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Purpose of review

The quest for HIV-1 cure could take advantage of the study of rare individuals that control viral replication
spontaneously (elite controllers) or after an initial course of antiretroviral therapy (posttreatment controllers,
PTCs). In this review, we will compare back-to-back the immunological and virological features underlying viral
suppression in elite controllers and PTCs, and explore their possible contributions to the HIV-1 cure research.

Recent findings

HIV-1 control in elite controllers shows hallmarks of an effective antiviral response, favored by genetic
background and possibly associated to residual immune activation. The immune pressure in elite controllers
might select against actively transcribing intact proviruses, allowing the persistence of a small and poorly
inducible reservoir. Evidence on PTCs is less abundant but preliminary data suggest that antiviral immune
responses may be less pronounced. Therefore, these patients may rely on distinct mechanisms, not
completely elucidated to date, suppressing HIV-1 transcription and replication.

Summary

PTCs and elite controllers may control HIV replication using distinct pathways, the elucidation of which may
contribute to design future interventional strategies aiming to achieve a functional cure.

Keywords

elite controllers, HIV-1 immune response, HIV-1 reservoir, posttreatment controllers
Service of Immunology and Allergy, Lausanne University Hospital, Uni-

versity of Lausanne, Lausanne, Switzerland

Correspondence to Professor Matthieu Perreau, Service of Immunology

and Allergy, Lausanne University Hospital, University of Lausanne,

Quartier UNIL-CHUV, Rue du Bugnon 46, 1011 Lausanne, Switzerland.

Tel: +41 21 314 10 71; e-mail: matthieu.perreau@chuv.ch

Curr Opin HIV AIDS 2022, 17:325–332

DOI:10.1097/COH.0000000000000751

This is an open access article distributed under the terms of the Creative

Commons Attribution-Non Commercial-No Derivatives License 4.0
(CCBY-NC-ND), where it is permissible to download and share the

work provided it is properly cited. The work cannot be changed in any

way or used commercially without permission from the journal.
INTRODUCTION

Soon after the discovery of HIV-1 as the cause of
AIDS, a rare group of people living with HIV (PLWH)
who did not seem to progress towards overt immu-
nosuppression was identified. These rare patients
were initially called ‘long-term nonprogressors’
and defined by their ability to maintain high
CD4þ T-cell counts over many years in the absence
of antiretroviral therapy (ART) [1]. Over the past
decades, a much smaller fraction of ‘nonprogressor’
was found to be able to fully suppress plasmatic HIV-
1 levels, and called ‘elite controllers’ [2].

Not long after ART became widely available, a
third group of individuals called posttreatment con-
trollers (PTCs) was identified [3–5]. In contrast to
most PLWHwho experience viral rebound post-ART
cessation [6], PTCs are able to maintain HIV-1 sup-
pression for months or years despite discontinuing
antiretroviral therapy.

To date, elite controllers and PTCs are consid-
ered to represent two facets of HIV-1 control. These
two groups of individuals may suppress HIV-1 rep-
lication using distinct, nonmutually exclusive
mechanisms, the characterization of which remains
to be fully elucidated. In the present review, we
uthor(s). Published by Wolters Kluwe
propose to summarize some of the key observations
from clinical or basic science research on the possi-
ble mechanisms involved in the viral control
achieved in elite controllers and PTCs.
CLINICAL AND IMMUNOVIROLOGICAL
FEATURES OF ELITE CONTROLLERS

Elite controllers are a rare group of PLWH who, in
the absence of ART, suppress plasmatic viral load
under the limit of detection of standard assays
(typically <50 copies/ml). The proportion of elite
r Health, Inc. www.co-hivandaids.com



KEY POINTS

� Elite controllers and posttreatment controllers (PTCs) are
two groups of individuals able to control HIV-1 without
antiretroviral therapy (ART). Genetic, clinical and
immunological evidences suggested that these two
populations might have different mechanisms to achieve
HIV-1 suppression.

� Elite controllers may control HIV-1 predominantly,
thanks to an efficient antiviral immune response, arising
from a favorable genetic background and primarily
involving CD8 T cells. The immune response may shape
HIV-1 reservoirs selecting against intact proviruses
favorably positioned for transcription, resulting in a
small and poorly inducible HIV-1 reservoir.

� PTCs differ from elite controllers in terms of genetic
background, dynamics of viral replication in untreated
infection and duration of HIV-1 suppression after ART
interruption, suggesting that these patients probably
would not have been able to control HIV-1 without
initial therapy. Preliminary evidence suggested that
PTCs might have less pronounced antiviral immune
responses when compared to elite controllers.

� A full characterization of HIV-1 reservoir features in
PTCs will help to elucidate the mechanisms by which
the natural control of HIV-1 replication is achieved in
these individuals

Controllers and natural cures
controllers is less than 1% of PLWH in multiple
cohorts [7–10]; interestingly, female gender [10]
and black ethnicity [10–12] were independently
associated to an increased proportion of natural
controllers, whereas age at HIV-1 diagnosis do
not seem to be associated with HIV-1 control
[13]. Longitudinal studies suggested that elite con-
trollers may suppress HIV-1 after a variable amount
of time from seroconversion (median 16.7months,
22% of controllers from the first HIV-RNA deter-
mination) [14] but tend to show a lower zenith viral
load and a higher CD4 T-cell count during primary
HIV-1 infection (PHI) when compared with typical
progressors [15]. Duration of viral control appears
to be relatively long in elite controllers, with more
than 70% of individuals still suppressed after a
median of 6 years of follow-up [16]. Nevertheless,
recent data suggested that on the longer period, a
consistent proportion of elite controllers may show
signs of disease progression [17], immune activa-
tion [18,19], and, possibly, adverse clinical out-
comes [20,21]. However, whether ART is
beneficial in these PLWH is still debated [22,23],
and a case-by-case evaluation is suggested by cur-
rent guidelines [24–26].

The exceptional clinical and virological charac-
teristic of these PLWH led to an extensive research
326 www.co-hivandaids.com
activity focused on determining the features associ-
ated with natural HIV-1 control. Initial observations
underscored the presence of deletions in viral genes
(nef [27,28] or more recently, vpr [29]) or reduced in-
vitro replication capacity [30,31] of HIV-1 isolates
recovered from some elite controllers, arguing
towards a potential lack of viral fitness in these indi-
viduals [30].However, additional studies showedthat
replication-competent HIV-1 can be isolated from
elite controllers [32], and full genome sequencing
of proviruses from these patients revealed genetically
intact HIV-DNA [33

&&

], suggesting that viral factors
alonecouldnotentirelyexplain thenatural controlof
HIV-1 infection. In addition, low-level viremia [34],
viral evolution [35,36] andpersistent viral replication
in lymphoid tissues [37,38] could be observed in
either elite controllers or macaque models of elite
control, suggesting that residual viral production,
mostly occurring in lymphoid tissues, may still be
detected in natural controllers despite an undetect-
able plasmatic viral load.

In parallel, increasing number of genetic and
functional studies have been performed to uncover
potential immunological mechanisms associated
with elite controllers. Initial genetic observations
identified certain HLA variants, collectively referred
to as ‘protective HLAs’, as over-represented in elite
controllers [39–43]. Mechanistic analyses proposed
that these ‘protective’ HLAs were more efficient in
presentingconserved [42]andhighlynetworked [44

&

]
HIV-1 epitopes to CD8 T cells, suggesting that HLA
class-I-restricted CD8 T-cell responses represented
one of the crucial immunological mechanisms by
which elite controllers control HIV-1 replication.

However, other parameters may also play a role,
and viral control in elite controllers might not
totally rely on ‘protective HLA’ alleles. Indeed, the
fact that PLWH harboring ‘protective’ HLAs do not
necessarily control HIV-1 replication and that elite
controllers may lose HIV-1 control following super-
infection [45–47] suggests that the genetic milieu
alone might not be sufficient to achieve viral sup-
pression. Moreover, clinical evidences revealed that
up to one-third of elite controllers do not express the
so-called ‘protective’ HLAs [48–51] and may still
display anti-HIV CD8 T-cell responses [48,49] sug-
gesting that an efficient antiviral response might be
achieved also in absence of ‘protective’ HLA alleles.
Finally, the evidence that some elite controllers,
harbouring or not ‘protective’ HLAs, do not show
consistent CD8 T-cell-mediated anti-HIV responses
while controlling viral replication suggested that
class-I HLA-restricted CD8 T-cell-mediated immun-
ity may not be the only immunological factor asso-
ciated to the control of HIV-1 replication observed
in elite controllers [50,52].
Volume 17 � Number 5 � September 2022



Elite and PTCs, two facets of HIV control Mastrangelo et al.
Therefore, a huge research effort has also been
invested to further dissect immunological determi-
nants associated to natural control of HIV-1. In
particular, several studies observed superior attrib-
utes of HIV-specific CD8 T cells in elite controllers
for what concern in frequency [53], breadth [48],
polyfunctionality [49,54,55], stemness potential
[56,57] and trafficking to lymphoid tissues [58]
when compared with those of chronic progressors
(reviewed in detail in the Rutishauer and Trautmann
study). More recently, HIV-specific CD4 T-cell-
mediated responses were also characterized in these
patients, and were found to be quantitatively and
qualitatively superior to those of natural progressors
in terms of proliferative potential [59], polyfunc-
tionality [60], T-follicular helper functions [61,62]
and cytotoxicity [63,64]. Finally, multiple groups
investigated the features of humoral and innate
immunity in elite controllers, identifying peculiar-
ities in terms of IgG-mediated seroneutralization
activity [65], antibody functional profile [66], nat-
ural killer (NK) responses [67–69], and antigen-pre-
senting cells functional profile [70,71]. Of note, the
contribution of the innate components in the nat-
ural control of HIV is reviewed in details in the
Calvet and Martin-Gayo study.

To further explore the mechanisms associated
with the control of viral replication, several authors
exploited themacaquemodel of natural viral control,
and observed that depletion of CD8 T cells was suffi-
cient to trigger SHIV rebound, demonstrating that
CD8T-cell-mediated antiviral immunity ismost likely
crucial to maintain viral suppression [72]. This view is
also supported from the observation that elite con-
trollers eventually losing the control on viral replica-
tion preferentially show an impairment in HIV-1-
specific CD8 T cell compared with elite controllers
persistently suppressing viral load [73

&&

,74,75]. How-
ever, supplemental longitudinal studies are needed to
comprehensively characterize the balance between
viral replication dynamics and specific antiviral
immune features.

To summarize, elite controllers represent a heter-
ogeneous group of PLWH who display a long-lasting
natural control of HIV-1 infection, associated inmost
of the individuals to efficient CD8 T-cell responses
arising from a favorable genetic background.
CLINICAL AND IMMUNOVIROLOGICAL
FEATURES OF POSTTREATMENT
CONTROLLERS

PTCs represent a small subset of HIV-infected indi-
viduals able tomaintain control of HIV-1 replication
after stopping ART. Initial case-reports identifying
rare patients maintaining viral suppression despite
1746-630X Copyright © 2022 The Author(s). Published by Wolters Kluwe
ART withdrawal [3,4] were followed by several
cohort studies proposing that PTCs may represent
a novel model of ART-free viral suppression. After
the initial description of 14 PTCs from the VIS-
CONTI study [5], the CASCADE collaboration
[76], the SPARTAC trial [77,78] and, more recently,
the CHAMP cohort [79] provided a deeper character-
ization of these individuals.

The majority of identified PTCs were male, even
though this likely reflect the demographic charac-
teristics of the original cohorts [5,76,78,79]; nota-
bly, whether PTCs are overrepresented amongst
HIV-infected female individuals and individuals of
non-Caucasian ethnicity remains to be further elu-
cidated. The observed frequency of PTCs ranged
between 2.4 and 15.6% of patients undergoing treat-
ment interruption, and exceed the expected fre-
quency of elite controllers (<1%) despite the
heterogeneity in the inclusion criteria [80]. Com-
pared with elite controllers, PTCs rarely harbored
the aforementioned ‘protective’ HLAs, displayed
higher viral loads and lower CD4þ T-cell counts
during PHI [5,77], and showed a more labile persis-
tence of viral control (median 89weeks, 22% of
patients still suppressed after 5 years) [5,79].

Collectively, these studies highlighted that PTCs
were probably distinct from elite controllers, and
would likely not have been able to naturally control
viral replication without ART. The impact of ART in
promoting HIV-1 control after treatment discontin-
uation emerges also from the observation that early-
treated PLWH have higher chances of achieving the
PTC status when compared with patients treated
later during the disease [79]. Indeed, ART initiation
during acute infectionmight favor the development
of viral control reducing the size of latent reservoir
[81] and preserving immune functions [82]. How-
ever, multiple reports described HIV-1 rebound in
patients treated days postinfection [83–86], demon-
strating that even extremely early ART alone is not
sufficient to prevent the establishment of a func-
tional reservoir, and suggesting that ‘too-early’ ther-
apy might paradoxically dampen the development
of an effective and appropriate immune response.
Moreover, PTCs treated during chronic infection
were also identified [87], highlighting that the
unknown functional modifications promoting viral
control after ART initiation may arise also in
patients with more advanced disease. Therefore,
additional factors, not exclusively related to timing
of ART initiation, are needed to prevent viral
rebound. Given the importance of immune
response in the natural control of HIV-1 infection,
multiple studies investigated whether specific
immunological features might be associated to viral
suppression in PTCs.
r Health, Inc. www.co-hivandaids.com 327
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Initial evidence from the VISCONTI cohort sug-
gested that HIV-specific CD8 T cells from PTCs
displayed a lower activation status, reduced fre-
quency and reduced suppression of autologous
CD4 T-cell infection when compared with those
from elite controllers [5]. Nevertheless, additional
data suggested that PTCs may be a heterogeneous
population in terms of antiviral cellular immunity,
as patients harboring effective HIV-specific CD8 T-
cell mediated responses could be observed
[88,89

&

,90]. More recently, this heterogeneity was
observed also for what concern humoral responses,
with some PTCs showing effective antibody-medi-
ated antiviral functions [89

&

,91
&&

], whereas others
not displaying any functional HIV-specific serolog-
ical response [91

&&

] and, in extreme cases, showing
seroreversion [92]. The drivers behind the variable
antiviral immune responses detected in PTCs
remain unclear to date, but preliminary evidences
suggested that heterogeneous in-vivo exposure to
viral antigens might be involved in shaping the
immunological profile [91

&&

].
Of note, these observations arose from individ-

uals analyzed during the phase of virological con-
trol, and may thus not reflect the processes
mechanistically associated to the suppression of
HIV-1 rebound. In this view, multiple studies aimed
to identify biomarkers able to predict HIV-1 sup-
pression before ATI. Given the paucity of PTCs
detected to date, most of these studies focused on
time-to-viral-rebound as a surrogate endpoint of
acquired HIV-1 control, and explored biomarkers
associated with this outcome. Several virological
[93,94,95

&

], immunological [96,97] and metabolic
biomarkers [98] were proposed; however, to date,
none of thesemarkers was clearly validated, and ATI
trials including patients recruited on the presence of
one [99,100] or more [101] of these markers have led
to inconclusive results. In this view, recently
described animal models of PTCs may provide val-
uable insights in dissecting the processes associated
to HIV-1 suppression and in validating new bio-
markers to select patients to be included in ATI trials
[102].

Taken together, PTCs represent a group of indi-
viduals that do not share the same attributes than
elite controllers in terms of genetic background,
viral dynamics during PHI and duration of control
on viral replication. Initial studies suggested that
this populationmight have peculiar immunological
features, with a reduced preponderance of cellular
and humoral antiviral responses. However, a
marked heterogeneity emerged among these
patients, suggesting that multiple mechanisms
may be involved in achieving and maintaining
viral suppression.
328 www.co-hivandaids.com
HIV-1 VIRAL RESERVOIR IN ELITE
CONTROLLERS AND POSTTREATMENT
CONTROLLERS
In addition to the characterization of clinical and
immunological features of elite controllers and
PTCs, many studies focused on elucidating multiple
aspects of the HIV-1 reservoir in these groups
of patients.

HIV-1 reservoir in elite controllers is signifi-
cantly smaller in terms of total [103,104] and genet-
ically intact proviruses [33

&&

,105] when compared
with chronic progressors and to ART-treated
patients, despite being subjected to the same proc-
esses of clonal expansion detected in the most of
PLWH [33

&&

,38,90]. In addition, the combined study
of proviral genetic intactness and integration sites
highlighted that intact, but not defective, HIV-1
genomes in elite controllers were predominantly
located in DNA regions significantly distant from
actively transcribing chromatin, suggesting that
selection processes, most likely mediated by the
immune system, eliminated proviruses able to pro-
duce HIV-1 proteins and favorably positioned for
transcription [33

&&

]. Of note, both intact and defec-
tive proviruses from elite controllers showed a lower
frequency of mutations associated with ongoing
immune pressure when compared with ART-treated
patients [106

&&

], suggesting that the elimination of
actively transcribing proviruses in elite controllers
may be followed by a phase in which HIV-1 repli-
cation reaches a ‘dead-end’ of poorly inducible,
transcriptionally silent proviruses, unable to further
escape host immunity. Coherently, previous obser-
vations showed that elite controllers mostly have a
poorly inducible reservoir [107]. Nevertheless, as
mentioned above, viral evolution can still be
detected in a subset of elite controllers despite a
suppressed plasmatic viral load, suggesting that
additional research efforts are needed to elucidate
whether heterogeneity might be detected in reser-
voir composition and dynamics among natural con-
trollers.

For what concern PTCs, the study of reservoir
characteristics is less extensive; however, multiple
reports [5,108] suggested that total HIV-DNA in
peripheral blood is significantly lower in these
patients when compared with ART-treated individ-
uals. Of note, total intact HIV-DNA was also signifi-
cantly lower in PTCs but patients with intact
reservoir as high as 40% of the total were still able
to control HIV-1 rebound [108]. Moreover, integra-
tion site analysis confirmed that HIV-1 reservoir
from PTCs, including those harboring replication-
competent proviruses, can expand in large clones
despite persistent control of viral replication
[90,108]. Interestingly, the observed reservoir size
Volume 17 � Number 5 � September 2022
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in PTCs did not reach the extremely low levels
observed in currently reported examples of HIV-1
cure [109–111], and is similar to the one observed
in very-early-treated patients not able to control viral
replication [86]. Therefore, additional factors, inde-
pendent of total or intact reservoir size assessed in
blood, may be associated to virological control in
PTCs. The VISCONTI study analyzed the cellular dis-
tribution of HIV-1-infected cells in blood, and
observedanenrichmentamongtransitional-memory
CD4 T cells in PTCs, suggesting that these patients
may differ in terms of cells constituting HIV-1 reser-
voir [5]. In addition, indirect evidence, coming from
the association between low cell-associatedHIV-RNA
levels and longer time-to-viral-rebound [93,95

&

] sug-
gested that viral reservoir in PTCs may show limited
transcriptional activity (reviewedmoreextensively in
the Pasternak et al. study). Of note, whether this
restricted HIV-1 expression is the consequence of
selection processes eliminating proviruses favorably
positioned for transcription, in analogy with what
observed in elite controllers, or of a reservoir ‘silenc-
ing’ caused by other factors is currently unknown.
Recently, the integration site landscape of HIV-1
reservoir from two PTCs was compared to that of
two progressors, and no particular distribution sug-
gestive of an active selection was identified [89

&

]. On
the other side, additional longitudinal observations
analyzing simultaneously integration sites and
intactness of proviruses suggested that selection
against favorably positioned intact proviruses might
occur also in PTCs [112]. However, large-sized studies
comprehensively characterizing the HIV-1 reservoir
in PTCs, especially focusing on cellular and tissue
distribution, IS landscapeandintactnessofproviruses
are missing, and would provide useful insights in
deciphering the viral dynamics occurring in
these patients.
COMPARING HIV-1 CONTROL IN ELITE
CONTROLLERS AND POSTTREATMENT
CONTROLLERS

Although the mechanisms responsible for viral con-
trol in elite controllers are still not fully understood,
a number of evidences have demonstrated that
these individuals are characterized by a strong
immune response against HIV-1, with a clear
involvement of an effective CD8 T-cell-mediated
immunity. The enhanced immune response
detected in elite controllers may lead to HIV-1 con-
trol by clearing HIV-infected cells and selecting for
those that harbor HIV-DNA in less transcriptionally
favorable positions, increasing the barrier to HIV-1
reactivation. Thus, the ‘locked’, poorly inducible
HIV-1 reservoir observed in elite controllers might
1746-630X Copyright © 2022 The Author(s). Published by Wolters Kluwe
be the consequence of the peculiar immune
response detected in these individuals.

On the other hand, PTCs is a more recently
described group, which has not been extensively
characterized froman immunological andvirological
standpoint. Initial evidence pointed out that, com-
paredwithelite controllers, thesepatientsmay rather
display modest HIV-specific CD8 T-cell-mediated
immune responsesduringviral control, andmaythus
take advantage of additionalmechanisms to suppress
HIV-1 replication, possibly involving currently
unknown immunological mediators able to elimi-
nate HIV-1-infected cells. The elucidation of these
factors may be pivotal to design further cure strat-
egies.However, the consistent evidence showing that
PTCs would probably not have been able to control
HIV-1 without an initial course of antiretroviral ther-
apy suggests that the modifications occurring after
ART introductionmightbe involved per se inpromot-
ing viral suppression. ART initiation is associated to
an extensive immunological remodeling [113–115],
whose effectmight also favorHIV-1 latency instaura-
tion [116,117] by promoting effector-to-memory
transition of infected cells [118]. PTCs may, thus
represent the extreme end of this process: the paucity
of antiviral immune responses detected ex vivo in
these patients might be the consequence of a poor
expression of HIV-1 in vivo, because of an excessive
‘silencing’ of HIV-1 transcription in infected cells
occurring after ART initiation. Interestingly, limited
levels of initiated transcripts were found prior to ATI
in PTCs when compared with noncontrollers, even
though these observations are not normalized on the
levels of intact HIV-DNA [119]. Additional longitu-
dinal studies, possibly involvingnew techniques able
to simultaneously identify integration sites, intact-
ness of proviral DNA and transcriptional activity
[120

&&

] will help to elucidate whether or not immune
selection mechanisms occur in these patients, and
how the interplay between HIV-1 expression and
antiviral response leads to acquired HIV-1 control
(Fig. 1).
CONCLUSION

The development of effective cure strategies could
exploit the immunovirological mechanisms natu-
rally occurring in elite controllers and/or PTCs,
which may represent two complementary models
of ART-free HIV-1 remission. The thorough inves-
tigation and comparison of these exceptional
individuals may open previously undisclosed possi-
bilities to identify new pathways associated with
HIV-1 suppression, and may elucidate the mecha-
nisms needed to develop novel intervention strat-
egies aiming at achieving a cure for HIV-1.
r Health, Inc. www.co-hivandaids.com 329



FIGURE 1. Characteristics of elite controllers, posttreatment
controllers and antiretroviral therapy-treated patients. Top
panel: elite controllers show a strong, effective immune
response against HIV-1, primarily based on CD8 T cells.
PTCs, on the contrary, may display a less pronounced
antiviral immunity, even though great heterogeneity has been
detected in the immunological features of these individuals.
Middle panel: both elite controllers and PTCs harbor a
significantly lower frequency of HIV-1-infected cells in blood
when compared with ART-treated patients. Lower panel: HIV-
1 reservoir in elite controllers is dominated by poorly
inducible proviruses showing low transcriptional activity.
Features of HIV-1 reservoir in PTCs are largely unknown but
based on preliminary data and on paucity of antiviral
immune responses detected ex vivo in these patients, we can
speculate that a reduced transcriptional activity of intact
reservoirs might be associated to natural control of HIV-1
replication in this group. ART, antiretroviral therapy; PTCs,
posttreatment controllers.
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