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Abstract: Among all tree nuts, walnuts contain the highest total polyphenols by weight. This
secondary data analysis examined the effect of daily walnut supplementation on the total dietary
polyphenols and subclasses and the urinary excretion of total polyphenols in a free-living elderly
population. In this 2-year prospective, randomized intervention trial (ID NCT01634841), the dietary
polyphenol intake of participants who added walnuts daily to their diets at 15% of daily energy
were compared to those in the control group that consumed a walnut-free diet. Dietary polyphenols
and subclasses were estimated from 24 h dietary recalls. Phenolic estimates were derived from
Phenol-Explorer database version 3.6. Participants in the walnut group compared to the control
group had a higher intake of total polyphenols, flavonoids, flavanols, and phenolic acids in mg/d
(IQR): 2480 (1955, 3145) vs. 1897 (1369, 2496); 56 (42,84) vs. 29 (15, 54); 174 (90, 298) vs. 140 (61, 277);
and 368 (246, 569) vs. 242 (89, 398), respectively. There was a significant inverse association between
dietary flavonoid intake and urine polyphenol excretion; less urinary excretion may imply that some
of the polyphenols were eliminated via the gut. Nuts had a significant contribution to the total
polyphenols in the diet, suggesting that a single food like walnuts added to habitual diet can increase
the polyphenol intake in a Western population.

Keywords: polyphenols; dietary bioactive components; walnuts

1. Introduction

It is well-recognized that walnuts have a favorable nutrient and fatty acid profile, and
their consumption is effective in reducing blood lipids [1,2] and in modifying inflammation
and endothelial dysfunction [3–5], thus reducing the risk of cardiovascular disease [2,6].
The risk lowering effects of walnuts as demonstrated by supplementing diets with the nuts,
are greater than predicted based on the amount and nature of the fat consumed [7]. Evi-
dence suggests that the phenolic phytochemicals found in walnuts and other nuts increase
antioxidant defenses and reduce inflammation [7]. A recent review and meta-analysis sum-
marizing the findings from several randomized controlled trials showed that incorporating
polyphenol-rich foods impacts blood lipids by increasing high-density lipoprotein (HDL)
and lowering low-density lipoprotein (LDL) [8]. Diets rich in polyphenols such as the
Mediterranean diet, emphasizing olive oil and walnuts, report decreased blood lipids and
inflammatory markers [6,9].

Walnuts are composed of an outer green husk with a hard shell inside the husk con-
taining a walnut kernel covered with a seed coat or pellicle, where most polyphenols
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reside [10,11]. Among the nuts, walnuts contain the highest concentrations of polyphenols,
averaging 2500 gallic acid equivalent (GAE) per 100 g [12]. Current comprehensive anal-
yses of walnut polyphenols using chromatographic, and mass spectrometric techniques
have identified hundreds of compounds in the walnut kernel including hydrolysable and
condensed tannins, flavonoids, flavanols, phenolic acids, and lignans [13,14]. A study
investigated the postprandial effect of walnut intake on the plasma total polyphenols and
showed increased concentrations of plasma polyphenols 30 min following ingestion, which
reached a peak at 90 min [1]. Therefore, walnuts may contribute to dietary polyphenols
and may offer protective health benefits.

Several studies have recently explored dietary compositional changes produced by
adding walnuts to the diet. In a randomized parallel design intervention, participants at risk
for type 2 diabetes who added walnuts to their habitual diet increased their energy, protein,
total fat, and magnesium intake [15] and had a non-significant decrease in sodium, empty
calories, and dairy products [16]. In similar studies, individuals randomized to the walnut
group showed higher intakes of protein, polyunsaturated fatty acids, both omega-3 and
omega-6, but lower intakes of carbohydrates, animal protein and saturated fatty acids [17],
and, in a cross-over study, participants who consumed walnuts additionally increased
their dietary fiber, calcium, phosphorus, magnesium, and zinc intake [18]. However, no
studies have as yet investigated whether the inclusion of walnuts in the diet influences
the dietary intake of polyphenols or urinary polyphenol excretion. In this secondary
data analyses of the Walnuts and Healthy Aging study (WAHA) [19], we investigated the
impact of consuming walnuts on the dietary intake of total polyphenols and their sub-
classes (flavonoids, flavanols, and lignans), and on the total urinary polyphenol excretion.
Therefore, the aim of the current secondary analysis of data from the WAHA study was
to determine whether long-term inclusion of walnuts (Juglans regia L.) in the daily diet
increases polyphenol intake and the urinary excretion of phenolic metabolites.

2. Materials and Methods
2.1. Study Design and Participants

The WAHA study was a 2-year parallel group, observer-blinded randomized con-
trolled trial (RCT) examining the effect of the usual diet supplemented with walnuts at 15%
(30–60 g/d) of energy compared to a walnut free habitual diet on the aging outcomes in
elderly participants [17,20–27]. The parent study was a dual center clinical trial and was
carried out in Barcelona, Spain and at Loma Linda University (LLU) in California, USA,
from 2014 to 2016. However, only data collected from participants at LLU were used in
the current secondary data analyses. The WAHA study was conducted in accordance with
the guidelines of the Declaration of Helsinki and was approved by the Ethics Committee
of the Loma Linda University Institutional Review Board (IRB 5120066). All participants
provided their written informed consent before enrolment. The WAHA study clinical trial
(NCT01634841) is registered at www.clinicaltrials.gov (accessed on 23 February 2023).

Detailed information about the WAHA study has been published elsewhere [19,26].
Briefly, candidates for this study were elderly ambulatory men and women aged 63–79 years.
Exclusion criteria were inability to undergo neuropsychological testing; previously diag-
nosed neurodegenerative disease; prior stroke, significant head trauma, or brain surgery;
relevant psychiatric illness; major depression; morbid obesity; uncontrolled diabetes; un-
controlled hypertension; prior chemotherapy; allergy to walnuts; habitual consumption of
tree nuts (>2 servings/week); or customary use of fish oil, flaxseed oil, and/or soy lecithin.
A total of 656 subjects were recruited and assessed for eligibility by the LLU team and
356 met the eligibility criteria and were randomized into the study. Of the total sample
of randomized participants, 300 were selected for the current analysis, as shown in the
flowchart in Figure 1.

www.clinicaltrials.gov
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Figure 1. Participant flowchart at LLU site.

2.2. Sociodemographic, Anthropometric, and Biochemical Outcomes

Demographic data, anthropometric measurements, and dietary and lifestyle habits
were collected from the participants at the baseline according to the study protocols [19].
Anthropometric measurements were carried out by trained professionals, and sociodemo-
graphic data and lifestyle habits were inputted using self-reported study questionnaires.
Blood and spot urine samples were collected at the baseline and at the end of each year
of intervention, aliquoted, and stored at −80 ◦C until analysis. All routine biochemical
analyses and the determination of urinary creatinine concentration were performed at the
completion of the study in the same laboratory to control for between-assay variability, as
previously reported [20].

2.3. Estimation of Dietary Nutrient and Polyphenol Intake

Collection of dietary recall data and nutrient analysis was performed using the Nu-
trition Data System for Research (software version 2018) developed by the Nutrition
Coordinating Center, University of Minnesota, Minneapolis, MN. The 24-h dietary recalls
were obtained by telephone or face-to-face interviews using a multiple-pass approach to
capture information about the food items, beverages, and dietary supplements consumed
during the past 24 h and the nutrient estimates were acquired using the systems’ nutrient
database. A total of five unannounced dietary recalls per participant were obtained at
random times during the study, and these included at least one weekend day. The dietary
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intake data were collected by trained research dietitians and conducted at diverse intervals
over the 2 year study duration to account for seasonal variations of food intake [17].

The polyphenol content of foods and beverages reported in the 24-h recalls were
generated from the Phenol-Explorer database (version 3.6) [28]. The Phenol-Explorer
database compiles the total polyphenol content of foods based on analyses performed
using the Folin–Ciocalteu (F–C) reagent, whereas chromatography methods are used to
estimate polyphenol subclasses. In the current study, the following variables were estimated
based on data from Phenol-Explorer: the subclass total flavonoids consisted of flavones,
flavonols plus anthocyanins, and the subclass phenolic acids were phenolics obtained
either by chromatography or by chromatography after hydrolysis; the subclass flavanols
were obtained by chromatography or normal phase HPLC; and the subclass lignans was
obtained by chromatography after hydrolysis.

The contribution of food items to the total polyphenols, flavonoids, flavanols, phenolic
acids, and lignans were entered into the dietary database in milligrams per 100 g per day.
Food items found in the 24-h dietary recalls (24-HDR) and food composition data were
matched and the intake of total dietary polyphenols and phenol subclasses was estimated
using the following equation: 24-HDRs = Σ Pn × Gn. Here, p is the mg of phenolic
compound per 100 g food, and G is the reported portion size of food in grams.

2.4. Urinary Total Polyphenols

Spot urine samples [29] were collected from the WAHA participants at the baseline
and at the end of the first and second years of the study. Spot urine samples were collected
in the morning at the time participants came in for their fasting blood draw but were not
the first void. Samples were processed and stored at −80 ◦C until use. The total urinary
polyphenol concentrations in the spot urine samples were determined using the modified
rapid Folin–Ciocalteu (F–C) method, as previously described [30]. Briefly, following solid
phase extraction for the removal of interfering substances using Oasis Max cartridges
(Waters Corp. Milford, MA, USA), the samples were loaded on 96-well plates (Waters
Corp., Milford, MA, USA) for testing using the Folin–Ciocalteu reagent. The Bio Tek
Synergy HT spectrometer (Bio Tek, Winooski, VT, USA) was used to measure the resulting
absorbance at 765 nm. All analyses were run in triplicate using gallic acid as the standard.
Urine creatinine was determined using the Jaffe’ alkaline picrate microplate method as
published [30].

2.5. Statistical Analyses

From the LLU cohort, a total of n = 356 subjects were randomized, but only 300 sub-
jects were included in this secondary data analysis. A total of 34 subjects were excluded
due to missing data. Dietary polyphenol variables of total polyphenols, total flavonoids,
flavanols, phenolic acids, and lignans were energy-adjusted using the residual method
and then averaged for each subject. Spot urine polyphenol concentrations in mg GAE/L
were adjusted by creatinine concentration to account for urine dilution. Mann–Whitney
tests were used for these variables for between-group comparisons. Means and standard
deviations (SD) of polyphenol intake by food group were reported.

In the descriptive analysis of urinary polyphenols, the means (SD) by treatment and
time were determined. To compare the morning spot urine polyphenol excretion between
treatment groups, linear regression mixed models fitted for both variables (mg GAE/L, mg
GAE/g Cr) included the treatment, time, treatment × time interaction, age, gender, and
BMI as fixed-effects terms and the participants as a random-effects term. To examine the
association between spot urine polyphenol excretion at year 2 and the dietary intake of
polyphenols and subclasses, a linear regression model was fitted for each combination of
urine polyphenol (dependent variable) and log dietary polyphenol (independent variable),
while adjusting for age, gender, and BMI. All analyses were performed using R version
4.2.2 with a significance level at p < 0.05.
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3. Results

The subject characteristics as observed in Table 1 show that there were more women
than men enrolled in the study. In the walnut group, 63% were women and 37% were men,
and in the control group, 68% were women and 32% were men.

Table 1. The subject characteristics of the study by treatment group (n = 300).

Baseline Characteristics Control Walnut p-Value 2

n = 146 n = 154

Sex, n (%) Women 99 (67.8) 97 (63.0) 0.450
Men 47 (32.2) 57 (37.0)

Race, n (%) White 111 (76.0) 121 (78.6) 0.698
Non-White 35 (24.0) 33 (21.4)

Age, years, mean (SD) 1 69.42 (3.64) 70.08 (4.04) 0.141
BMI, kg/m2, mean (SD) 1 27.65 (4.92) 27.47 (5.02) 0.744

Education, n (%) <12 years 19 (13.0) 14 (9.1) 0.368
>12 years 127 (87.0) 140 (90.9)

Ever smoked, n (%) Never 143 (97.9) 147 (95.5) 0.379
Ever 3 (2.1) 7 (4.5)

Waist circumference, cm
mean (SD) 1 98.08 (12.45) 98.86 (14.50) 0.676

Hip circumference, cm.
mean (SD) 1 106.81 (11.02) 105.63 (10.87) 0.356

1 Two sample t-test was used to calculate the means and standard deviations. 2 Mann-Whitney tests were used for
comparisons between treatments.

Table 2 describes the mean dietary intake of macronutrients by the treatment group
over a 2-year period. A total of 1242 sessions were held to collect 24-h dietary recalls from
the -participants. A total of five 24-h dietary recalls were collected from most participants
(range 1–5 recalls) at random times during the duration of the study. The walnut group
had a significantly higher energy intake, total dietary fiber, and total fat intake compared to
the control group.

Table 2. Dietary intake of macronutrients per day by treatment group.

Variables Control Walnut p-Value 1

n = 146 n = 154

Energy, kcal, mean (SD) 1608 (453) 1836 (536) <0.001
Total carbohydrate, g, mean (SD) 194 (65) 207 (80) 0.143
Total dietary fiber, g, mean (SD) 21 (8) 25 (11) <0.001

Total fat, g, mean (SD) 63 (22) 84 (26) <0.001
Saturated fatty acids, g, mean (SD) 21 (10) 22 (10) 0.347

Monounsaturated fatty acids, g, mean (SD) 22 (9) 25 (9) 0.012
1 Two sample t-test was used to calculate the mean and SD.

Table 3 describes the mean dietary intake of phenolics by treatment group for a 2 year
period. Compared to the control group, participants in the walnut group had a significantly
higher mean intake of total polyphenols, flavonoids, flavanols, and phenolic acids in mg/d.
There were no significant differences in lignan intake.
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Table 3. Daily intake of energy-adjusted dietary polyphenols 1 by treatment group.

Variables Control Walnut p-Value 7

n = 146 n = 154

Total polyphenols 2, mg, median [IQR] 8 1897 [1369, 2496] 2479.99 [1956, 3146] <0.001
Total flavonoids 3 (flavones, flavonols, and

anthocyanidins), mg, median [IQR]
28.8 [15.4, 54.4] 56.1 [41.7, 83.9] <0.001

Flavanols, mg 4, median [IQR] 139.6 [60.7, 277.3] 174.2 [89.8, 298.4] 0.036
Phenolic acids 5, mg, median [IQR] 242.2 [88.8, 398.3] 367.8 [245.7, 569.2] <0.001

Lignans 6, mg, median [IQR] 27.4 [13.9, 44.8] 24.1 [13.4, 44.2] 0.514
1 Polyphenol composition of food items obtained from Phenol-Explorer version 3.6. All phenolic values were
energy adjusted. 2 Total polyphenols were measured using the Folin–Ciocalteu assay. 3 Total flavonoids (flavones
and flavonols) were measured using chromatography after hydrolysis. 4 Flavanols (proanthocyanidins) were
measured using normal phase HPLC. 5 Phenolic acids (ellagitannins/tannins) were measured using chromatogra-
phy after hydrolysis. 6 Lignans were measured using chromatography after hydrolysis. 7 Mann–Whitney tests
were used for comparisons between treatment. p < 0.05 indicates significance. 8 Interquartile range (IQR).

Table 4 shows the contribution of the various food groups to the daily intake of total
polyphenols and phenolic subclasses by treatment group. Of the food groups consumed,
the mean intake of nuts showed that walnuts significantly (p < 0.001) contributed to the
total polyphenol intake in the walnut group in mg/d 632 (182) compared to the control
40 (7). Results of the polyphenol intake by food group also showed that nuts were a signif-
icant contributor to all other major subclasses including flavonoids (flavones, flavonols,
and anthocyanidins, with the exception of lignan (p = 0.513) compared to the other food
categories.

Table 4. Contribution of food groups by treatment group to the mean daily intake in mg/d of the
total polyphenols and polyphenol subclasses.

Total Polyphenols
Flavonoids

(Flavones, Flavonols,
Anthocyanidins)

Flavonoids
(Flavanols) Phenolic Acids Lignans

Control Walnut Control Walnut Control Walnut Control Walnut Control Walnut

Food Groups Mean (SD)
Beverages 1 804 (674) 886 (778) 27 (72) 30 (81) 7 (16) 6 (15) 214 (229) 240 (305) 0.7 (2) 0.6 (2)

Fruits 2 351 (280) 440 (374)
* 15 (23) 16 (22) 81 (104) 102 (134) 16 (25) 21 (26) 7 (12) 8 (11)

Nuts 3 40 (77) 632 (182)
*** 0.4 (1) 26 (7) *** 9 (22) 27 (11)

*** 5 (16) 178 (52)
*** 2 (6) 1.5 (6)

Legumes 4 244 (470) 317 (734) 1.3 (5) 1.4 (3) 4 (28) 9 (62) 4 (8) 5 (10) 2 (4) 2 (5)
Vegetables 5 226 (191) 269 (307) 9 (8) 9 (8) _ 0.28 (2) * 4 (4) 5 (6) 22 (32) 26 (45)

Grains 6 124 (138) 130 (141) 1.1 (8) 0.34 (1) 20 (72) 16 (47) 30 (23) 31 (27) 1.5 (3) 1 (2)
Chocolate 7 86 (180) 114 (274) - - 43 (93) 59 (144) 0.7 (1.4) 1 (2.3) 0.04 (0.4) 0 (0.1)

Spices 8 22 (67) 31 (86) 0.02 (0.1) 0.1 (0.7) - - 0.01
(0.04)

0.01
(0.02) 0.05 (0.2) 0.03 (0.1)

Fats and oils 9 7 (6) 7(6) 0.2 (0.5) 0.2 (0.2) 0.01 (0.1) 0.01 (0.1) 0.01 (0.1) 0.04 (0.2) 0.2 (0.3) 0.2 (0.3)
Miscellaneous 10 51 (78) 60 (107) 0.5 (1.1) 0.7 (1.6) 24 (42) 32 (62) 0.24 (1) 0.23 (1) - -

* p < 0.05, *** p < 0.001. Data are the means and SDs of polyphenol intake by treatment group. 1 Beverages include
vegetable juice, fruit juice, coffee, tea, alcoholic beverages, rice milk, and non-alcoholic beer. 2 Fruits include whole,
canned, frozen, fried, and dried fruits and jams. 3 Nuts include walnuts and other tree nuts, raw and roasted
nuts, mixed nuts, and peanuts. 4 Legumes include dried beans, peas, soy, and soy-based products. 5 Vegetables
include fresh, frozen, fried, and canned vegetables. 6 Grains include whole and refined grains, breads, pasta, and
cereals. 7 Chocolate includes cocoa powder, cocoa mixed products, chocolate frosting, pudding mix chocolate,
chocolate sauce, baking chocolate, chocolate-based candy and cake, and chocolate bars and cookies. 8 Spices
include ground, dried, or powder spices such as thyme, turmeric, cumin, nutmeg, curry powder, cinnamon,
tarragon, paprika, marjoram, taco seasoning, Italian seasoning, black pepper, allspice, rosemary, sage, cloves,
parsley, and sage. 9 Fats and oils include oils such as olive, canola, sunflower, safflower, corn, vegetable oil,
margarine, butter, and dressings. 10 Miscellaneous foods (Misc.) consist of mixed foods and dishes that include
dairy and dairy products.

Table 5 shows the comparison of urinary polyphenol excretion between the control
and walnut groups at the baseline and at the end of years 1 and 2. Urinary polyphenols
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and creatinine were measured in the spot urine samples obtained from the participants at
the same clinic visit when the fasting blood samples were drawn. From the baseline, the
excretion of polyphenols in the walnut group in the first year approached significance at
a 0.066 p value, but not in the second year or when the values were adjusted for urinary
creatinine excretion. The values were similar at the baseline and years 1 and 2 in the control
group. The results show that there were no significant differences between the intervention
groups at any time point.

Table 5. Comparison of the morning spot urine polyphenol excretion between treatment groups 1.

Urine Total Polyphenols
(mg GAE 2/L)

Mean (95% CI)

Walnut–
Control

Urine Total Polyphenols
(mg GAE/g Cr 2)
Mean (95% CI)

Walnut–
Control

(mg/g Cr)

Time Walnut Control
Beta

Estimate
(SE)

p-Value Walnut Control
Beta

Estimate
(SE)

p-Value

Baseline 285 (267, 302) 286 (268, 304) −1.09 (16.4) 0.9305 305 (282, 328) 303 (290, 327) 1.63 (16.4) 0.9207
Year 1 302 (285, 319) 279 (261, 297) 23.01 (16.4) 0.0662 333 (310, 356) 308 (284, 332) 24.93 (16.4) 0.1281
Year 2 295 (278, 313) 283 (265, 301) 12.62 (16.3) 0.3126 355 (333, 378) 337 (313, 360) 18.50 (16.3) 0.2579

1 Linear regression mixed models fitted for both variables (mg GAE/L, mg GAE/g Cr) included treatment, time,
treatment × time interaction, age, gender, and BMI as fixed-effects terms and participants as the random-effects
term. 2 Abbreviations: GAE = gallic acid equivalents, Cr = creatinine. p < 0.05 indicates significance.

Table 6 describes the association between dietary and urinary polyphenols in year
2. Results of the linear models showed that there was a significantly negative association
between the total urinary polyphenols and the log of total dietary flavonoids (p = 0.0316).
There were no significant associations with any other dietary polyphenols.

Table 6. Association between the spot urine polyphenol excretion at year 2 and the dietary intake of
polyphenols and subclasses 1.

Urine Polyphenols
(mg GAE 2/L)

Urine Polyphenols
(mg GAE/g Cr)

Polyphenol Variables Beta Estimate (SE) p-Value Beta Estimate (SE) p-Value

Log total dietary polyphenols (mg/d) 8.33 (12.90) 0.5191 12.79 (18.95) 0.5002
Log total flavonoids (mg/d) −14.27 (6.61) 0.0316 −17.23 (9.76) 0.0785

Log flavanols) (mg/d) 4.70 (5.35) 0.3801 −0.29 (8.09) 0.9717
Log phenolic acids (mg/d) −3.24 (7.00) 0.6441 −0.16 (10.31) 0.9874

1 A linear regression model was fitted for each combination of urine polyphenol (dependent variable) and log
dietary polyphenol (independent variable) while adjusting for age, gender, BMI. 2 Abbreviations: GAE = gallic
acid equivalents, Cr = creatinine. p < 0.05 indicates significance.

4. Discussion

In this sub-study of the WAHA trial, we showed that the daily ingestion of walnuts
for 2 years significantly increased the total dietary polyphenols and the subclasses of
flavonoids, flavanols and phenolic acids in healthy elderly participants. To our knowledge,
this is the first study to show that the inclusion of a single food (i.e., walnuts), with no other
changes made to the usual diet, could significantly increase the total polyphenol intake. As
expected, those who ate walnuts daily also showed higher intakes of energy, fiber, total fat,
and unsaturated fatty acids.

The results of this trial also show that participants in the walnut group consumed
significantly higher amounts of total polyphenols and flavonoids (flavones, flavonols, and
anthocyanidins), flavanols, and phenolic acids from nuts compared to those in the control
group. This finding demonstrates that a single food such as walnuts can increase the
intakes of total polyphenols and the polyphenol subclasses except for lignans. The walnut
group had a higher intake of total polyphenols from fruits, and the flavanols and lignans
from vegetables. The median daily intake of the total polyphenols of the control and



Nutrients 2023, 15, 1253 8 of 13

walnut groups at 1897 mg/d and 2480 mg/d, respectively, of this elderly cohort residing
in California was higher compared to that reported in adults in the U.S. by the National
Health and Nutrition Examination Survey (NHANES) at 884 mg per 1000 kcal per day [31].
Like the current study, beverages such as tea, coffee, red wine, and fruit juices, vegetables,
and fruits were the main contributors to the total polyphenols, flavonoids, and phenolic
acids by NHANES [31] and through a recent systematic review of 91 studies from multiple
countries [32]. A study [33] that examined the intake of dietary polyphenols by vegetarian
status showed that a coffee intake, being a single food item, was the number one contributor
to phenolic intake. Given that the WAHA intervention participants consumed walnuts
at ~15% of their energy intake, the total polyphenol content of 2431.52 per 100 g walnuts
would have added polyphenols to their diet [4].

While the walnut group showed a higher daily intake of polyphenols, this was not
reflected in the urinary excretion of polyphenols tested in the spot urine samples obtained
at the baseline, and at the end of either year 1 or year 2. Increased polyphenol metabolites
have been identified in urine following the consumption of plant-based foods, suggesting
that selected urinary polyphenols could be useful biomarkers to assess the intakes of
polyphenol-rich foods and diets [34,35]. Most bioavailable dietary polyphenols have a
relatively short half-life, estimated at 1 to 24 h following intake, and studies quantifying
polyphenol biomarkers in urine have used 24-h urine collections following the consumption
of test foods or diets [36–38]. Studies that have used 24-h urine samples were able to capture
a wide range of polyphenols and positive relationships between dietary intake and urinary
excretion of polyphenols [39,40]. One can conclude that the morning spot void used in
our study could have resulted in poor collection of most polyphenols excreted in the urine
over a 24-h period. However, similar studies found an increase in the concentration of
phenolics in the spot morning urine following the intake of polyphenol-rich foods such
fruits and vegetables [41,42]. Therefore, it is unclear why the daily inclusion of walnuts in
the diet did not result in consistent increases in the concentration of polyphenols in our
fasting spot urine samples collected following the first morning void. It is important to
note that the rapid Folin–Ciocalteu (F–C) assay with solid-phase extraction optimized by
Medina-Remón et al. [43] was used in this study to determine the total polyphenols in
urine was validated in the spot urine samples collected from individuals consuming fruits,
vegetables, tea, and red wine [44], and it has not been validated using walnuts.

In relation to the total polyphenol concentrations in the spot urine samples, our
analyses did not show associations either with the dietary total polyphenols or flavanols
and phenolic acid subclasses, but disclosed an inverse association with an intake of the
flavonoid (flavanones + flavones) category. Studies in which the total urine polyphenols
were measured with the F–C assay have shown weak to moderate associations with dietary
polyphenol intakes in the 24-h [39], 12-h overnight [33], and morning urine sample collec-
tions [43]. In adults prescribed a high vegetable and fruit diet, the fasting spot urine samples
collected after the first morning void and tested using liquid chromatography-mass spec-
troscopy disclosed an inconsistent association between the total urinary polyphenols and
total polyphenol intake, while the linear mixed model analysis showed a non-significant
inverse association between the total urine polyphenols and polyphenols from fruit [41].
The inverse correlation with fruit ingestion is consistent with our findings, since fruits
are rich sources of the flavanone and flavone subclasses. It has been hypothesized that
inverse correlations may be due to components of the food matrix that inhibit the intestinal
absorption and urinary excretion of polyphenols [45,46]. The observed lack of associations
or inverse associations may also be explained by the short half-life of bioavailable polyphe-
nols and their metabolites, which may be absorbed and excreted within a short time period
following intake [38,47]. Future studies should utilize 24-h urine collection following the
ingestion of walnuts as the best method of capturing the majority of polyphenols. Addition-
ally, reduced urinary excretion may imply that some of the polyphenols were eliminated
via the gut, an effect likely to have a favorable impact on the intestinal microbiome [48–53].
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The quality of phenolic compounds present in walnuts is diverse, ranging from simple
phenolic acids and flavonoids to highly polymerized molecules such as tannins. Walnut
phenolics are usually found at the highest concentration in the seed coat (also called the
pellicle) surrounding the edible kernel and may be bound to other plant components such
as carbohydrates and proteins. Consequently, some polyphenolic compounds might not be
released in compositional testing studies. Walnuts are distinguished by the predominance
of the hydrolysable gallotannins, glansrins (ellagitanins), and ellagic acid and the condensed
tannins that are polymers of flavan-3-ol (flavanol) catechin and epicatechin subunits. The
Polyphenol-Explorer 3.6 database reports an average amount of total polyphenol assayed
by the F–C reagent as 1575 mg/100 g of kernel. Average amounts per 100 g of the total
flavonoids, flavanols, and phenolic acids in walnuts are reported as 65 mg, 60 mg, and
449 mg, respectively [28,54–57].

Aside from the wide diversity and complexity of the phenolic substances found in
walnuts, a number of other factors complicate efforts to obtain the exact accounts of their
polyphenol composition. The concentration of phenolic compounds from different genomic
walnut species and cultivars have been found to vary widely, with mean coefficients of
variation of 25% or greater [58]. In addition, the climate, soil characteristics, agricultural
practices, storage, and manipulation influence the phenolic content of the nuts [58,59].
Studies have shown substantial differences in the composition depending on the solvent
or method (maceration, sonication) employed to extract phenols from walnuts [60]. The
results are also influenced by whether the walnut kernel is raw, mildly heated or roasted,
or whether it is defatted prior to extraction [4]. Current liquid chromatography techniques
coupled with high resolution mass spectrometry and electrospray ionization tandem mass
spectrometry have successfully been employed to identify and quantify phenolic com-
pounds in walnuts found in soluble free, soluble esters, or conjugated and insoluble bound
forms, thus providing more inclusive phenolic profiles than those reported by Phenol-
Explorer [14,61].

It is important to note that the concentration of polyphenol in urine is determined
by factors beyond the walnut phenol content and its structural matrix, but is related to
human physiology, mainly sex and age, along with factors such as digestive and metabolic
efficiency and the gut microbiota [62]. Depending on their structural complexity and
solubility, it has been estimated that only 5–10% of the total dietary polyphenols reaching the
small intestine are absorbed, with the maximum plasma concentrations attained at 30 min
following ingestion. Urinary excretion generally peaks after about 8 h of intake [38,62,63].
Unabsorbed polyphenols reach the large intestine, where they undergo enzymatic action by
the microbiota to produce a variety of metabolites. One of the major categories of phenolic
compounds in walnuts are ellagitannins [64], which are hydrolyzed to produce ellagic acid
and further acted upon by the gut microbiota to produce a series of metabolites known as
urolithins [65]. Urolithins are better absorbed than ellagitannins and are thus transported
to peripheral tissues or excreted through the urine [5,38,66]. Studies have shown urolithins
to be valid biomarkers of walnut consumption [63,67,68] with higher concentrations of the
metabolite found 12 h or longer following walnut ingestion [69].

Our study has many strengths. The WAHA study has a significantly long duration of
intervention (2 years). The study also includes a relatively large number of participants
who demonstrated excellent compliance, with a retention rate of 90%. Moreover, the dietary
intake data were extensive, having been acquired using multiple 24-h recalls (up to five
recalls) obtained throughout the 2 year period and carefully matched with Phenol-Explorer
values to obtain a profile of its polyphenol content.

The main limitation was that the urine samples were obtained from fasting participants
following the first morning void, and as such, may not have captured a large enough
quantity and diversity of phenolic metabolites excreted in a 24-h urine or in a longer
collection period. It is well-known that the half-life of most polyphenol metabolites is
relatively short and typically appear in urine within 1 to 24 h following ingestion [36].
Some phenol metabolites produced by microbiota such as urolithins may not be detected or
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quantified by the F–C reagent assay used in this study. A potential limitation is that despite
an open recruitment policy, our study participants included a higher proportion of females
than males. Additionally, the diets of the participants in the walnut group showed a higher
mean energy and fat intake than the habitual diet group, which was partially mitigated
through energy adjustment.

5. Conclusions

A single food such as walnuts eaten daily can increase dietary polyphenol intake.
This is important as we now know that polyphenols have significant health benefits, being
powerful anti-inflammatory and antioxidant phytochemicals. To reduce the risk for age-
related chronic diseases, it may be prudent to include nuts such as walnuts as part of the
usual diet to not only benefit from the unsaturated fatty acids and other nutrients that
have CVD and neuroprotective effects, but also increase the polyphenol intake, which can
synergistically influence the disease risk in a favorable manner.
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