Skip to main content
. 2023 Mar 10;18(3):e0279604. doi: 10.1371/journal.pone.0279604

Table 1. Different graph neural network models based on MPNN framework.

Model Message Passing Function Message Update Function
GCN [2] m(t+1)=D~-1/2A~D~-1/2H(t)W(t) H(t+1)=ReLU(m(t+1))
GraphSAGE-mean [25] m(t+1)=W(t)·MEAN({hi(t)}{hj(t),vjN(vi)}) hi(t+1)=ReLU(m(t+1))
R-GCN [26] m(t+1)=rRjNi(r)1ci,rWr(t)hj(t)+W0(t)hi(t) hi(t+1)=ReLU(m(t+1))
DGCNN [21] m(t+1)=D~-1A~H(t)W(t) H(t+1) = tanh(m(t+1))
DiffPool [27] m(t+1)=D~-1/2A~D~-1/2H(t)W(t) H(t+1) = ReLU(m(t+1))
GIN [17] m(t+1)=1+ϵ(t+1)·hi(t)+vjN(vi)hj(t) hi(t+1)=MLP(t+1)(m(t+1))