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Abstract: A new method for the synthesis of boron-doped carbon nanomaterial (B-carbon nanomate-
rial) has been developed. First, graphene was synthesized using the template method. Magnesium
oxide was used as the template that was dissolved with hydrochloric acid after the graphene deposi-
tion on its surface. The specific surface area of the synthesized graphene was equal to 1300 m2/g.
The suggested method includes the graphene synthesis via the template method, followed by the
deposition of an additional graphene layer doped with boron in an autoclave at 650 ◦C, using a
mixture of phenylboronic acid, acetone, and ethanol. After this carbonization procedure, the mass
of the graphene sample increased by 70%. The properties of B-carbon nanomaterial were studied
using X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy
(HRTEM), Raman spectroscopy, and adsorption-desorption techniques. The deposition of an addi-
tional graphene layer doped with boron led to an increase of the graphene layer thickness from 2–4
to 3–8 monolayers, and a decrease of the specific surface area from 1300 to 800 m2/g. The boron
concentration in B-carbon nanomaterial determined by different physical methods was about 4 wt.%.

Keywords: synthesis; graphene; doping; boron

1. Introduction

Graphene attracted the attention of researchers due to its exceptional structural, me-
chanical, and electronic properties [1–4]. The applications of graphene continue to grow
due to its record thermal conductivity, excellent mechanical strength [5–7], remarkable
ability to carry charges, outstanding thermal stability, and high surface area [8–10]. The
applications of graphene-based nanoadsorbents, including graphenes, graphene oxides, re-
duced graphene oxides, and their nanocomposites in water purification were summarized
in a recent review [11].

The properties of graphene-based materials can be improved by doping with other
“I have checked”.elements [12]. Boron, nitrogen, and phosphorous are the main elements
used for doping graphene and graphene oxide [13,14]. Graphene doping with boron results
in p-type conductivity, whereas phosphorus induces n-type conductivity. Doping with
boron and phosphorous increases the surface area and concentration of defects in graphene
materials. New applications for using graphene and graphene quantum dots doped with
boron or phosphorous as sensors, sorbents, photocatalysts, and electrocatalysts for the
detection and reduction of various pollutants were presented in a review [15].

The doping of carbon nanomaterials with boron atoms can alter their electronic prop-
erties. Recently, it was found that boron-doped carbon nanomaterials have remarkable
properties in electrocatalytic oxygen reduction reactions (ORRs) [16–20]. Based on the
obtained data, many researchers believe that B-doped carbon nanotubes and graphene can
act as a substitute for expensive platinum catalysts in fuel cells.

In this article [21], ordered mesoporous carbon doped with boron was prepared by
coimpregnation of SBA-15 silica with sucrose and 4-hydroxyphenylboric acid followed
by carbonization. The authors found that mesoporous carbon doped with boron had a
highly-ordered mesoporous structure, uniform pore size distribution and high surface
area. Ordered mesoporous carbon doped with boron can be used as a potentially efficient
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and cheap metal-free catalyst for ORRs with good stability in an alkaline solution. The
boron concentration is the key factor in determining the catalytic activity in ORRs. The
high surface area of ordered mesoporous carbon doped with boron makes active sites more
accessible in ORRs.

There are several reports in the literature on the synthesis of boron-doped graphene.
In these studies, the conventional CVD method was used for growing graphene on different
polycrystalline foils. It was reported that boron-doped graphene could be synthesized using
phenylboronic acid as a source of carbon and boron [22]. The effects of the phenylboronic
acid mass and graphene growth time on the properties of graphene growing on polycrys-
talline copper foil in a three-zone CVD system were studied. The nanomaterial prepared
by the substitution doping of graphene with boron has high stability, which is particularly
important for applications in semiconductor technology, particularly in optoelectronics.
However, this method has significant drawbacks. Boron atoms can penetrate both the
graphene structure and the structure of polycrystalline foil. Therefore, subsequently, it is
difficult to distinguish places where boron atoms are localized. In addition, it is difficult to
scale up this method and synthesize uniform graphene films.

In the article [23], graphene oxide prepared by the Hammer’s method was used as the
precursor for the synthesis of B-graphene. Boron atoms were successfully introduced into
the graphene oxide structure with the concentration of 1.64–1.89 at.%. Boron was introduced
into the graphene oxide from boric acid by hydrothermal reduction at 250–300 ◦C. The
presence of B–O, B–C and C–O bonds was confirmed by FTIR spectral analysis. The main
drawback of this method for the synthesis of B-graphene is the high concentration of
oxygen atoms in the graphene oxide precursor that affects the quality of the final product.
The introduction of an additional graphene oxide reduction stage also does not solve this
problem because it leads to the formation of many defects in the graphene structure.

The effect of oxygen and boron co-introduction in porous carbon on the activity of
ORRs was studied in [24]. The synthesis of porous carbon doped with oxygen and boron
was based on simple carbonization with CO2 using NaBH4 as a reducing agent, followed
by thermal treatment. It was demonstrated that the presence of O–B–C fragments increased
the activity of porous carbon in ORRs, and led to high stability in cycles.

In this study, graphene obtained via the template synthesis [25–27] was used as the
precursor for the synthesis of B-carbon nanomaterial. The goals of this study were to
deposit an additional boron-doped graphene layer on the surface of graphene prepared by
the template method and to study the properties of the synthesized material.

2. Methods of Investigation
2.1. Graphene Synthesis

Magnesium oxide (Vekton, Russia, “pure for analysis” grade) was subjected to car-
bonization with 1,3-bitadiene at 600 ◦C in a quartz flow reactor. After this reaction the MgO
particles were covered with a thin carbon film. Then, the carbon film was cleaned from the
MgO template by treatment in a hydrochloric acid solution (Figure 1).
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2.2. B-Carbon Nanomaterial Synthesis

Phenylboronic acid (C6H5-B-(OH)2) (Aldrich, USA) was used as a boron-containing
precursor. Its structure containing a phenyl group favored the introduction of boron into
the synthesized graphene framework.

Graphene prepared using the template method was treated with phenylboronic acid
dissolved in the mixture containing 80% acetone and 20% ethanol. Then, it was placed into
an autoclave as described earlier [28]. The autoclave was heated to 650 ◦C and kept at this
temperature for 2 h. A black carbon powder was obtained after the carbonization of the
graphene precursor. The amount of carbon doped with boron deposited on graphene was
controlled by the change of the sample weight. The synthesized B-carbon nanomaterial
was studied using various physical methods.

2.3. Physical Methods for Investigation of B-Carbon Nanomaterial

High-resolution transmission electron microscopy (HRTEM) using a ThemisZ (Thermo
Fisher Scientific, USA) electron microscope with an accelerating voltage of 200 kV and
maximum lattice resolution of 0.07 nm was used for the investigation of the structure and
microstructure of the catalysts. The TEM images were recorded with a Ceta 16 (Thermo
Fisher Scientific, USA) CCD matrix. Elemental analysis was performed with Super-X EDS
detector (Thermo Fisher Scientific, USA). High-angle annular dark-field images (HAADF
STEM image) were recorded using a standard ThemisZ detector. The samples for the
HRTEM study were deposited on a holey carbon film mounted on a copper grid by the
ultrasonic dispersal of the B-graphene suspension in ethanol.

X-ray photoelectron spectra were recorded on a SPECS (Germany) photoelectron
spectrometer using a hemispherical PHOIBOS-150-MCD-9 analyzer (Mg Kα radiation,
hν = 1253.6 eV, 150 W). The binding energy (BE) scale was pre-calibrated using the po-
sitions of the peaks of Au4f7/2 (BE = 84.0 eV) and Cu2p3/2 (BE = 932.67 eV) core levels.
The samples in the form of powder were loaded onto a conducting double-sided copper
scotch. The survey and the narrow spectra were registered at the analyzer pass energy
20 eV. Atomic ratios of the elements were calculated from the integral photoelectron peak
intensities, which were corrected by corresponding sensitivity factors based on Scofield
photoionization cross-sections [29].

Raman spectra were measured using a Horiba Jobin Yvon Lab-Ram HR spectrometer.
Excitation was supplied by an argon ion laser (λ = 488 nm) with 2 cm−1 spectral resolution.

The surface areas and porosity of the synthesized graphene and B-carbon nanomaterial
were determined using an ASAP-2400 (Micromeritics, Norcross, GA, USA) instrument [30].

The boron concentration in B-carbon nanomaterial was determined by the atomic
emission spectroscopy.

3. Results and Discussion
3.1. HRTEM Study of Graphene

Graphene synthesized by the template method was studied by electron microscopy. A
HRTEM image of graphene is shown in Figure 2a.

The graphene aggregates have dimensions of about 1 µm (Figure 2a). The size of the
carbon globules is determined by the geometrical dimensions of the MgO particles. The
thickness of the graphene layer in the synthesized graphene sample was 2–4 layers. The
graphene surface area was about 1300 m2/g.
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3.2. B-Carbon Nanomaterial

Graphene was doped with boron atoms by heating in an autoclave in the presence of
phenylboronic acid, acetone, and ethanol at 650 ◦C. After doping with boron, the mass of
the graphene sample increased by 70%.

3.3. B-Carbon Nanomaterial Study by Electron Microscopy

HRTEM images of B-carbon nanomaterial are shown in Figure 2b,c. It also has globular
structure (Figure 3b), and additional graphene carbonization led to an increasing of the
graphene layer thickness to 3–8 layers.
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Figure 3. HAADF STEM image of B-carbon nanomaterial (a) and EDX mapping of boron, carbon
and oxygen (b).

Figure 3 presents an HAADF STEM image of B-carbon nanomaterial (a) and EDX
mapping of boron, carbon, and oxygen atoms (b).

The boron concentration in the B-carbon nanomaterial sample determined by EDX was
equal to 4 wt.%. This boron concentration is in agreement with the results of the elemental
analysis by atomic emission spectroscopy. According to the latter, the content of atomic
boron in B-carbon nanomaterial was 4.3 wt.%.
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3.4. Investigation of the B-Carbon Nanomaterial Pore Structure

The nitrogen adsorption-desorption isotherms measured on pristine graphene and B-
carbon nanomaterial are presented in Figure 4.
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Figure 4. Nitrogen adsorption–desorption isotherms of pristine graphene (1) and B-carbon nanoma-
terial (2).

Specific surface area of the synthesized B-carbon nanomaterial was equal to 800 m2/g.
The deposition of the additional layer of graphene doped with boron led to the surface area
decreasing from 1300 to 800 m2/g.

The pore size distributions of pristine graphene and of the B-carbon nanomaterial
sample are presented in Figure 5.
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The data presented in Figures 4 and 5 demonstrate that the deposition of an additional
boron-containing carbon layer on the surface of graphene leads to the decrease of both the
volume and diameter of the pores.

B-carbon nanomaterial takes the shape of hollow spheres. According to the pore size
distribution (Figure 5), its main pores are in the range of 5–25 nm. Note that the diameter
of the graphene “spheres” approximately matches the size of the MgO template particles
(5–20 nm), which were used for the synthesis of graphene.
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3.5. B-Carbon Nanomaterial Study by Raman Spectroscopy

B-carbon nanomaterial samples were studied by Raman spectroscopy to determine
specific features of their structure. The first-order Raman spectra of graphene and B-carbon
nanomaterial are shown in Figure 6. The obtained results are also presented in Table 1.
The data obtained for B-carbon nanomaterial were compared those determined for the
graphene sample carbonized in the autoclave with the acetone-ethanol mixture at 650 ◦C in
the absence of phenylboronic acid.
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Table 1. Raman parameters of graphene and B-carbon nanomaterial samples.

Sample Frequency, cm−1 D/G

Graphene 1355 1597 1.74

B-carbon nanomaterial 1355 1597 1.81

Two typical modes were observed in the Raman spectra of the synthesized carbon
nanomaterial samples: G mode (1597 cm−1), related to vibrations of carbon atoms in the
graphene layer, and D mode (1355 cm−1), related to the presence of carbon atoms in sp3

hybridization [31]. The appearance of the defect band in the spectrum of carbon materials
is associated with the disordering of the graphite structure. The D/G ratio is commonly
used to estimate the defectiveness of carbon nanomaterials. In the case of the studied
graphene sample, the ratio is D/G=1.74 (Figure 6 and Table 1). Additional information
on the graphene structure can be obtained from smaller peaks identified in the Raman
spectra: G′ (≈2700 cm−1), D + D′ (≈2950 cm−1). The Raman spectrum confirmed that the
synthesized carbon material had a graphene-like local structure. Therefore, according to
the Raman data, B-carbon nanomaterial is a defective graphene-like carbon nanomaterial.

The data presented in Table 1 demonstrate that the introduction of boron into the
graphene structure results in an increase of the D/G ratio from 1.74 to 1.81, i.e., the
concentration of defects substantially increases.

Based on the results of B-carbon nanomaterial characterization by physical methods,
the following general scheme of its synthesis can be suggested (Figure 7).

The suggested method includes the graphene synthesis using the template method,
followed by deposition of an additional graphene layer doped with boron in an autoclave at
650 ◦C using a mixture of phenylboronic acid, acetone, and ethanol. After this carbonization
procedure, the mass of the graphene sample increased by 70%. The boron concentration
in B-carbon nanomaterial determined by different physical methods was about 4 wt.%.
The deposition of an additional graphene layer doped with boron led to an increase of the
graphene layer thickness from 2–4 to 3–8 monolayers, and a decrease of the specific surface
area from 1300 to 800 m2/g.
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3.6. XPS Study of B-Carbon Nanomaterial

The state of carbon and boron in B-carbon nanomaterial samples was studied by X-ray
photoelectron spectroscopy. Survey scans of pristine and B-carbon nanomaterial samples
are presented in Figure 8.
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Figure 8 demonstrates that the initial graphene contains 2% O and 98% C, making
it is a high-quality nanomaterial. The oxygen concentration in B-carbon nanomaterial
increases to 6% in addition to the appearance of 4% B. The observed changes are related to
the incorporation of boron-oxygen fragments into the graphene structure.

The C1s spectrum of the B-carbon nanomaterial sample is presented in Figure 9.
The high-resolution C1s spectrum can be divided into five individual peaks (Figure 9),
respectively referring to C–B (283.6 eV) [32], C=C (284.5 eV), C–OH, C–O–C (285.8 eV),
C=O (287.2 eV) and O–C=O (289.1 eV) functional groups [33–35]. The satellite peak at the
binding energy of about 291 eV attributed to the π-π* transition.

The concentrations of different elements in B-carbon nanomaterial were determined
by XPS. The results are presented in Table 2.

A more accurate conclusion on the state of boron can be made from the binding energy
for the B1s peak of the B-carbon nanomaterial. The B1s peak of B-graphene sample is
shown in Figure 10. According to the literature data, the binding energy of 193.1 eV is
typical for the C-BO2 bond [19,36,37].

Note that the binding energy of the B1s peak for the C–B bond is in the range of
188–189 eV. The shift of the B1s peak to higher binding energies indicates that the boron
atom is bonded with an oxygen atom. So, the following model structure can be suggested
for the C–BO2 fragment in B-carbon nanomaterial (Figure 11).
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Table 2. Elemental analysis of the B-carbon nanomaterial sample by XPS.

Element Concentration, wt.%

Boron 4

Carbon 90

Oxygen 6
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Figure 10. B1s XPS spectrum of B-carbon nanomaterial.

We believe that the incorporation of boron atoms into a formed carbon nanomaterial
is difficult because boron atoms are larger that carbon atoms. It was shown [38] that the
C–C distance in graphene is equal to 1.41 Å, whereas the C–B distance should be about
1.48 Å. Furthermore, boron atoms are firmly bound to oxygen.

The proposed structure of a fragment of the boron-doped carbon layer deposited on
the surface of the initial graphene is shown in Figure 11. This layer is formed during the
doping of the initial graphene. During this process the fragments are incorporated into the
hexagonal lattice of the carbon monolayer. Therefore, there are two layers in Figure 7: a
layer of the initial graphene and a layer of boron-doped graphene.
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4. Conclusions

A new method for the synthesis of B-carbon nanomaterials has been developed. The
method includes graphene synthesis using the template method, followed by the deposition
of an additional layer of boron-doped graphene in an autoclave at 650 ◦C using a mixture
of phenylboronic acid, acetone, and ethanol. Following the graphene carbonization in
the autoclave, its weight increased by 70%. The presence of boron atoms in the graphene
framework was confirmed by atomic emission spectroscopy, XPS, and EDX. The boron
concentration in B- carbon nanomaterials was found to be about 4 wt.%. The deposition of
an additional graphene layer doped with boron led to an increase of the graphene layer
thickness from 2–4 to 3–8 monolayers, and a decrease of the surface area from 1300 to
800 m2/g. The Raman spectrum confirmed that the synthesized carbon material had a
graphene-like local structure. According to the XPS data, boron in B-carbon nanomaterials
is present in the form of C–BO2 fragments.
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