there is evidence that mutations in the BRCA1 gene are associated with an increase in
progression-free survival (PFS) [18,24–26]. This may be due to an increased sensitivity
of such patients to treatment with platinum-containing drugs [12] or poly(ADP-ribose)
polymerase (PARP) inhibitors.
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Oncogenic mutations in BRCA1 can be germline or somatic. According to the results of
several independent studies, somatic mutations make up a significant part of all observed
mutations in this gene among patients with OC [27–30]. Overall, somatic BRCA mutations
occur in approximately 5–7% of OC cases [31]. The existence of somatic mutations fits into
the concept of “BRCAness”, in which germline mutations of BRCA1 or BRCA2 are not
detected, but the DNA repair defect occurs due to problems in the process of homologous
recombination [32].

Studies have not revealed a significant difference in the course and aggressiveness
of OC in patients with somatic or germline BRCA1 mutations. Similarly to patients with
congenital BRCA1 mutations, patients with somatic BRCA1 mutations showed an increased
sensitivity to platinum-containing drugs and olaparib, a PARP inhibitor [29,33].

2.3. Breast Cancer

BC is one of the most common types of cancer diagnosed in women. This disease
can also occur in men, although much less frequently. Molecular subtypes of BC include
luminal A, luminal B, HER2-positive, triple negative, claudin-low, and normal-like, with
other molecular markers important for classification being ERα+, PR, EGFR, CK5/6, VEGF,
KI67, TNBC, MES, IM, and LAR [34]. Tumors associated with a BRCA1 mutation are more
likely to be triple-negative BC (TNBC), which is more aggressive and difficult to treat than
other types [7,35].

BC caused by a mutation in the BRCA1 gene has a higher rate of mitosis and greater
lymphatic permeability than sporadic BC, as well as a higher frequency of somatic muta-
tions in the p53 gene [34]. Women who inherit pathogenic BRCA1 mutations face a very
high lifetime risk of developing BC: 60% to 80% by the age of 80 years [34,36]. Two-thirds of
the BRCA1 mutations found in BC are germline, and the remaining third relates to somatic
mutations [37–39]. Germline and somatic BRCA1 mutations are currently assumed to be
biologically equivalent [40]. There is evidence that tumors carrying BRCA1 germline muta-
tions have biological signatures similar to tumors with somatic BRCA1 mutations [41,42].
However, there is also data showing that somatic mutations of the BRCA1 gene have not
been identified in BC without concurrent germline mutations [43], which may explain the
small difference between tumors with somatic and germline BRCA1 mutations.

2.4. Pancreatic Cancer

Pancreatic cancer is reported to be the third most common cancer associated with
BRCA mutations [44]. A family history of pancreatic cancer is found in 5–10% of patients
with pancreatic cancer. Pancreatic ductal adenocarcinoma (PDAC) occurs especially fre-
quently in families with OC or BC [45]. Pathogenic mutations in BRCA2 occur in 2% of
patients with pancreatic cancer, and mutations in BRCA1 in 1% of patients. Approximately
7% of patients with pancreatic cancer may carry germline mutations in BRCA1/2. In
patients with hereditary pancreatic cancer, the prevalence of BRCA1/2 mutation carriers is
estimated at 4.9–26%. Mutations in BRCA2 appear to be more common in pancreatic cancer.
Furthermore, these mutations are considered to be more dangerous and increase the risk of
developing pancreatic cancer severalfold [46].

2.5. Prostate Cancer

Mutations in the BRCA1 and BRCA2 genes increase the risk of developing prostate
cancer. Some results indicate significantly lower survival rates and a more aggressive
course of the disease [47,48]. Male carriers of a BRCA2 gene mutation have a significantly
increased risk of developing prostate cancer [49].

2.6. Mutations and the Founder Effect

Pathogenic mutations in BRCA1/2 have been found throughout the coding region of
this gene and at splicing sites (Figure 1). Most mutations in both genes are small insertions
or deletions resulting in frameshifts, nonsense mutations, or splice-site changes that cause
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the stop codon to occur prematurely [21]. Therefore, it is quite difficult to isolate the
regions that are most susceptible to the deleterious mutations common among various
types of cancer.
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In respect to BC, there are studies highlighting exon 10 (usually termed exon 11 for
historical reasons) of BRCA1 as the most mutated in BC patients [34,50]. According to
The Breast Cancer Information Core (BIC), a catalog of BRCA1 and BRCA2 mutations
identified worldwide, the most commonly identified BRCA1 mutations are 185delAG
(16.5%), 5382insC (8.8%), and the C61G missense mutation (1.8%). However, exon 10 is
longer than all other exons combined, thus physically providing more opportunities for
mutations to occur.

Additionally of note, there is a remarkable variation in the distribution of BRCA1 mu-
tations around the world; for example, some BRCA1 variants are limited to geographically
isolated regions or specific populations. This phenomenon is described as the “founder
effect”. It has a profound influence on fundamental studies, diagnoses, and treatment
approaches of BRCA1-associated cancers [51].

In some countries and ethnic communities, the spectrum of BRCA1 mutations is
strictly limited to a few founder mutations. For example, the founder effect in the popu-
lation of Ashkenazi Jews is well described: three mutations in the BRCA1 gene (BRCA1
c.68_69delAG, c.5266dupC and BRCA2 c.5946delT) account for 98–99% of the identified
mutations, and are found in approximately 2.6% of the Ashkenazi Jewish population [52].

In Russia, the most common BRCA1 mutation is c.5266dupC, accounting for about
90% of all BRCA1 mutations. Other less common mutations found in Western Russia are
c.4035delA, c.181T > G and c.68_69delAG [53–55].

3. Molecular Evolution of BRCA and Links to Human Cancers

Evolutionarily, both BRCA1 and BRCA2 are ancient genes that are indispensable for
high-fidelity DSB DNA repair in most of Eukaryota. However, it should be mentioned that
BRCA1 seems to be absent from all fungi, and BRCA2 was not found in yeast. However,
the carboxyl-terminal BRCT domain (Figure 1) homologs were identified in several yeast
proteins (e.g., Rad4 and Rad9), indicating that the function of BRCA1 and BRCA2 can be
distributed between several yeast proteins involved in the process of DNA repair [56,57].

Since the harmful effects of mutations in the BRCA genes are developed only later
in life, these mutations are likely to be passed on to future generations. Because these
mutations do not affect reproductive fitness, the purging force of natural selection will
be weak and insufficient for consistently eliminating these mutations [58]. Therefore,
mutations in BRCA1 and BRCA2, especially because they are inherited in a dominant
manner, may be considered as good illustrations of the mutation accumulation theory. In
this situation, the dominant nature of BRCA1/2 mutations may decrease the fertility of
female carriers through an accelerated depletion of ovarian reserve, as described in several
independent reports (for example, [59,60]). Although the onset of menopause is largely
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unaffected [60], and hence the magnitude of this effect may be overestimated [61], it is
worth mentioning that even a small decrease in age-associated fertility may have drastic
consequences on the evolutionary scale.

It is assumed that BRCA1 or BRCA2 mutations promote carcinogenesis predomi-
nantly in breast and ovarian epithelia because, since menstrual cycles periodically create a
hormone-dependent enrichment in the female hormone-responsive tissues of reactive oxy-
gen species (ROS), there would be a demand for an augmented expression of the genes re-
sponsible for antioxidant defense and DNA repair machinery against genotoxic metabolites
including, for example, endogenous quinones derived from 2- and 4-hydroxyestradiols [62].
This may be a plausible explanation for the fact that mostly female hormone-responsive
tissues are exquisitely sensitive to germline mutations in the BRCA1 and BRCA2 genes [63].
It should be noted, however, that this highly tempting hypothesis of tissue-specific car-
cinogenesis cannot account for the increase in pancreatic and prostate cancer incidences
(albeit to much lower levels compared to breast and ovarian tissues). Indeed, the problem
of tissue-specificity of oncogenic effects exerted by ubiquitously expressed genes is rather
multifactorial and requires additional studies [64].

4. A Potential Mechanism for Enrichment of Mutations in the BRCA Genes

Here, we attempt to highlight the importance of the intrinsic genetic mechanisms that
control genomic instability in humans, specifically Alu repeat elements. They occupy almost
11% of the human genome and exert wide-ranging influences on gene expression. Alu
elements are ~300 base pair retrotransposon sequences that are normally silenced by DNA
methylation and heterochromatin formation. However, in the germline, Alu elements are
more active and may significantly contribute to genetic diseases and population diversity.
In particular, we argue that Alu repeats may significantly contribute to the mutagenesis of
BRCA1/2 genes through several mechanisms: direct insertional mutagenesis and/or as an
abundant source of repetitive sequences that, in turn, contribute to non-allelic homologous
recombination, which would result in genetic deletions and duplications [65].

Over the last 20 years, research has expanded to improve the understanding of BRCA-
related BC and OC, specifically in how they respond to treatment, as well as the expected
clinical course. Better characterization of alterations in these genes may enable the develop-
ment of new, targeted therapies, or broaden the clinical application of current therapies [12].

A Hypothetical Role of Transposable Elements (TEs) in BRCA-Associated Carcinogenesis

BRCA1/BRCA2 genes harbor a very high density of repetitive DNA elements that con-
tribute to genetic instability [66]; the BRCA1 gene contains 138 individual Alu elements [67],
which occupy about 42% of intronic sequences (Figure 2). In addition, this gene includes
5% of various other repeats [68,69]. BRCA2 contains almost 47% repetitive DNA elements,
but only 17–20% of them are Alu repeats. These genes show a high probability of mutations
that are associated primarily with Alu-mediated genomic rearrangements [70,71]. These
rearrangements are more frequent in BRCA1 than in BRCA2, probably due to the large
number of Alu repeats in the gene sequence [72–74].

Although most genomic rearrangements were proven experimentally to be pathogenic
by causing frameshifts and premature termination codons, some rearrangements have more
ambiguous effects. In particular, this concerns in-frame deletions of redundant exons [75]
or, conversely, some duplications, where additional copies of exons might be well tolerated
by the organism without deleterious effects [76].
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Almost 10% of BC cases are related to defects in the BRCA1 or BRCA2 genes [77].
Women with a familial history of confirmed BRCA1 or BRCA2 defects have been shown to
possess a remarkably high lifetime risk of developing BC (80% and 60%, respectively) [78,79].
It was also shown that large rearrangements in BRCA1, but not BRCA2, play a notable
role in the predisposition to breast and ovarian cancers in high-risk families of German
origin [80]. Researchers analyzed 226 patients with a high-risk of hereditary BC and OC
and described six large genomic alterations in the BRCA1 locus. BRCA1 mutations include
a deletion of exon 5, a deletion comprising exons 5–7, a deletion of exons 1A, 1B, and 2, two
duplications of exon 13, and a deletion of exon 17. However, nothing similar was found in
the BRCA2 gene. In another study, two families with a high risk of hereditary BC and OC
were found to carry a 7.1 kb germline deletion, which includes exons 8 and 9. This deletion
leads to a frameshift at the mRNA level [81].

Only a few other studies have investigated BRCA2 rearrangements [82]. To date,
about 16 cases of BRCA2 germline rearrangements have been reported. It was shown that
large genomic BRCA2 rearrangements are observed in males in affected hereditary BC
families, predominantly [83]. Genomic rearrangements of the BRCA2 gene were present in
25 families, among which there was at least one man with BC. However, no BRCA2 gene
rearrangements were found in 114 families among women with BC [84]. These results raise
the question of the possible existence of sex-related mechanisms of the gene rearrangements
in the BRCA2 gene.

The Alu-indirect insertion in exon 3 of BRCA2-c.156_157insAlu- is quite common in
families with an inherited predisposition to BC and/or OC. Researchers found this mutation
in 14 families (out of 208 tested) and it accounts for about a quarter of all mutations in the
BRCA1/2 loci [85].

Thus, Alu-mediated rearrangements in the BRCA1 and BRCA2 genes, including dele-
tions and insertions that lead to global genomic rearrangements of these genes, are closely
associated with the predisposition to BC and OC.

5. Structure-Function Analysis of Human BRCA1

The BRCA1 protein is involved in vital processes in the nucleus, namely transcription,
DNA repair (including the repair of transcription-related DNA damage), and cell cycle
control. Accordingly, BRCA1 is localized to discrete sub-nuclear structures associated with
DNA replication or repair. DNA damage induces BRCA1 phosphorylation and recruitment
to specific foci containing DNA repair proteins, where BRCA1 is deemed to act as a scaffold
for the assembly of various multiprotein complexes. Despite the large molecular weight of
BRCA1 (1863 amino acid residues [86]), only two conserved domains can be distinguished



Int. J. Mol. Sci. 2023, 24, 4982 7 of 22

in its structure: the N-terminal RING domain (exons 2–6) [87] that encompasses 100 amino
acid residues; and two tandem C-terminal BRCT domains, with 90 amino acid residues
each [88], encoded by the end of exon 16, and exons 21–24, respectively (Figure 3). The
region of the protein located between these two terminal domains is structurally variable
between mammalian BRCA1 homologues. It is believed to be intrinsically disordered,
yet it is critical for the proper functioning of BRCA1, along with the other two conserved
domains (Figure 3).
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referred to as exon 11 for historical reasons.

5.1. The RING Domain

The DNA-binding RING (Really Interesting New Gene) domain has an E3 ubiquitin
ligase activity, being a scaffold for the interaction with the corresponding E2 ubiquitin
ligases such as UbcH5, UbcH6, UbcH7, Ube2e2, UbcM2, Ube2w, and Ubc13 (Figure 4) [89]).
The ubiquitin ligase activity of BRCA1 is stimulated by the formation of a heterodimer
with the BARD1 protein [90]. The latter also contains a RING domain and tandem BRCT
domains, and shares some structural similarity to BRCA1 [91]. Like BRCA1, BARD1
tends to form specific foci in the nucleus in S-phase of the cell cycle that overlap with the
ones formed by BRCA1, suggesting that the formation of the BRCA1/BARD1 complex is
cell-cycle-dependent [92].
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The formation of a complex with BARD1 is necessary for the stabilization of BRCA1
at the protein level. Furthermore, this interaction is apparently important for the nuclear
localization of BRCA1. The BRCA1/BARD1 heterodimers are involved in the DNA repair
of double-strand breaks, and hence the preservation of DNA integrity, including the process
of resolving impaired replication forks (for more details, see [89]). Mechanistically, the
BRCA1/BARD1 complex is recruited by the RAP80 protein to sites of DNA damage [93],
where the BRCA1/BARD1 ubiquitin ligase is employed to modulate the activity of DNA
damage response factors (Figure 5). Additionally, the proteolytic activity of 26S proteasomes
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is also modulated by DNA damage stimuli, thereby adding another level of complexity to
the regulatory mechanisms of DNA repair [94].
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Importantly, the BRCA1/BARD1 heterodimers also interact with the RNA polymerase
II holoenzyme. However, BRCA1 does not show an increased affinity for specific DNA
sequences, except for some abnormal structures (branched DNA formations) [95]. This does
not allow BRCA1 to be considered a bona fide transcription factor. Considering the fact that
in the central unstructured and C-terminal regions of BRCA1, there are many binding sites
for various transcription factors, chromatin remodeling factors, and DNA-damage response
factors, it would be fair to say that BRCA1, in complex with BARD1, forms a scaffold for
the surveillance of genome integrity control during transcription [96]. However, there are
also cases when BRCA1 acts as a corepressor; for example, the transcription factor ZBRK1
suppresses the transcription of its target genes in a BRCA1/CtIP-dependent manner [97].
ZBRK1 acts as a metastatic suppressor by directly regulating MMP9 in cervical cancer.

5.2. The BRCT Domain

The C-terminal region of BRCA1 (1650–1863) is occupied by two BRCT (BRCA1-C-
Terminal) tandem-repeat domains connected by a 22-amino-acid linker [98]. The BRCT
domains are protein-binding modules that recognize the phosphorylated motif pSer-x-
x-Phe [99]. Due to this, BRCA1 is included in the signaling cascades triggered by DNA
damage as a scaffolding platform for the interactions of various kinases and other proteins
involved in the regulation of the cell cycle [100]. Additionally, BRCA1 itself undergoes
reversible phosphorylation upon DNA damage [101] by key regulators of the DNA damage
response: PIKK kinases (ATM, ATR, and DNA-PK) [102] and checkpoint effector kinases
(Chk1, Chk2 and MK2) [103]. Phosphorylation of BRCA1 also creates new sites for complex
protein–protein interactions affecting various aspects of DNA damage and repair (Figure 5).

The BRCA1/BARD1 complex senses the ubiquitination status of histone H2A and
works as a ubiquitin ligase of this histone. These activities play important roles in the choice
between HR or NHEJ during DNA damage repair: BRCA1 acts as a mediator for HR, an-
tagonizing the 53BP1-mediated NHEJ pathway [104–106] (Figure 6A). BRCA2, complexed
with SEM1/DSS1 and ssDNA [107] (Figure 6B), functionally interacts with recombinase
RAD51, PALB2, ssDNA-specific endonuclease XPG/ERCC5, and BRCA1 [108].
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5.3. BRCA1 and p53

TP53 (p53) is arguably one of the most significant tumor suppressor genes in humans.
It is frequently mutated and several point mutations in its DNA-binding domain convert
the p53 protein into an oncogene. That TP53 mutations occur in tumors bearing BRCA1
mutations suggests that the two genes may function in different signaling pathways to
suppress tumorigenesis [109]. However, results from experiments in mice have shown
that tumorigenesis occurs much more efficiently when both BRCA1 and TP53 are deleted,
compared to BRCA1 deletion alone [110], indicating that p53 is located downstream of
BRCA1 in the same signaling pathway. Accordingly, mutations in BRCA1 preceding
mutations in the TP53 gene, as seen in cases of familial BC, are not sufficient for tumor
progression. Since BRCA1-null cells display genomic instability, it is likely that persistent
intrinsic DNA damage in the presence of wild-type p53 leads to the extermination of such
cells via p53-dependent cell cycle arrest and apoptosis.

There is another important fact that functionally links p53 and BRCA1: in response
to various types of DNA damage, both p53 and BRCA1 become phosphorylated by DDR-
dependent kinases, ATM and Chek1. Upon DNA damage, BRCA1 also interacts with
another kinase, c-Abl [111]. The C-terminus of BRCA1 is phosphorylated by c-Abl in vitro.
In vivo, BRCA1 is phosphorylated at tyrosine residues depending on ATM and irradiation.
However, the tyrosine phosphorylation of BRCA1 does not disrupt the interaction between
BRCA1 and c-Abl. Notably, cells with BRCA1 mutations exhibit constitutively high c-
Abl kinase activity, which does not increase when cells are exposed to gamma radiation.
Probably, BRCA1 mutations, due to defects in DNA repair, induce the kinase activity of
c-Abl towards p53, which culminates in p53-dependent cell cycle arrest and cell death. In
addition to phosphorylation and the subsequent activation of p53 transcriptional activity,
c-Abl also stabilizes p53 on the protein level by inactivating its major inhibitor, E3 ligase
Mdm2 [112]. Curiously, c-Abl also phosphorylates another tyrosine kinase, BTK [113].
In this respect, we have recently shown that BTK can phosphorylate p53, leading to its
stabilization and transcriptional activation [114], suggesting a novel role for BTK as a
potential tumor suppressor [115].

It is also known that BRCA1 and p53 are able to interact physically. Deletion analysis
in the BRCA1 gene allowed for the identification of p53-interacting domains in the coiled–
coiled region and in the second BRCT domain. On the other end, p53 interacts with BRCA1
at the C-terminus. BRCA1-mediated stabilization of the wild-type p53 protein occurs
through upregulation of the p14ARF gene product, which in turn upregulates mouse p53
phosphorylation at serine 18 (equivalent to human serine 15). Exon 10 (historically exon 11)
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of BRCA1 appears to be responsible for this, since cells with deletions of exon 10 in BRCA1
are defective in p53 stabilization after DNA damage [116].

Functionally, this interaction converts BRCA1 into a p53 coactivator [117]. Perhaps
not surprisingly, both proteins, p53 and BRCA1, transcriptionally regulate the expression
of the GADD45 gene, which induces growth arrest and DNA damage repair. Both BRCA1-
deficient and GADD45-deficient cells displayed a G2/M cell cycle checkpoint defect and
increased genome instability [118].

Collectively, these results suggest that the phenotypic manifestation of BRCA1 tu-
morigenic mutations heavily relies on the spectrum of inactivation in other critical tumor
suppressors, e.g., p53.

5.4. BRCA1 and BRCA2—A Summary on Normal Functions in Healthy Tissues

Both BRCA1 and BRCA2 are ubiquitously expressed in human tissues and serve
as important parts of the complex machinery that guards DNA integrity. Especially as
demonstrated by gene knockout mice (reviewed in [119]), the complete absence of these
genes is incompatible with normal development. However, many questions remain to be
answered, such as the mutational rates in the germline on the evolutionary scale in different
populations and species, especially with respect to the relatively fast evolution of BRCA1
and BRCA2 themselves, and especially in their unusually long central exons.

6. Survival of BRCA-Mutated Cancer Cells: Role of Tissue Microenvironment

One may wonder why the tumorigenic role of BRCA1/2 mutations is exemplified
preferentially in BC cells, and not so much in other epithelial tissues. In this respect,
it should be noted that mutated BC cells are largely derived from luminal progenitor
cells. Although germline BRCA1/2 mutations occur stochastically in many tissues [120],
the breast tissues of patients with oncogenic germline BRCA1/2 mutations have distinct
histological features [121]. Premalignant lesions in this tissue also have certain molecular
hallmarks, such as upregulated expression of progesterone receptor A [122].

Hypothesis: Role of Breast Adipocytes in Early Progression of BRCA1/2 Mutated Microtumors

The survival of early malignant cells in the surrounding normal tissue is dependent
on many factors, including escape from immune surveillance by natural killers. Indeed, it
is physiological for the breast ductal epithelium to invade into adipose tissue and partially
displace it during lactation [123]. Thus, breast adipocytes may sense the invasion of micro-
metastatic or circulating breast tumor cells as a normal process, which would prevent
inflammatory signaling in these niches.

In general, the role of adipocytes in cancer progression was highlighted in several
excellent reviews [124–128]. It was suggested that adipocytes enhance cancer growth
through the secretion of exosomes that contain tumor-promoting factors, e.g., TSP5 [129].
In this respect, BC-associated adipocytes may stimulate the onset of epithelial-mesenchymal
transition (EMT) in BC cells by expressing exosomal TSP5 [124,130]. Mechanistically, breast
adipocytes protect early breast tumor cells from ferroptosis and other ROS-mediated
forms of cell death through the secretion of fatty acids [131], and the cross-talk between
adipocytes and malignant cells may occur via secretion of leukemia inhibitory factor
(LIF) and C-X-C subfamily chemokines in a positive feedback mode [132]. Also, these
cancer-associated adipocytes undergo “browning”: the process of increasing the number
of mitochondria [133]. This occurs concomitantly with inflammation-like signaling [134],
and the stimulation of vascularization [135]. Collectively, breast adipocytes may create
a unique natural tumor niche for BC cells with germline mutations in BRCA1/2 genes.
Furthermore, BC cells readily invade multiple tissues, such as the lungs, liver, bones, etc.
Again, adipocytes may play an important role in allowing invading cells to colonize and
proliferate [136].
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7. Vulnerabilities of BRCA-Mutated Cancer Cells

However aggressive the BRCA mutant cancers may be, these mutations also give
fast-growing cells certain features that may result in paradoxically better sensitivity to some
cytostatic and targeted therapies. Indeed, patients with TNBC now have better prognoses
if they bear the pathogenic BRCA mutations [6].

7.1. Platinum Complexes

Both platinum-containing drugs and PARP inhibitors (PARPi) are used to treat homol-
ogous recombination-deficient (HRD) cancers that have mutations in genes involved in
double-strand DNA repair [137]. Platinum salts create DNA interstrand crosslinks that
are extremely difficult to cleave in the absence of homologous recombination (HR), which
leads to the death of HRD cancer cells [138]. Enhanced sensitivity of BRCA1/2-mutated
cancers to platinum salts has been well documented in numerous studies, for instance,
those on OC [139], pancreatic cancer [140], and BC [141]. If the normal copy of BRCA1 or
BRCA2 is retained, the efficacy of platinum-based therapies is decreased [142]. Additionally,
platinum resistance may develop upon reverse mutations in BRCA1 [143].

7.2. PARP Inhibitors

The exact mechanism of action for PARP inhibitors (Figure 7) has not yet been fully un-
derstood. Initially, they were developed as dissipaters of DNA repair and potent sensitizers
of cancer cells to chemotherapy, but they also showed a significant independent effect on
patients with mutations in the HR genes, primarily BRCA1. The effect of synthetic lethality
for PARP inhibitors was shown in cells with the loss-of-function mutations in BRCA1 [144].
There are several hypotheses about the mechanism of their combined action [137]. The main
model posits that inhibitors bind to the PARP catalytic site, preventing its autoPARylation
and further dissociation from the DNA. The latter ultimately leads to the collapse of the
replication fork and DNA double-strand breaks that cannot be repaired by HR in cancer
cells [145]. The increased sensitivity to these drugs in tumor cells with either somatic or
germline BRCA1 mutations suggests that the mechanism of HRD does not depend on
whether the BRCA1 mutation was inherited, or arose during the life of the patient.
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Significant disturbances in the mechanism of DSB DNA repair in the absence of fully
functional BRCA1 or BRCA2 make cancer cells particularly sensitive to PARP inhibitors,
especially in the case of LOH. In this case, the same molecular features that make these
cancers more aggressive also give them vulnerabilities that may be therapeutically exploited.
There have been reports on the rather encouraging success of PARP inhibitors, even against
relapsed BRCA-mutated cancers [146].

However, in the treatment of certain types of tumors, such as BRCA1/2-mutated
and HER2-positive BC, the efficacy of talazoparib, a potent PARP1/2 inhibitor, did not
surpass conventional chemotherapy [147]. This indicates that further personalization of
anti-cancer therapy may improve the effectiveness of PARP inhibitors, as well as reduce
their unwarranted use.

7.3. Boosting Synthetic Lethality by Drug Combinations

Currently, there is a number of ongoing clinical trials with patients recruited based
on their BRCA1/2 status (Table 1 has been excerpted from Supplementary Table S1 to
give a snapshot of the modern approaches being utilized to employ co-targeting beyond
standard cytostatic regimens). However, future possibilities for specific new therapies are
much wider. For example, the ubiquitination activity of BRCA1 may become a prospective
target for new synthetic lethality drugs [148]. PARP inhibition may be synergistically
accompanied by blocking the RAD52 pathway of HR [149]. PARP inhibitors may be
converted to more complex molecules with a double-specificity mechanism of action [150].
The action of olaparib and other PARP inhibitors may sometimes be enhanced by some
unexpected supplements, such as antioxidants [151]. Combining the inhibition of PARP
with the blocking of ATR by ceralesertib may potentially augment the anti-cancer effect
of already-existing PARPi [152]. Further, DNA G-quadruplex binders such as pidnarulex
may act in a similar manner, thus increasing the arsenal of drugs for BRCA-mutated
cancers [153].

Table 1. Representative ongoing clinical trials of drug combinations (PARPi and targeted therapies)
against cancers with BRCA1,2 inactivating mutations.

PARP
Inhibitor Cancer Type Co-Target Co-Treatment Phase Register

Number

Olaparib BC, OC, FTC, EndA, UCC mTORC1/2
or AKT

Vistusertib or
Capivasertib 1b NCT02208375

Olaparib OC, FTC, PPC CTLA-4 Tremelimumab 2 NCT02571725
Talazoparib TNBC mTOR/PI3K Gedatolisib 2 NCT03911973

Olaparib BC CDK4,6 and
HR Palbociclib, Fulvestrant 1 NCT03685331

Niraparib FTC, OC, EndA, PPC PI3K Copanlisib 1 NCT03586661
Olaparib TNBC PD-L1 Durvalumab 2 NCT05209529
Niraparib PanC PD-1 Dostarlimab 2 NCT04493060

Talazoparib melanoma PD-1 Nivolumab 2 NCT04187833
Niraparib rare tumors PD-1 Sintilimab 2 NCT04423185

Olaparib BC VEGFR or
ATR

Cediranib or
Ceralasertib 2 NCT04090567

Fluzoparib HER2- BC VEGFR Apatinib 3 NCT04296370

Olaparib OC, FTC,
genital neoplasms

multiple receptor
tyrosine kinases Anlotinib 2 NCT04566952

Olaparib serous OC ATR Ceralasertib 2 NCT03462342
Rucaparib mesothelioma — — 2 NCT03654833
Olaparib Pt-resistant OC CDK4,6 Abemaciclib 1/1b NCT04633239
Olaparib prostate cancer LRHL Leuprolide 2 NCT05498272

Talazoparib OC and other BRD2,3,4 ZEN-3694 2 NCT05327010
Veliparib BC — Temozolomide 2 NCT01009788

BC—breast cancer, EndA—endometrial adenocarcinoma, FTC—fallopian tube cancer, OC—ovarian cancer,
PanC—pancreatic cancer, PPC—primary peritoneal cancer, Pt—platinum-based chemotherapy, TNBC—triple
negative breast cancer, UCC—uterine corpus carcinoma.
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8. Future Perspectives

Over the past few decades, the clinical significance of BRCA mutations for the rational
choice of anti-cancer therapy has been firmly established. In this respect, the synthetic lethal
interaction between PARPi and BRCA mutations gives a remarkably successful example of
how a fundamental discovery in molecular medicine can be translated into clinical cancer
therapy. However, the next step of the problem is the multifariousness of PARPi resistance
mechanisms (recently reviewed in depth by Jackson and Moldavan [154]) that eventually
arise in patients with BRCA mutations in response to this therapy. In particular, Alu mobile
elements regulate the expression of many genes, including the ones that mediate DNA
repair [155]. This observation poses an interesting question of whether Alu repeats can
be involved in the DNA damage repair process and serve as a potential mechanism for
PARPi resistance in BRCA mutant cells [156]. Furthermore, the recently published data of
the clinical trial of RITA suggest that patients treated with a PARPi, niraparib, displayed
significantly longer PFS, compared to the placebo cohort, regardless of the presence or
absence of intact HR repair [157]. This result indicates that PARPi might kill cancer cells
in ways other than by affecting DNA repair, although the most feasible explanation is the
inhibited PARylation of HR-participating proteins, including BRCA1 [158,159].

Theoretically, it can be hypothesized that a loss of BRCA by cancer cells should increase
their susceptibility to various novel regimens of anti-cancer therapies due to the attenuated
DNA repair. For example, therapeutic viral intervention seems to be a plausible therapeutic
approach to treating BRCAness cancers, especially in combination with PARPi drugs [160].
However, it should be noted that PARP inhibition may activate genes linked to the normal
interferon response in BRCA1,2-deficient cells [161] and this may explain the molecular
basis of interference between the treatment with oncolytic viruses and PARPi. Therefore,
one should pay attention to the BRCA mutational status when implementing new oncolytic
viruses against BC and/or OC.

Managing BRCA1 and BRCA2 pathogenic mutations may include many options other
than extensive testing and preventive surgery for such patients. The idea of long-term
therapeutic interventions, such as hormone replacement, has long been discussed, but poses
serious risks of adverse effects [162]. This concept is now re-emerging (discussed in [163]),
due to the implementation of drug repurposing (Denosumab, Metformin, Letrozole, etc.;
see Supplementary Table S1), as well as principally new approaches, such as adiponectin
receptor-targeting molecules [164].

The p53 tumor suppressor plays an important role in inhibiting cancer progression,
especially in response to chemotherapy or targeted therapy. Genomic inactivation of
TP53 by missense or nonsense mutations often leads to drug resistance in cancer cells. It
was previously thought that, since wild-type p53 transcriptionally induces the expression
of genes involved in DNA repair [165], then TP53-mutant cells with attenuated DNA
repair would be more sensitive to PARP inhibitors which block homologous DNA repair.
Accordingly, a deficiency of or mutations in the TP53 gene have been shown to enhance
the cytotoxicity of PARP inhibition in various tumors with mutations in BRCA1/2 [166].
However, recent studies in colorectal cancer have shown that, contrary to previous findings,
wild-type p53 activity appears to be important for a full cytotoxic response to PARP
inhibition [167], as PARP inhibitors have been found to activate the p53 pathway [168].
One of the explanations for this phenomenon may be the fact that it is wild-type, and not
mutant, p53 that promotes the export of BRCA1 from the nucleus, increasing the cellular
deficiency of homologous repair [169]. Another explanation could be that TP53 encodes
a large number of microRNAs that target genes responsible for the repair of double- and
single-stranded DNA breaks [170,171], thereby increasing the sensitivity of cancer cells to
PARP inhibitors.

In this regard, the question arises of whether the combination of PARP and activators
of p53 may have a synergistic effect. Since Mdm2 is the principal p53-specific E3 ligase
that degrades p53 [172], it will be interesting to see whether inhibitors of the p53–Mdm2
interaction can be combined with PARP inhibitors. A number of new Mdm2 inhibitors
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are currently undergoing clinical trials [173]. Notably, we and our colleagues have also
discovered several new inhibitors of p53 interaction with Mdm2, and these molecules
exhibited strong apoptotic effects [174–176]. Future experiments will show whether the
combination of p53 activators and PARP inhibitors is a viable therapeutic approach to
treating BRCAness cancers.

Complex combinations, as expected, should be more effective, although more difficult
and time-consuming to develop and adjust to practical regimens. For example, a combina-
tion of cisplatin, mitomycin C, and doxorubicin was reported to be more efficient than the
respective double combinations [177]. Finally, there are multiple ways to boost standard
neoadjuvant regimens, such as the addition of bevacizumab to anthracycline and taxane
for patients with BRCA1,2 mutations [178].

9. Conclusions

Further progress in fundamental studies on DNA repair, and the development of
even more potent and specific drugs, may wield power over the intrinsic weaknesses of
many cancers. Even relatively simple improvements in molecular diagnostics, such as the
detection of cases with loss-of-function BRCA1,2 mutations, may yield a highly positive
impact on the therapeutic treatments for many oncological patients worldwide.
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