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Abstract

Graph Convolutional Networks (GCNs) are powerful deep learning methods for non-Euclid-

ean structure data and achieve impressive performance in many fields. But most of the

state-of-the-art GCN models are shallow structures with depths of no more than 3 to 4 lay-

ers, which greatly limits the ability of GCN models to extract high-level features of nodes.

There are two main reasons for this: 1) Overlaying too many graph convolution layers will

lead to the problem of over-smoothing. 2) Graph convolution is a kind of localized filter,

which is easily affected by local properties. To solve the above problems, we first propose a

novel general framework for graph neural networks called Non-local Message Passing

(NLMP). Under this framework, very deep graph convolutional networks can be flexibly

designed, and the over-smoothing phenomenon can be suppressed very effectively. Sec-

ond, we propose a new spatial graph convolution layer to extract node multiscale high-level

node features. Finally, we design an end-to-end Deep Graph Convolutional Neural Network

II (DGCNNII) model for graph classification task, which is up to 32 layers deep. And the

effectiveness of our proposed method is demonstrated by quantifying the graph smooth-

ness of each layer and ablation studies. Experiments on benchmark graph classification

datasets show that DGCNNII outperforms a large number of shallow graph neural network

baseline methods.

1 Introduction

In recent years, the rapid development of Convolution Neural Networks (CNNs) [1] have

achieved impressive results in many fields. CNNs are suitable for processing Euclidean struc-

ture data with translation invariance such as image, text, speech, etc. This kind of data takes

one of the data units as the central node and has the same number of neighbors, so the features

of the data can be extracted sequentially by defining a globally shared convolution kernel.

However, in the real world, the non-Euclidean structure data of knowledge graph, social net-

work, chemical molecule and other graph structures are increasing, which is characterized by

non-translation invariance, and the number of neighboring nodes may be different, so the

convolution kernel cannot be used to sequentially extract the data information of the same

structure. The application of CNNs on non-Euclidean structure data has limitations, so the

Graph Convolutional Networks (GCNs) [2] were proposed to generalize CNNs to the above
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graph-structured data. GCNs and its variants are also widely used in many fields, such as traffic

prediction [3], computer vision [4–6], machine translation [7, 8], disease prediction [9, 10],

social analysis [11], recommendation system [12] and so on.

In the field of image recognition, theoretically, the deeper the network, the more abstract

high-level information can be extracted. The multi-layer network structure of the convolu-

tional neural networks can learn the features of different levels of the image, and the extracted

features are also richer. The shallow network has a small perception area and can learn the

local regional features of the image, such as the edge and color of the object. The deep network

has a larger perception area and can learn more abstract features of images, such as shape, con-

tour, property, location and other high-dimensional features of objects. The ability of deep

convolutional neural networks currently used in image recognition tasks to recognize objects

even surpasses humans. As shown in Fig 1, the shallow network can only extract low-level fea-

tures such as colors and lines, the intermediate network can extract middle-level features such

as edges and contours, and the deep network can extract abstract high-level features such as

shape, property, and category.

Therefore, we hope to introduce the concept of deep network in CNNs into GCNs, so that

GCNs can also achieve the effect of deep CNNs, which can be used to extract high-order

abstract features of nodes. However, most current state-of-the-art GCN models are no more

than 3 to 4 layers deep and are usually limited to very shallow models. Q. Li et al. [14] pointed

out that the shallow GCN model such as double-layer GCN [2] has its limitations and requires

a large number of extra tags for model training. When only a few tags are given, the shallow

GCN model is difficult to aggregate multi-hop neighborhoods information to the central node

and is easily affected by the local properties of the convolution filter. Some papers [14–16]

have analyzed the limitations of GCN, and pointed out that overlaying too many graph convo-

lutional layers will lead to the over-smoothing problem, so that the features of nodes tend to be

consistent, and different nodes will become indistinguishable. Xu et al. [17] studied the expres-

sive ability of popular GNN variants and found that if GNN has strong expressive ability, dif-

ferent multiple aggregates must be synthesized into different representations. They also

propose a theoretical framework to analyze the expressive ability of GNN to capture different

graph structures, and show that popular GNN variants cannot learn to distinguish some sim-

ple graph structures. Alon et al. [18] pointed out that one of the main problems of training

GNN is that it is difficult for them to propagate information between remote nodes in the

graph. Each node in the graph has a very large number of K-order neighbors that when a

remote node information is transmitted, it will be compressed / distorted. This phenomenon

is called "over-squashing". Similar problems also appear in CNNs. Due to the chain rule, with

the deepening of the network, the gradient may vanish or explode in the process of back

Fig 1. Object features extracted by neural networks with different depths [13].

https://doi.org/10.1371/journal.pone.0279604.g001
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propagation, and the deep neural network may degenerate into a shallow neural network, or

even the network becomes unlearnable. To solve the problem of gradient vanishing / explosion

in CNNs, He et al. [19] proposed the ResNet to make skip connections in some layers of the

network, weaken the strong connection between each layer by adding residual connections

and nonlinear transformation to achieve identity mapping, and get better results as the net-

work deepens. On the basis of ResNet, Huang et al. [20] proposed DenseNet, which connects

all layers to each other, realizes feature reuse, and makes it easier to achieve gradient back

propagation and make the network easier to train.

In this paper, we hope to improve the performance of graph convolution network by deep-

ening it, extract richer high-order abstract features of nodes by using deep network, and verify

it on graph classification task. We use the ideas of ResNet and DenseNet in convolutional neu-

ral networks to conduct research on deep graph convolutional networks. In order to ensure

that the deep network can at least achieve the performance of the shallow network, we transfer

the shallow node features to the deep network, and reuse the features before each layer of the

network. At the same time, the identity mapping mechanism is introduced into the linear

transformation of node features. We show how to successfully integrate the concepts and

methods of deep convolution neural network into a new general framework of graph neural

network, and extensively analyze the accuracy and stability of the proposed deep graph convo-

lutional network based on the new general framework. We show that GCN up to 32 layers can

be successfully trained by using a non-local message passing framework, and we intend to test

deeper networks in future research. Compared with 22 baseline methods such as 6 graph ker-

nels and 16 other graph neural network methods, the proposed deep GCN model DGCNNII

achieves first place in graph classification task on 4/5 bioinformatics datasets. Compared with

DGCNN [21], when only the graph convolution part of the model is replaced, the accuracy of

DGCNNII on the 5 datasets is about 3.96%–17.88% higher than that of DGCNN.

Our contributions in this paper are as follows. 1) We propose a novel general framework

for graph neural networks called Non-local Message Passing (NLMP). 2) Based on the NLMP

framework, we propose a new spatial graph convolution layer to extract node multiscale high-

order node features. 3) A novel end-to-end deep learning model DGCNNII for graph classifi-

cation tasks is proposed. It can directly accept graphs as input without any pre-processing of

the data. 4) Experimental results on benchmark graph classification datasets show that our

Deep Graph Convolutional Neural Network II (DGCNNII) significantly outperforms graph

kernel methods and numerous other deep learning methods on graph classification task.

2 Related works

2.1 Message Passing Neural Network (MPNN)

In recent years, the general framework of Message Passing Neural Network (MPNN) proposed

by Gilmer et al. [22] has been applied to various graph related tasks, especially in graph super-

vised learning tasks. Such as SafeDrug, a drug recommendation model based on MPNN

framework proposed by Yang et al. [23] which can encode the connectivity and function of

drug molecules to achieve safe and accurate drug recommendation. Dasoulas et al. [24] pro-

posed a graph neural network called Colored Local Iterative Procedure (CLIP) on the basis of

MPNN, which used color to eliminate the ambiguity of the same node, and proved that this

representation is a universal approximator of continuous functions on graphs with node prop-

erties, and demonstrate that this simple coloring scheme can theoretically and empirically

improve the expressiveness of message passing neural networks. In terms of node update, the

general framework of MPNN is mainly divided into two parts, one is to aggregate the informa-

tion of neighboring nodes and edges around the vertex, and the other is to update the node
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information iteratively by fusing the vertex features of the previous iteration with the vertex

features of the current aggregation. Specifically, see the following equations:

m tþ1ð Þ

i ¼
X

vj2N við Þ

Mt h tð Þ
i ; h

tð Þ
j ; eij

� �
ð1Þ

h tþ1ð Þ

i ¼ Ut h tð Þ
i ;m

tþ1ð Þ

i

� �
ð2Þ

M and U in the above Eqs (1) and (2) represent the message transfer function and the mes-

sage update function, respectively. where vi denotes vertex i, N(vi) denotes the first-order

neighbor nodes of vertex i, hi denotes the feature vector of vertex i, eij denotes the edge <vi,
vj>, mi denotes the feature vector of vertex i after aggregation operation, and t denotes the

rounds of message propagation iterations.

Eq (1) represents the message passing aggregation operation, vertex i aggregates its feature

vector hðtÞi at moment t with its first-order neighbor nodes feature vector hðtÞN við Þ
and the infor-

mation of edges to obtain the node feature vector mðtþ1Þ

i after aggregate operation. Eq (2) repre-

sents the node information update operation. The node feature vector h tð Þ
i at the previous

moment and the node feature vector mðtþ1Þ

i obtained by this iteration are aggregated through

the update function U to update the node information.

The core of the MPNN framework is the message passing function and the message update

function. Different improvements are made for these two parts. In principle, any graph neural

network model can be designed based on this framework. From the perspective of message

passing framework, many variants of graph neural network models have been proposed, and

these models have achieved excellent results in node classification and graph classification

tasks. Table 1 lists the message passing functions and message update functions of some classi-

cal graph neural network models.

2.2 Non-local Neural Network (NLNN)

X. Wang et al. [28] proposed a Non-local Neural Network (NLNN) model applied in the field

of computer vision, which uses deep neural networks to capture remote dependencies. The

idea of non-local operation is based on the generalization of non-local mean operation pro-

posed by Buades et al. [29] and others. Its core idea is to perform weighted calculation on the

features of all specific locations. The specific location can be the pixel coordinates of the spatial

dimension or the time coordinate of the time dimension. When it is migrated to the graph

structure data, the specific location can be replaced by a node. The deep graph convolution

Table 1. Different graph neural network models based on MPNN framework.

Model Message Passing Function Message Update Function

GCN [2] mðtþ1Þ ¼ ~D � 1=2 ~A ~D � 1=2HðtÞWðtÞ Hðtþ1Þ ¼ ReLUðmðtþ1ÞÞ

GraphSAGE-mean [25] mðtþ1Þ ¼WðtÞ �MEANðfhðtÞi g [ fh
ðtÞ
j ; vj 2 NðviÞgÞ hðtþ1Þ

i ¼ ReLUðmðtþ1ÞÞ

R-GCN [26] mðtþ1Þ ¼
P

r2R

P

j2NðrÞi

1

ci;r
WðtÞ

r hðtÞj þWðtÞ
0 hðtÞi hðtþ1Þ

i ¼ ReLUðmðtþ1ÞÞ

DGCNN [21] mðtþ1Þ ¼ ~D � 1 ~AHðtÞWðtÞ H(t+1) = tanh(m(t+1))

DiffPool [27] mðtþ1Þ ¼ ~D � 1=2 ~A ~D � 1=2HðtÞWðtÞ H(t+1) = ReLU(m(t+1))

GIN [17] mðtþ1Þ ¼ 1þ �ðtþ1Þð Þ � hðtÞi þ
P

vj2NðviÞ
hðtÞj hðtþ1Þ

i ¼ MLPðtþ1Þðmðtþ1ÞÞ

https://doi.org/10.1371/journal.pone.0279604.t001
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proposed in this paper can extend the specific position to multiple-hop neighborhood nodes

after several iterations. For large-scale graphs, as long as the graph convolution layers are deep

enough, the dependency of each node can be extended to the whole graph for capturing more

comprehensive structural information of nodes, but need to solve the over-smoothing problem

caused by multi-layer graph convolution, the solution will be proposed below.

In the paper of Buades et al. [29], given discrete noise image v = {v(i)|i 2 I}, where v(i) rep-

resents the pixel value of pixel i and I represents all the pixels of the image. For pixel i, the esti-

mated value NL[v](i) represents the weighted average of all pixels in the image, and the specific

equation is as follows:

NL v½ � ið Þ ¼
X

j2I

w i; jð Þv jð Þ ð3Þ

Where {w(i, j)|j 2 I} represents the similarity weight between pixel i and pixel j, and satisfies

0� w(i, j)� 1, ∑j w(i, j) = 1. The estimated value of pixel i is represented by calculating the

sum of products with similarity weight between pixel i and pixel j(j 2 I). The similarity weight

in this method is similar to the attention weight in the “Attention Mechanism”. Therefore, the

NLNN framework can be regarded as the unification of various current self-attention-based

methods [30–32]. In the field of graph convolution, analogous to the definition of Gaussian fil-

tering Eq (4), the generalized node non-local feature aggregation operation is defined as

Eq (5):

GB I½ �p ¼
X

q2S

Gs jjp � qjjð ÞIq ð4Þ

h tþ1ð Þ

i ¼
1

C hð Þ

X

8j

f h tð Þ
i ; h

tð Þ
j

� �
� g h tð Þ

j

� �
ð5Þ

In the above Eq (4), GB[I]p represents the value of the pixel p after Gaussian blurring, Iq rep-

resents the value of pixel q, S represents the non-local adjacent region of pixel p, and Gσ repre-

sents Gaussian function, which is used to calculate the weight value. hðtÞi in the above Eq (5)

represents the feature of the target node i at time t, hðtÞj represents the feature of all nodes j

related to the target node i at time t, and f ðhðtÞi ; h
ðtÞ
j Þ is used to calculate the attention coefficient

between node i and node j, 1/C(h) is used to normalize the results, and gðhðtÞj Þ represents the

function that transforms the features of the input node j. The idea of NLNN framework is to

aggregate all the node features related to the target node according to different attention

weights to achieve the update of the target node features. When designing the model for differ-

ent problems, function f and function g can be designed differently. The specific design of the

model in this paper will be introduced in Section 3.

2.3 Graph classification

The framework and model proposed in this paper will be applied to the task of graph classifica-

tion. Graph classification is also called graph property prediction, i.e., given a set of graphs, the

goal is to learn the mapping relationship between the graph and the corresponding category

label, and apply the trained model and parameters to the category prediction of unknown

graphs. For example, in the field of chemical molecules, the structural of molecules can be seen

as graph structure data, and the class prediction of molecular structure is used to determine

the mutagenicity, toxicity, and anticancer activity of compound molecules [33, 34]. In molecu-

lar biology, by classifying and predicting the protein structure, we can judge whether the
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unknown protein is an enzyme, so as to determine whether the unknown protein has a thera-

peutic effect on a disease [35, 36]. The methods of graph classification mainly include methods

based on graph kernels [37, 38], methods of graph similarity matching [39] and methods

based on deep learning.

At present, the common steps for predicting graph properties based on deep learning

are: 1) Firstly, the existing graph convolution method [2, 17, 21, 25–27] is used to extract

node features, and the embedded representation of nodes is obtained. 2) Then aggregate the

embedded representation of all the nodes in the graph to represent the graph embedded

representation. 3) Finally, graph embedding representation is used to predict graph proper-

ties. For the first step, we can use one of the existing GCN methods to learn the node embed-

ding representation. In the second step, we can use the readout function (pooling function)

to read out the nodes in a certain order, and embed the nodes in a specific order as the

graph embedding representation. In the last step, we classify the graph according to the

embedding of each subgraph. Therefore, the research on graph property prediction using

deep learning mainly focuses on the following two aspects. One is how to extract node

features more accurately. Node representation learning is the precondition of graph repre-

sentation learning. In recent years, a lot of work has been done on how to learn node

embedding or graph embedding through various graph neural networks [40]. The second is

how to design a readout function to perform a pooling operation on the graph. For isomor-

phic graphs, the readout function should be read out in a consistent order according to the

role of nodes in the graph to ensure that the structural features of the graph do not change

after the pooling operation.

For node representation learning, the node representation learning methods used in

graph classification models such as EigenGCN [41], DGCNN [21], DiffPool [27], SAGPool

[42] all adopt message passing GCN and its variants. For the graph pooling readout function,

the feature representation of all nodes can be simply added or averaged as the feature repre-

sentation of the graph, but this method will ignore many key nodes and structural informa-

tion in the graph. Therefore, many more complex node readout methods have been

proposed in recent years. For example, the pooling operation of the EigenGCN model pro-

posed by [41] is divided into two parts: First, the large graph is divided into multiple sub-

graphs, each sub-graph is pooled to get a super node, and multiple super nodes form a coars-

ening graph. The original graph signal is then converted into a graph signal defined on the

coarsening graph using EigenPooling. The Graph U-Nets model with an encoder-decoder

structure proposed by Gao & Ji [43] can perform graph pooling and unpooling operations

on graphs.

2.4 Over-smoothing in node-property prediction

In the field of image recognition, the deepening of the network will lead to gradient vanishing

or gradient explosion, and the problem of network degradation occurs. In the field of graph

neural networks, the stacking of too many graph convolution layers will lead to over-smooth-

ing of nodes. When multiple layers are stacked, the representation of all nodes tends to be con-

sistent, and the local structural features of nodes are lost, which is the phenomenon of over-

smoothing. Therefore, most of the graph convolution network models adopt shallow structure,

which will greatly limit the ability of the network to obtain high-order neighborhoods infor-

mation and structural features. The common graph convolution networks usually have 2–3

layers. Take the 2-layer graph convolution network of Eq (6) as an example [44]. The first layer

graph convolution aggregates the information of the first-order neighbors around the node

into itself and transforms it nonlinearly, while the second-layer graph convolution aggregates

PLOS ONE A deep graph convolutional neural network architecture for graph classification
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the information of the second-order neighbor nodes and classifies them.

ZGCN ¼ softmax ~̂AReLU ~̂AXW0

� �
W1

� �
ð6Þ

In recent years, a lot of research has been devoted to solving the over-smoothing problem

of graph convolutional networks. Q. Li et al. [14] proved that the graph convolution of the

GCN model is a special form of Laplace smoothing, where the features of a node and its neigh-

bors are updated to new node features after a weighted average, and firstly proposed that deep

GCNs are easy to cause over-smoothing. Experiments show that node embedding has been

mixed on a small data set with only 5 convolution layers. In order to solve the problem of node

over-smoothing, Rong et al. [45] proposed DropEdge, whose idea is to randomly delete some

edges of the input graph during model training, and DropEdge can be regarded as a message

reducer to reduce the over-smoothing problem caused by multi-layer graph convolution to a

certain extent. Feng et al. [46] proposed stochastic neural network architecture GRAND,

which reduces the sensitivity of nodes to their neighbors by randomly discarding some nodes

or some features of nodes. Although the above two methods can alleviate the over-smoothing

phenomenon of deep graph convolution networks, but simply deleting nodes or edges will

destroy the original data features and structural integrity. In addition to the above methods,

there are some works as follows that try to do deep message passing by dealing with adjacency

matrices.

2.4.1 SGC. The SGC model proposed by F. Wu et al. [47] reduces the complexity of graph

convolution computation by removing nonlinear transformations and folding weight matrices

between continuous layers, by computing the graph convolution matrix to the K power in a

single-layer neural network to capture higher-order information. Ordinary GCN convolution

of each layer mainly includes three steps: node information propagation, node feature linear

transformation and node nonlinear activation. For the classification task, if the Softmax func-

tion is finally used, the final classification result is Eq (7), and the specific process of graph con-

volution of each layer is Eq (8).

Ŷ GCN ¼ softmax ~PHK� 1WK
� �

ð7Þ

H tþ1ð Þ ¼ ReLU ~PH tð ÞW tð Þ
� �

ð8Þ

Where ~P ¼ ~D � 1=2 ~A ~D � 1=2 denotes the symmetric normalized adjacency matrix, 0� t� K, and

the input node features matrix X = H(0).

SGC assumes that the nonlinear operation of node features is not important to GCN, and

the effect of GCN mainly comes from the feature propagation between nodes. If the nonlinear

transformation of each layer is deleted, it still has the same "receptive field" as K-layer GCN.

Then the above Eq (7) is converted into the following Eq (9):

Ŷ GCN ¼ softmax ~P . . . ~P~PXW 1ð ÞW 2ð Þ . . .W Kð Þ
� �

ð9Þ

In order to simplify the above equation, the normalized adjacency matrix ~P can be raised to

the power of K, and the collapsed adjacency matrix ~PK can be obtained. At the same time, the

product of multiple weight matrices can be replaced with one weight matrix, and the following

simplified equation can be obtained:

Ŷ GCN ¼ softmax ~PKXW
� �

ð10Þ
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Through experiments, the effect of SGC is almost the same as that of GCN [2], and the

speed is faster than GCN. But the premise of this method is to assume that the nonlinear trans-

formation of node features is not important, which loses the powerful expressive ability of

nonlinear structures.

2.4.2 MAGNA. G. Wang et al. [48] aimed at the limitation that one-layer graph convolu-

tion in the existing GAT [31] model can only aggregate first-order neighbors information,

allowing associations between nodes that are not directly connected in the network. Based on

the powers of the 1-hop attention matrix A, the attention score of multi-hop neighborhoods is

calculated through the following attention diffusion process:

~A ¼
X1

i¼0

yiA
i ð11Þ

Where i represents the number of paths from node h to node t, and the maximum length is i,
thus increasing the receiving field of attention, θi represents attention attenuation factor, and

satisfies
P1

i¼0
yi ¼ 1, θi> 0, θi> θi+1, i.e., the higher the order of attention factor, the smaller

the weight. This method also assumes that there is a correlation between nodes that are not

directly connected.

3 Deep Graph Convolutional Neural Network II (DGCNNII)

In this section, we propose DGCNNII for graph classification, which consists of four parts: 1)

The graph convolution layers of the first-stage (16 layers) is used to extract the rich structure

information of the input graph, and the rich high-dimensional features of the input nodes can

be obtained. 2) The second-stage graph convolutional layers (16 layers) concatenates the high-

dimensional node features extracted by the first-stage graph convolutional layers and the ini-

tial low-dimensional features as input to extract the deeper structural information and node

features, then define a consistent vertex ordering. 3) The SortPooling layer sorts the node fea-

tures output by the second-stage graph convolution layers, and unifies the number of nodes as

the input of the next stage. 4) One-dimensional convolution layers and dense layers read the

sorted continuous node features for graph attribute prediction. The following Fig 2 shows the

architecture of DGCNNII. Table 2 summarizes the symbols used in this paper.

3.1 Non-local Message Passing Neural Network (NLMP)

Section 2 introduces two commonly used general frameworks of graph neural networks,

namely MPNN and NLNN. The general framework of graph neural networks is to generalize

and abstract the similar GNN networks structure, and integrate it into a unified framework,

which provides ideas for flexible design and improvement of the model. The MPNN frame-

work summarizes various GNN models and their variants from the perspective of message

aggregation and updating. The NLNN framework is a generalized summary of the GNN

model based on the attention mechanism. For details, see Sections 2.1 and 2.2.

Inspired by the successful application of deep neural networks in the image field, we aim to

design a deep graph neural network framework which can solve the over-smoothing problem,

in order to extract more remote dependencies of nodes. This framework can make the node

information aggregation of graph neural network not only rely on local information, but also

make vertices aggregate information from multi-hop neighborhoods by stacking multi-layer

graph convolution. For graphs of different scales, the corresponding depth and information

aggregation technology can be designed to aggregate the node information and structural

information of the whole graph to the target node to extract higher-dimensional abstract
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Fig 2. The overall structure of DGCNNII. The input graph with arbitrary structure first obtains the fine high-dimensional node features through the

16 layers of graph convolution in the first-stage, and then inputs them into the 16 layers of graph convolution in the second-stage, and the high-

dimensional node features propagate deeply among the neighbors. Finally, the SortPooling layer is used to sort and intercept the nodes, and transfer

them to the common convolution layer and dense layer for graph classification model training. Features are visualized as colors.

https://doi.org/10.1371/journal.pone.0279604.g002

Table 2. Table of symbols used in this paper.

Symbol Definition

G = (V, E) G: input graph, V: node set, E: edge set.

|V| = n n: number of nodes.

v 2 V nodes in G.

xv 2 Rc xv: node feature vector, c: feature dimension.

X 2 Rn×c initial feature matrix.

hk
i node embedding of node i in the kth layer.

N(v) set of one-hop neighbors of node v in G.

M(�) message aggregation function.

Hk matrix of activations in the kth layer.

Wk a layer-specific trainable weight matrix.

~A adjacency matrix of the undirected graph G with added self-connections.

~D degree matrix of undirected graph G.

σ(�) activation function.

f(i, j) a function used to calculate the attention coefficient between i and j

g(�) feature transformation function.

δk the weight matrix decay parameter of the kth layer

Zk the kth layer output of DGCNNII.

AGAT 2 Rn×n adjacency matrix based on node attention coefficients.

α, β, γ hyper-parameters for adjusting the proportion of information aggregation.

In identity matrix.

a the weight vector that projects the concatenate vector to the scalar

https://doi.org/10.1371/journal.pone.0279604.t002
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features. The NLMP framework proposed in this paper is as follows:

h tþ1ð Þ

i ¼
X

vj2N við Þ

Mt h tð Þ
i ; h

tð Þ
j ; h

0ð Þ

i ; h
t� 1ð Þ

i ; eij
� �

ð12Þ

Compared with the Eq (1) of the MPNN framework, the above equation aggregates more

information hð0Þi and hðt� 1Þ

i . For the aggregation update of target node i, it aggregates not only

the information of its first-order neighboring nodes {hðtÞj jvj 2 NðviÞ} at time t, but also the ini-

tial input feature hð0Þi of node i and the node feature hðt� 1Þ

i at the previous time. The method of

aggregating hð0Þi and hðt� 1Þ

i in the NLMP framework borrows the ideas from ResNet model and

DenseNet model in the image field. The reason for introducing residual connections and

dense connections in the process of node information aggregation is that when the graph neu-

ral network is deep enough, even if the node information goes through multiple rounds of iter-

ations, some initial features hð0Þi of the nodes are still retained. Through back propagation

learning, achieves at least the same effect as shallow networks, and the over-smoothing phe-

nomenon is significantly reduced. The previous moment of node features hðt� 1Þ

i is introduced,

so that the result of each graph convolution layer always carries some node features generated

by all previous layers, so that the final output node features of the model includes part of the

output results of all convolutional layers. The dense connection in this paper does not connect

the output results of all layers before each layer to itself, but only connects the results of the

previous layer to itself, and the dependence of node features on the previous layer can be

adjusted by setting parameters, it makes the adjustment of the model more flexible.

In order to investigate why graph neural networks can achieve good results, Q. Li et al. [14]

compared GCNs with the simplest Fully Connected Networks (FCNs). The hierarchical propa-

gation rules of conventional FCNs (Eq (13)) and the common neighboring information aggre-

gation mode of GCN [2] (Eq (14)) are respectively as follows:

H lþ1ð Þ ¼ s H lð ÞW lð Þ
� �

ð13Þ

H lþ1ð Þ ¼ s ~D � 1
2 ~A ~D � 1

2H lð ÞW lð Þ
� �

ð14Þ

The only difference between GCN and FCN is that GCN multiplies the normalized adja-

cency matrix ~D � 1=2 ~A ~D � 1=2 left by the feature matrix H and then right multiplies the weight

matrix W. Therefore, the feature matrix processed by the normalized adjacency matrix is the

reason for the good effect of graph convolution. The author also proves that graph convolution

is a special form of Laplace smoothing, namely symmetric Laplace smoothing. Laplace

smoothing averages the information of nodes and their neighbors as a new feature of nodes.

Since the nodes in the same subgraph are often densely connected, after the import of deep

graph convolution, the average aggregation of neighborhoods information makes the features

of all nodes in the same subgraph tend to be consistent. And in the relational graph data, the

influence of different types of neighbors on the target node is weakened. Therefore, using the

idea of NLNN framework for reference, an adjacency matrix based on attention mechanism is

introduced to aggregate neighbor nodes, which makes the NLMP framework proposed in this

paper more generalized and scalable, easy adapts to multi-relational and single relational

graph data, and makes up for the over-smoothing problem caused by average aggregation of
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neighbor nodes. The more specific NLMP framework design is as follows:

h tþ1ð Þ

i ¼ Mt
1

C hð Þ

X

vj2N við Þ

f h tð Þ
i ; h

tð Þ
j

� �
� g h tð Þ

j

� �
2

4

3

5; gðh 0ð Þ

i Þ; g h t� 1ð Þ

i

� �
8
<

:

9
=

;
ð15Þ

In the NLMP framework, f represents the Gaussian function that calculates the attention

coefficients between nodes, g represents the node feature transformation function, M repre-

sents the message aggregation function, and the factor 1=CðhÞ is used to normalize the results.

The specific design of the above equation and the graph convolution layer used in this paper

will be described in detail in Section 3.2.

3.2 Graph convolution layer

3.2.1 Adjacency matrix based on attention coefficient. In the image field, the similarity

between pixel i and pixel j can be defined as a decreasing function of the weighted Euclidean

distance, jjv Nið Þ � vðNjÞjj
2

2
[29]. We transfer the concept of similarity between pixels to graph

data, compare the similarity between nodes can be converted to measure the similarity of node

feature vectors, and the similarity can be calculated by the inner product of node vectors after

linear transformation. According to the non-local mean operation [29] and the bilateral filter

proposed by Tomasi & Manduchi [49], Gaussian function can be selected:

f hi; hj

� �
¼ ey hið Þ

Tφ hjð Þ ð16Þ

Where θ(hi) = Wθhi, φ(hj) = Wφhj. Based on the NLMP framework proposed in this paper, the

Gaussian function used to calculate the attention coefficient between nodes adopts the concat-

enation function in the GAT model proposed by Velickovic et al. [31]:

f hi; hj

� �
¼ eLeakyReluðaT ½Whi jjWhj�Þ ð17Þ

Where hi and hj represent the feature vector of node i and node j respectively, h 2 Rb×1 repre-

sents the feature vector, W 2 Ra×b represents the learnable weight matrix, and || represents the

concatenate operation. Therefore, (Whi||Whj) 2 R(2a×1). And aT 2 R2a×1 is the weight vector

that projects the concatenate vector to the scalar. After regularizing the Gaussian function, the

attention coefficient between node i and node j is obtained:

1

C hð Þ
f hi; hj

� �
¼

expðLeakyReluðaT½WhijjWhj�ÞÞ
P

k2Ni
expðLeakyReluðaT½WhijjWhk�ÞÞ

ð18Þ

3.2.2 Feature transformation based on identity mapping. For the feature transforma-

tion function g in Eq (15), we can use a simple linear transformation function g(h) = Wh, but

Klicpera et al. [44] pointed out that frequent interactions between different dimensions of the

feature matrix degrades the performance of the model. The GCNII model proposed by Chen

et al. [50] borrows the idea of identity mapping in ResNet, and introduces the mechanism of

identity mapping into GCN. The identity matrix In is added to the weight matrix W, and the

weight of the identity matrix increases with the number of layers. The goal is to ensure that the

deep GCN model achieves at least the same performance as the shallow GCN. Therefore, the
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linear transformation function in this paper is set as:

g hð Þ ¼ 1 � dlð ÞIn þ dlW
lð Þ

� �
h ð19Þ

In the above equation, δl is the weight matrix decay parameter that changes with the num-

ber of layers l. We refer to the setting dl ¼ log l=l þ 1
� �

in GCNII, and λ is the hyper-parame-

ter. δl makes the weight matrix adaptively decay as the number of layer increases.

3.2.3 Proposed form of graph convolution. In conclusion, given an input graph G = (V,

E) and its node feature matrix X 2 Rn×c, the proposed DGCNNII in this paper extracts the

non-local structure information of nodes by stacking deep graph convolutions to achieve the

aggregation of non-local neighborhood nodes information. We define the (t + 1)th graph con-

volutional layer as:

Z tþ1ð Þ ¼ s aA tð Þ
GATZ tð Þ þ bZ t� 1ð Þ þ gX

� �
1 � d

tð Þ� �
In þ d

tð ÞW tð Þ
� �� �

ð20Þ

In the above equation, Z(t) is the output result of the tth graph convolution layer. Initially

can make Z(0) = Z(1) = X, AðtÞGAT 2 Rn�n is the adjacency matrix based on the attention coefficient

of the tth graph convolution layer of the input graph G, where ðAðtÞGATÞij 2 f0; rg. If there is an

edge between node i and node j, namely (vi, vj) 2 E, then ðAðtÞGATÞij ¼ r, the real number r 2
(0,1) represents the attention coefficient of the correlation between the two nodes, otherwise

ðAðtÞGATÞij ¼ 0. details as follows:

A tð Þ
GAT

� �

ij
¼

expðLeakyReluð a tð Þð Þ
T
½W tð Þ

GATh
tð Þ
i jjW

tð Þ
GATh

tð Þ
j �ÞÞ

P
k2N tð Þ

i
expðLeakyReluð a tð Þð Þ

T
½W tð Þ

GATh
tð Þ
i jjW

tð Þ
GATh

tð Þ
k �ÞÞ

ð21Þ

Each layer of graph convolution is divided into the following four steps: 1) Firstly, the node

features after nonlinear activation are propagated through AGATZ to the neighboring nodes

and the nodes themselves according to different attention weights to obtain the new node fea-

ture matrix Y = AGATZ. 2) The new feature matrix �Y is obtained by summing Y, the result of

the graph convolution of the previous layer, and the initial node feature matrix according to

the corresponding proportion. 3) Through �Y ð 1 � dð ÞIn þ dWÞ, the node feature matrix is

transformed by linear feature transformation based on identity mapping. 4) Finally, the non-

linear activation function is applied to the result of the previous step, and the graph convolu-

tion result is output. Repeat the above four steps for each layer of GCN.

We suggest that the initial feature matrix X in the Eq (20) can be an one-hot vector, or it

can transform the feature dimension through a fully connected neural network according to

the needs of model. Zðt� 1Þ 2 Rn�ct� 1 is the output of the (t − 1)th graph convolutional layer, ct−1

is the number of output feature channels of the node in the (t − 1)th layer, The weight matrix

WðtÞ 2 Rct�ctþ1 is used to map the ct node feature channels into ct+1 feature channels. β and γ
are parameters that control the proportion of the previous layer output and initial node fea-

tures, which can be adjusted manually. α can be simply set to α = 1 − β − γ. In this paper, both

β and γ are set to 0.1, and σ is the nonlinear activation function. After the second-stage graph

convolution of the model is completed, a layer is added to connect the output result Z(t) (t =

1, . . ., K) of each graph convolution layer, denoted as Z1:K = [Z(1), Z(2), . . ., Z(K)], each row of

the concatenated output Z1:K can be viewed as a "multi-scale feature vector" of a vertex and

used as input to the remaining layers.
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3.3 Remaining layers

3.3.1 Graph pooling layer. The graph pooling layer is used to aggregate the node features

learned by the graph convolution layer for subsequent operations. Common graph pooling

methods in graph neural network models include: TopKPooling, SAGPooling, Set2Set, etc.

Table 3 lists some other commonly used graph pooling methods and specific operations. xðiÞk
represents the ith dimension of node embedding, Ni represents the neighbor nodes of node i.

In order to compare with the DGCNN framework of Zhang et al. [21], and to reflect the

advantages of Deep Graph Convolution Neural Network II (DGCNNII) proposed in this

paper, the layers behind the graph convolution layers adopt the same configuration as

DGCNN. For details, please refer to the papers of Zhang et al. The graph pooling of this paper

uses SortPooling. As mentioned by Zhang et al., the output of the graph convolution layer in

this paper is also a continuous WL (Weisfeiler-Lehman) color, and the deeper the convolution

layer is, the more Z(K) can divide the node into different colors / groups. The DGCNN model

has only 4 layers of graph convolution, and the DGCNNII model proposed in this paper has a

depth of 32 layers. The nodes are sorted in descending order according to the last channel Z(K)

output by the graph convolution layer. If the values of two nodes are the same in the Z(K) chan-

nel, they are compared through the previous layer Z(K−1), and so on. The output of the graph

convolution layers is a tensor of shape n�
PK

1
ct as the input of the SortPooling layer, because

the number of nodes in each subgraph is different, in order to facilitate the subsequent pro-

cessing of the network, the SortPooning layer truncates / expands the input tensor of n�
PK

1
ct to the tensor of k�

PK
1
ct size.

3.3.2 Traditional layers. Consistent with the paper of Zhang et al., first convert the k�
PK

1
ct tensor output by the SortPooling layer into a row vector of kð

PK
1
ctÞ � 1, and then add

maximum pooling layers, one-dimensional convolution layers, fully connected layers, and a

softmax layer, etc.

4 Discussion

As mentioned earlier, we need the graph convolution layers deep enough to divide the nodes

into different groups / categories as much as possible. However, when the graph convolutional

layers are stacked too much, there will be serious over-smoothing problem. In a densely con-

nected graph, each node has many common neighbor nodes, if there are too many layers in

the graph convolutional neural network, the number of aggregated neighbor nodes will

increase and the number of overlapping nodes will increase, which will easily lead to the con-

sistency of the final node feature representation, and the features of different nodes will be cov-

ered up.

The DGCNNII model proposed on the basis of the NLMP framework provides a solution

to the above problems and achieves state-of-the-art results. This framework mainly solves the

problem that the node features tend to be consistent caused by the average aggregation of a

Table 3. Common graph pooling methods.

Graph pooling methods Graph pooling equation

SumPooling rðiÞ ¼
PNi

k¼1
xðiÞk

AvgPooling rðiÞ ¼ 1

Ni

PNi
k¼1

xðiÞk
MaxPooling [51] rðiÞ ¼ maxNi

k¼1ðx
ðiÞ
k Þ

GlobalAttentionPooling [52] rðiÞ ¼
PNi

k¼1
softmaxðfgateðx ið ÞkÞÞffeatðx

ið Þ
k Þ

https://doi.org/10.1371/journal.pone.0279604.t003
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large number of overlapping neighbor nodes. The graph convolution in DGCNNII does not

simply use the normalized adjacency matrix to aggregate neighbor information according to

the degree of nodes, but introduces the graph attention mechanism to aggregate information

according to the different attention coefficients between nodes and their neighbors to adap-

tively learn the weights of nodes with different importance to avoid average aggregation lead-

ing to the consistency of node features. At the same time, residual connections and dense

connections are introduced to make each information aggregation includes the initial features

of nodes and the results of the previous graph convolution layer, ensuring that the model

achieves at least the results of the shallow version. In order to better eliminate the over-

smoothing phenomenon, the identity mapping mechanism is also introduced. DGCNNII’s

double-stage graph convolution framework can extract rich node features for deep node infor-

mation propagation, combined with the above techniques can achieve amazing results.

5 Experiments

In this section, we use 5 bioinformatics datasets to validate the performance of DGCNNII on

graph classification task. And compared with the classical graph kernel methods and other

deep learning methods. In order to reflect the effect of DGCNNII on eliminating the over-

smoothing phenomenon, we quantify the graph smoothness of each graph convolutional layer

of the model and compare it with DGCNN. Ablation studies were also carried out to demon-

strate the effectiveness of the model architecture. Finally, we analyze the model based on the

experimental results. All experiments run on a computer with 12-core Intel(R) i7-12700KF

CPU, 16 GB RAM, and NVIDIA Geforce RTX 3080 12GB GPU. We use Pytorch to implement

our methods.

5.1 Experimental setup

5.1.1 Dataset. Because DGCNNII has the advantage of extracting rich node information

based on non-local structural features, this paper uses 5 bioinformatic datasets with node

labels, named MUTAG [53], PTC [54], PROTEINS [55], D&D [56], NCI1 [57], instead of

using purely structural datasets without node labels, the initial node features of each bioinfor-

matics dataset are represented by one-hot vectors.

1. The MUTAG dataset consists of 188 compounds, which are divided into two categories

according to their mutagenic effect on bacteria. Each compound represents a graph, and

each atom represents the nodes in the subgraph.

2. The PTC dataset also consists of 344 compounds (graphs), which are divided into two cate-

gories according to whether they are carcinogenic to mice. Compounds are composed of 19

kinds of atoms (nodes).

3. The PROTEINS dataset consists of 1113 protein structure graphs, all protein structures

(graphs) are divided into two classes of enzymes/non-enzymes, and nodes consist of 3

classes.

4. The D&D dataset consists of 1178 protein structure graphs, all protein structures (graphs)

are classified into enzymatic/non-enzymatic categories, and the nodes are composed of 82

amino acids.

5. NCI1 is a cancer cell activity screening compound dataset, and the graph labels are divided

into two categories with/without anticancer activity.

The following table summarizes the specific parameters of the above datasets.
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5.1.2 Model settings. In order to mainly compare the DGCNN model and highlight the

advantages of the deep graph convolution proposed in this paper, except for the graph convo-

lution layers, the experimental settings of other parts of the model refer to DGCNN. In order

to achieve a fair comparison, we follow to set up the experiments for 10 times and report the

average test accuracy using the 10-fold cross validation. The graph convolution of DGCNNII

has two stages, and each stage has 16 graph convolution layers. The first 15 layers of graph con-

volution in the first-stage all have 128 output channels, and the number of output channels of

the 16th layer of graph convolution is set differently according to different data sets. In this

paper, the number of output channels (output feature dimension) of the 16th layer is set to 32,

64, 128, 32, 128 for the MUTAG, PTC, NCI1, PROTEINS, D&D datasets, respectively. The

output feature matrix of the 16th layer of DGCNNII for each of the above datasets also contains

the initial one-hot vector of the node. The operation of concatenating the initial feature vector

of nodes after the output of the first-stage graph convolution can effectively reduce the phe-

nomenon of node over-smoothing. The quantitative measurement of the graph smoothness of

each layer of the model in Section 5.3 can show the effectiveness of concatenating operation.

In particular, there is a fully connected layer that converts the initial input one-hot vector into

128 dimensions before the first-stage of graph convolution, which is used for feature dimen-

sion conversion. The second-stage graph convolution consists of a fully connected layer which

converts the input feature dimension into 128 dimensions and 16 graph convolution layers.

The first 15 layers of graph convolution have 128 output channels, and the last layer convolu-

tion is a single channel output. We use the one-channel features output from the last graph

convolutional layer for node sorting. The remaining layers are composed of two one-dimen-

sional convolution layers and one dense layer. The configurations of the two one-dimensional

convolution layers are: 1) Filter size is 2, maximum pooling layer with step size 2, output chan-

nel is 16. 2) Filter size is 5, step size is 1, output channel is 32. The dense layer has 128 hidden

units, and finally the Softmax layer.

5.1.3 Parameter settings. The α, β and γ in Eq (20) are set to 0.8, 0.1 and 0.1 respectively.

The λ in the weight matrix attenuation parameter log l

l þ 1
� �

is set to 0.5. A dropout layer with

dropout rate 0.5 is used after the dense layer. The training batch size is set to 1, and the parti-

tion ratio of the training sets and the test sets is 9:1. Rectified linear units (ReLU) is used as a

nonlinear function in the convolution layer and other layers. Stochastic gradient descent

(SGD) with the ADAM updating rule [58] was used for optimization. In order to fairly com-

pare the performance of DGCNN and DGCNNII in the graph classification task, and highlight

the improvement brought by the use of deep graph convolutional layers, we use the same

learning rate and epoch number as DGCNN in the MUTAG, PTC, NCI1, PROTEINS, D&D

dataset without hyper-parameter adjustment.

5.2 Comparison with other graph classification methods

5.2.1 Comparison with graph kernel. We compare DGCNNII with the following 6 classi-

cal graph kernel methods: Shortest-Path Kernel [59], the Graphlet Kernel [60], the Random

Walk Kernel [61], the Weisfeiler-Lehman subtree kernel [62], the Propagation Kernel [63] and

Deep Graph Kernels [64]. For fair comparison, we use a single network structure on all data-

sets. We compare the results of DGCNNII with methods based on graph kernel mentioned

above and take the reported accuracy directly from their papers (“–” means not available). The

results are shown in Table 4, and the best results are shown in bold.

From the results in Table 4, we can see that although DGCNNII uses the same single struc-

ture on all data sets, but still achieves excellent results compared with the kernel results. The

accuracy on MUTAG, PTC, PROTEINS, and D&D are higher than that of all graph kernel
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baseline methods, and DGCNNII has achieved a significant improvement on MUTAG and

PTC datasets with smaller graph sizes. It shows that the two small-scale datasets after 32-layer

depth graph convolution, the nodes aggregate more comprehensive non-local information,

which greatly improves the prediction accuracy.

5.2.2 Comparison with other graph neural network models. We compare DGCNNII

with a variety of graph classification baseline methods based on deep learning in recent years,

including various models based on MPNN and NLNN framework. Among them, Diffusion-

CNN (DCNN) [65] and PATCHY-SAN [66] both extend convolutional neural networks

(CNNs) to general graph structure data for graph convolution operation. The convolution

operation of ECC [67] and the conventional two-dimensional image convolution are both

weighted average operation, but ECC can be applied to any graph structure, and the weight is

determined by the edge weight between nodes. One-head graph attention network (1-head

GAT) [31] can assign different weights to different nodes in the neighborhoods, rather than

simply weighted average neighbor nodes. GCAPS-CNN is a graph capsule network proposed

by Verma & Zhang [68]. AWE [69] proposes two anonymous sequence graph representation

methods based on feature vector and embedding vector. S2S-N2N-PP [70] generates the node

sequence of the graph through methods such as random walk, breadth first search, and short-

est path, and then feeds it into a long short-term memory (LSTM) autoencoder for training to

obtain a vector representation. The Motif-based filtering in the NEST [71] model can capture

the fine structures in the network, while the convolution based on filtering embedding enables

it to fully explore complex substructures and their combinations, thus carrying out graph clas-

sification tasks. CapsGNN [72] proposes a new vector propagation mode and hierarchical pre-

diction, which makes the network more interpretable. GIN [17] proposes a simple architecture

and has the same powerful graph isomorphism recognition capability as the Weisfeiler-Leh-

man graph kernel. MA-GCNN [73] is a new Motif-based attention graph convolutional neural

network that can learn more discriminative and richer graph features. This paper also com-

pares the baseline methods of four improved graph pooling functions, such as DiffPool [27],

gPool [43], EigenPool [41] and SAGPool [42]. The specific comparison results are shown in

Table 5. The best results are shown in bold.

We can see that DGCNNII using a single structure surpasses all the baseline methods in

terms of accuracy with only one exception on NCI1. It is worth mentioning that since

MUTAG has only 188 graphs, under the 9:1 training / test set division, the test set has only 18

graphs. When the categories of 17 graphs are correctly predicted, the accuracy rate reaches

94.44%. However, in the actual prediction process of DGCNNII, a large number of cross-vali-

dation reached 100% accuracy, and it can be seen from Fig 5 that when the training reached

the 20th epoch, it had reached 100% accuracy, and continued to stabilize at more than 94%,

while maintaining lower loss and higher AUC than DGCNN. DGCNNII also achieves the best

Table 4. Comparison of graph classification accuracy with graph kernel methods.

Methods Dataset

MUTAG PTC NCI1 PROTEINS D&D

SP 87.28±0.55 58.24±2.44 73.47±0.11 75.07±0.54 78.86± 0.26

GK 81.39±1.74 55.65±0.46 62.49±0.27 71.39±0.31 74.38±0.69

RW 79.17±2.07 55.91±0.32 >3 days 59.57±0.09 >3 days

WL 84.11±1.91 57.97±2.49 84.46±0.45 74.68±0.49 78.34±0.62

PK 76.00±2.69 59.50±2.44 82.54±0.47 73.68±0.68 78.25±0.51

DGK 87.44±2.72 60.08±2.55 80.31±0.46 75.68±0.54 -

DGCNNII (proposed) 94.44 76.47±2.94 80.32±0.76 82.88±0.83 83.33±1.29

https://doi.org/10.1371/journal.pone.0279604.t004
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results on PTC, with an average accuracy rate of 4.71%-19.47% higher than other baseline

methods. Although not achieving the best accuracy on NCI1, but the accuracy rate is about 6%

higher than DGCNN. While all other baseline methods have not reached 80% accuracy on

PROTEINS dataset, DGCNNII achieves 81.08% accuracy. The highest accuracy is also

achieved on the D&D dataset.

We analyze the NCI1 dataset. According to Table 6, we can see that although the NCI1

dataset has the largest number of subgraphs, but it is the only dataset with a higher number of

node labels than the average number of subgraph nodes in the 5 datasets, which means that

many subgraphs in NCI1 do not fully contain all types of nodes. While our proposed deep

graph convolutional model uses the strategy of node information aggregation and update,

although the deep network model can aggregate higher-order node information, due to the

lack of information in the subgraphs of the dataset, all node features are not covered during

training, so it cannot achieve the best results on the test set. We also compare and analyze the

S2S-N2N-PP model which has the best classification result on NCI1. The method is to generate

sequences from graphs by random walk, breadth-first search and shortest path, and then use

recurrent neural network automatic encoder to embed graph sequences into continuous vec-

tor space to learn graph representation. S2S-N2N-PP does not adopt the information

Table 5. Comparison of graph classification accuracy with other graph neural network based methods.

Methods Dataset

MUTAG PTC NCI1 PROTEINS D&D

DCNN 56.61±1.04 61.29±1.60 58.09±0.53

PATCHY-SAN 92.63±4.21 62.29±5.68 76.34±1.68 75.00±2.51 76.27±2.64

ECC 89.44 - 76.82 - 72.54

GAT(1-head) 81.0 57.0 74.3 72.5 -

GCAPS-CNN - 66.01±5.91 82.72±2.38 76.40±4.17 77.62±4.99

AWE 87.87±9.76 - - - 71.51±4.02

S2S-N2N-PP 89.86±1.10 64.54±1.10 83.72±0.40 76.61±0.50 -

NEST 91.85±1.57 67.42±1.83 81.59±0.46 76.54±0.26 78.11±0.36

CapsGNN 86.67±6.88 - 78.35±1.55 76.28±3.63 75.38±4.17

GIN 89.40±5.60 64.60±7.00 82.70±1.70 76.20±2.80 -

MA-GCNN 93.89±5.24 71.76±6.33 81.77±2.36 79.35±1.74 81.48±1.03

DiffPool - - - 76.25 80.64

gPool - - - 77.68 82.43

EigenPool - - 77.00 76.60 78.60

SAGPool - - 67.45±1.11 71.86±0.97 76.45±0.97

DGCNN 85.83±1.66 58.59±2.47 74.44±0.47 75.54±0.94 79.37±0.94

DGCNNII (proposed) 94.44 76.47±2.94 80.32±0.76 82.88±0.83 83.33±1.29

https://doi.org/10.1371/journal.pone.0279604.t005

Table 6. Common datasets for graph classification tasks.

Dataset Graphs Classes Nodes(max) Nodes(avg.) Node Labels

MUTAG 188 2 28 17.93 7

PTC 344 2 109 25.56 19

NCI1 4110 2 111 29.87 37

PROTEINS 1113 2 620 39.06 3

D&D 1178 2 5748 284.32 82

https://doi.org/10.1371/journal.pone.0279604.t006
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aggregation and update strategy of traditional GCN, and does not depend on the comprehen-

siveness of the training set, so it has achieved good results on the NCI1 data set.

5.3 Quantitative analysis the smoothness of graph nodes representations

In order to solve the problem of node over-smoothing caused by stacking too many layers of

GCN, we redefine the widely used message passing neural network (MPNN) framework and

propose a new non-local message passing framework (NLMP). Based on NLMP, a 32-layer

deep graph convolutional neural network model DGCNNII is designed for graph classifica-

tion tasks. This section will use a quantitative method to measure the graph smoothness of

each layer of the model, and the quantitative method used is the quantitative metric Mean

Average Distance (MAD) proposed by Chen et al. [74]. We deepen the DGCNN model from

4 layers to 32 layers, and compare the graph smoothness between the DGCNN and the

32-layer DGCNNII proposed in this paper. Through the experimental results of Figs 3 and 4,

we can see that the MAD value of each layer of the DGCNNII model is significantly higher

than that of the DGCNN model (the higher the MAD value is, the lower the smoothness of

the graph representation is). It is quantitatively proved that the method proposed in this

paper can effectively eliminate the over-smoothing problem caused by the deepening of

GCN.

5.3.1 MAD: Metric for smoothness. MAD reflects the smoothness of graph representa-

tion by computing the average of the average distances from nodes to other nodes in the

graph. Since graph smoothness refers to the similarity of graph node representation, so the

node similarity is measured by calculating the average distance between nodes. The equation

Fig 3. MAD values of different layers of DGCNNII on 5 datasets. Darker color means larger MAD value. We can find that at the output of the first-

stage of DGCNNII (layer 16), the MAD value is greatly improved.

https://doi.org/10.1371/journal.pone.0279604.g003
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for calculating the MAD value of the target node pair is:

MADtgt ¼

Pn
i¼0

�Dtgt
i

Pn
i¼0

1 �Dtgt
i

� � ð22Þ

Where 1(x) = 1 if x> 0 otherwise 0, that is, the MAD values of the target node pairs are the

average of the non-zero values in �Dtgt
i . The equation of �Dtgt

i and its parameters is:

�Dtgt
i ¼

Pn
j¼0

Dtgt
ij

Pn
j¼0

1 Dtgt
ij

� � ð23Þ

Dtgt ¼ D �Mtgt ð24Þ

Dij ¼ 1 �
Hi;: � Hj;:

jHi;:j � jHj;:j
i; j 2 1; 2; . . . ; n½ � ð25Þ

The above Eq (23) means to average the non-zero elements in each row of Dtgt. Mtgt 2 Rn×n

in Eq (24) represents the mask matrix with the same shape as the adjacency matrix, and � rep-

resents filtering the distance matrix D 2 Rn×n by element-wise multiplication. Eq (25) repre-

sents the elements in D, D is obtained by calculating the cosine value between each node pairs,

and H 2 Rn×h is the graph representation matrix, where n is the number of nodes in the graph,

term h is the hidden size. Hk,: represents the kth row of H. We take the output of the last layer

of the model as H.

Fig 4. MAD values of different layers of 32-layer DGCNN on 5 datasets. Lighter color means smaller MAD value. We can find that the smoothness

of the graph representation increases with the number of model layers, and the over-smoothing phenomenon of DGCNN is significantly more serious

than that of DGCNNII.

https://doi.org/10.1371/journal.pone.0279604.g004
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It should be noted here that in the paper of Chen [74] et al., all node pairs in the graph are

considered to calculate the MAD value, that is, Mtgt 2 Rn×n is an all-one matrix. We consider

that the diagonal matrix represents the node pair between the node and itself, and due to the

characteristics of some data sets, the adjacent nodes are similar. So in the process of calculating

the MAD value, the diagonal of Mtgt and the position of the adjacent nodes are all set 0, the

rest of the positions are set to 1 to calculate the local smoothness of the graph representation.

We use the same computational criteria in all experiments without affecting the objective com-

parison of experiments. Fig 3 shows the MAD values of different layers of our proposed

32-layer DGCNNII model on 5 datasets, and Fig 4 shows the MAD values of the deepened

32-layer DGCNN model on 5 datasets on different layers. The darker color in the figures

means a larger MAD value, which means less similarity between the nodes in the graph, other-

wise the more similar.

By quantitatively comparing the smoothness of each layer of the 32-layer DGCNNII and

DGCNN model, we find that the smoothness of the graph representation of DGCNNII at the

32nd layer is even lower than that of the 2–4 layer of DGCNN, which indicates that the deep

graph convolution network construction method proposed by us can effectively reduce the

phenomenon of over-smoothing. The subsequent ablation studies in this paper will also prove

that the smoothness of graph representation is not the decisive factor affecting the result of

graph classification task, the structure and depth of graph convolution network model can also

affect the result of graph classification.

5.4 Ablation study

We will conduct ablation studies on the necessity of the double-stage structure of the

DGCNNII and why the model chooses 32 layers.

5.4.1 The necessity of double-stage model structure. In order to verify the function of

the 16 layers of the second stage, we delete the last 16 layers of the DGCNNII model in Fig 2,

leaving only the first 16 layers of the first stage. The graph classification results of the deleted

model on the 5 data sets are shown in the first row "Only first stage (16layers)" of Table 7. In

order to verify the function of 16 layers in the first stage, we change the double-stage model

structure of DGCNNII into a 32-layer single stage model structure, and the graph classification

results on 5 data sets are shown in the second row "Only one stage (32layers)" of Table 7. By

comparing the experimental results of the above two modified models with the double-stage

structure DGCNNII (32layers) model proposed in this paper, we can see that the result of the

double-stage structure model is better than that of the single-layer structure model, so it is nec-

essary to apply the double-stage structure model of DGCNNII.

Table 7. Experimental results of ablation study of DGCNNII model.

Methods (DGCNNII) Dataset

MUTAG PTC NCI1 PROTEINS D&D

Only first stage(16 layers) 92.11±0.87 74.76±2.51 78.35±0.76 81.08±0.54 82.05±0.80

Only one stage(32 layers) 92.11±0.91 70.82±2.57 75.91±0.76 80.18±0.81 82.05±0.83

DGCNNII-18(16+2 layers) 84.21±0.85 70.71±2.64 76.64±0.75 80.18±0.79 81.20±0.82

DGCNNII-22(16+6 layers) 92.11±0.91 68.88±2.54 78.59±0.75 79.28±0.79 81.20±0.82

DGCNNII-26(16+10 layers) 89.47±0.89 72.71±1.63 77.37±0.74 78.38±0.78 82.05±0.83

DGCNNII-30(16+14 layers) 94.44 74.59±2.66 79.32±0.79 81.98±0.82 82.91±0.84

DGCNNII(32 layers) 94.44 76.47±2.94 80.32±0.76 82.88±0.83 83.33±1.29

https://doi.org/10.1371/journal.pone.0279604.t007
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5.4.2 Comparison of models with different layers. In order to compare the graph classi-

fication results of DGCNNII model with different layers, we carried out ablation studies for

different layers of the model. Through Fig 3, we can see that the node feature of the first stage

output of DGCNNII (layer 16) has a very low smoothness (higher MAD value), and through

Table 7, we can also see that the DGCNNII with only first stage has a good graph classification

accuracy. Therefore, we decided to adjust the number of layers in the second-stage to carry out

the ablation study on the basis of retaining the first-stage. The specific experimental results are

shown in Table 7 below. For example, "DGCNNII18 (16+2layers)" means adding 2 layers of

second-stage graph convolution to the 16-layer of first stage, and "DGCNNII (32layers)" repre-

sents the 32-layer deep graph convolutional model (Fig 2) finally adopted in this paper. The

experimental results show that the 32-layer DGCNNII achieves better results than the shallow

version.

5.5 Comparison and analysis with DGCNN

In this paper, we propose a Non-local Message Passing (NLMP) framework, and a novel deep

graph convolution layer and DGCNNII model based on NLMP are proposed. The DGCNNII

model replaces the graph convolution part with our proposed deep graph convolution on the

basis of the DGCNN model. The latter graph pooling layers and traditional layers are consis-

tent with DGCNN. The purpose is to validate the advantages of the NLMP framework by com-

paring the performance of the two models on the graph classification task. Next, we analyze

the performance of DGCNNII and DGCNN on the same dataset.

5.5.1 Classification accuracy comparison. Classification accuracy (Accuracy) is used to

measure the proportion of correctly classified graphs in all graphs. The following Figs 5–9

Fig 5. Comparison of graph classification accuracy between DGCNNII and DGCNN on MUTAG dataset.

https://doi.org/10.1371/journal.pone.0279604.g005
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Fig 6. Comparison of graph classification accuracy between DGCNNII and DGCNN on PTC dataset.

https://doi.org/10.1371/journal.pone.0279604.g006

Fig 7. Comparison of graph classification accuracy between DGCNNII and DGCNN on NCI1 dataset.

https://doi.org/10.1371/journal.pone.0279604.g007
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Fig 8. Comparison of graph classification accuracy between DGCNNII and DGCNN on PROTEINS dataset.

https://doi.org/10.1371/journal.pone.0279604.g008

Fig 9. Comparison of graph classification accuracy between DGCNNII and DGCNN on D&D dataset.

https://doi.org/10.1371/journal.pone.0279604.g009
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show the classification accuracy curves of DGCNNII and DGCNN on 5 datasets with the

change of training epochs.

As can be seen from the Fig 5, on the MUTAG data set, after the 20th round of DGCNNII

training, the accuracy of the test set can reach 100%, and then remain between 94% and 100%.

However, DGCNN can only achieve the highest accuracy of about 85% in the 160th round of

training, and the accuracy of the test set of DGCNN is far lower than the accuracy of the train-

ing set, indicating that the DGCNN model has the phenomenon of over-fitting. However,

from the accuracy curve of DGCNNII training set and the accuracy curve of test set in Fig 5,

we can see that the difference of accuracy between test set and training set in the later epochs

are very small, indicating that DGCNNII greatly reduces the over-fitting phenomenon.

As can be seen from the Fig 6, on the PTC data set, although the accuracy of the training set

of the two models has been increasing, but the accuracy of the test set of DGCNN decreased

after 100 epochs of training, while the accuracy of DGCNNII has been steadily increasing,

indicating that DGCNNII is more stable.

As can be seen from the Fig 7, on the NCI1 data set, the accuracy of the training / test set of

the two models has been steadily increasing. Although the accuracy of the training set of the

two models is almost the same, but the accuracy of the test set of DGCNNII is always higher

than that of DGCNN.

On the PROTEINS data set, it can be seen that the accuracy of the test set of DGCNNII is

continuously stable and much higher than that of DGCNN.

On the D&D data set, the accuracy of the test set of DGCNN continues to decrease after the

140th epoch of training, while the accuracy of the training set continues to increase, indicating

that over-fitting occurred, but the accuracy of the test set of DGCNNII continues to increase,

its stability and the ability to reduce over-fitting are further verified.

5.5.2 Comparison of generalization ability. The generalization ability of the model in

deep learning refers to the adaptability of the model to unknown samples, which can be mea-

sured by the classification accuracy of the test set. However, it should be noted that comparing

the generalization ability of the two models needs to meet the following three conditions: 1)

Both models are trained in the same training set. 2) The test set is unknown sample data. 3)

The test set and the training set belong to the same distribution of data. All the experiments in

this paper are carried out under the condition of meeting the above three conditions, so we

can directly compare the generalization ability of the two models by comparing the graph clas-

sification accuracy of DGCNNII and DGCNN on 5 test data sets. As can be seen from Figs 5–

9, the accuracy of DGCNNII on the 5 test data sets is higher than that of DGCNN, so

DGCNNII has stronger generalization ability than DGCNN.

In the field of GNNs, with the stacking of a large number of graph convolution layers, there

will be serious over-smoothing problem. This section makes an experimental comparison

between the DGCNN model with 4 graph convolution layers and the DGCNNII model with

32 graph convolution layers. It can be clearly seen that the DGCNNII model based on the

NLMP framework not only solves the problem of over-smoothing, but also exerts the ability of

deep learning to extract abstract features, reduces the phenomenon of over-fitting, and main-

tains the accuracy higher than the general baseline method. It also has strong stability and gen-

eralization ability.

5.5.3 Compare Area Under ROC Curve (AUC) and loss. AUC can be used as an indica-

tor to measure the quality of the classifier. When the AUC value is [0.5, 0.7], it means that it

has low accuracy, and when the value is [0.7, 0.9], it has credible accuracy, when the value is

greater than 0.9, the classifier has high accuracy, when the AUC value is less than 0.5, the

model has no classification significance. Fig 10 visualizes the AUC values obtained by

DGCNNII and DGCNN in each epoch on the 5 test sets. The dotted line represents the AUC
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value of the DGCNN model on the 5 datasets, the solid line represents the AUC value of the

DGCNNII model, and the lines of different colors represent different datasets. MUTAG, PTC,

NCI1, PROTEINS and D&D were trained for 300, 200, 200, 100, 200 epochs respectively. As

can be seen from the Fig 10, the AUC values of all DGCNNII are higher than the correspond-

ing DGCNN on each dataset. DGCNNII has high confidence with AUC values above 0.84 on

all datasets except PTC, in particular, the AUC values of the MUTAG dataset basically reach

1.0. However, the AUC values of DGCNN on all datasets are lower than 0.84, and the AUC val-

ues of PTC are basically between 0.5–0.6, with relatively low confidence. But the AUC value of

PTC data set on DGCNNII can reach 0.7–0.8, achieving reliable accuracy. The following Fig

11 shows the loss values of DGCNNII and DGCNN in the training process on 5 test sets. It can

be seen that the loss values of DGCNNII on each data set are lower than those of DGCNN.

6 Conclusions

This paper proposes a novel graph neural network framework, named Non-local Message

Passing (NLMP) framework. Compared with existing graph neural network frameworks,

NLMP has many advantages. First, based on the NLMP framework, a deep graph neural net-

work can be constructed to extract high-order neighbor nodes features almost without over-

smoothing. Secondly, the neighbor aggregation scheme based on node attention weight and

the graph convolution layer based on NLMP framework can extract the finer features of the

nodes, highlight the key node information, and avoid the nodes over-smoothing. At the same

time, various new message passing methods and attention mechanisms can be introduced

based on this framework, making the model design more flexible and extensible. For the scal-

ability of the model, the appropriate model depth can be selected by quantifying the smooth-

ness of each layer of the DGCNNII. The ablation study in this paper also proves the

effectiveness of the double-stage model structure, so we can flexibly combine and design

Fig 10. AUC values of DGCNNII and DGCNN on 5 test sets.

https://doi.org/10.1371/journal.pone.0279604.g010
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models with different depths and layers for different data sets. The designed deep graph convo-

lutional layer receives the original graph as input and outputs the feature matrix of the graph.

Deep graph convolutional layers can be embedded into different tasks as a whole graph convo-

lution module. For example, the graph convolution module followed by different node aggre-

gation operations can be used for graph representation and graph classification tasks. it can

also be used for link prediction tasks by extracting the subgraphs around the target link and

feeding them into the graph classification model designed above. The graph convolution mod-

ule can also extract node features for node prediction tasks, which makes the design of the

model more flexible and scalable. Finally, the end-to-end graph classification model DGCNNII

based on NLMP framework achieves better performance than a large number of baseline

methods on 5 data sets. In the future, we hope to introduce a multi-head attention mechanism,

and research frameworks and models that can better capture structural features, and expand

the method to more datasets.
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