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Global concurrent climate extremes exacerbated by
anthropogenic climate change
Sha Zhou1,2*, Bofu Yu3, Yao Zhang4

Increases in concurrent climate extremes in different parts of the world threaten the ecosystem and our society.
However, spatial patterns of these extremes and their past and future changes remain unclear. Here, we develop
a statistical framework to test for spatial dependence and show widespread dependence of temperature and
precipitation extremes in observations and model simulations, with more frequent than expected concurrence
of extremes around the world. Historical anthropogenic forcing has strengthened the concurrence of temper-
ature extremes over 56% of 946 global paired regions, particularly in the tropics, but has not yet significantly
affected concurrent precipitation extremes during 1901–2020. The future high-emissions pathway of SSP585
will substantially amplify the concurrence strength, intensity, and spatial extent for both temperature and pre-
cipitation extremes, especially over tropical and boreal regions, while the mitigation pathway of SSP126 can
ameliorate the increase in concurrent climate extremes for these high-risk regions. Our findings will inform ad-
aptation strategies to alleviate the impact of future climate extremes.
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INTRODUCTION
A notable number of record-breaking weather and climate ex-
tremes, such as heat waves, droughts, and heavy precipitation,
have occurred in the past decades (1, 2). These extreme events are
often driven by multiple dependent climate drivers, and they can
occur simultaneously in different parts of the world, causing
severe and, in some cases, irreversible impacts on human and
natural systems (3, 4). Although there is a rapidly growing body
of literature on temporally co-occurring climate extremes (3–11),
investigation into the spatial co-occurrence of climate extremes
has not received much attention (12, 13). In 2021, a record-shatter-
ing heat wave blasted large parts of the U.S. Pacific Northwest and
Canada at the end of June (14), and soon after, deadly heavy precip-
itation and flooding hit northwestern Europe, China, India, and Af-
ghanistan (15, 16), all of which have caused hundreds of deaths and
widespread damage to property and infrastructure and costed bil-
lions of dollars in economic losses. These almost simultaneously oc-
curring climate extremes raise serious concerns with a worldwide
increase in the extent of concurrent climate extremes and their det-
rimental impacts on the welfare of human society and ecosystem
sustainability.

The socioeconomic impacts of climate extremes are particularly
severe when they occur in populous and/or agricultural regions. As
the global population grows and cities expand, population at the risk
of climate extremes is increasing. Co-occurring heat waves in many
urban areas may cause large-scale power outages and increase heat
exposure and heat-related mortality (17). It is also challenging to
deal with concurrent heavy precipitation and floods in large river
basins in multiple regions/countries, which lead to widespread in-
frastructure damage, loss of lives, and other substantial

socioeconomic impacts (15, 18, 19). Spatially concurrent climate ex-
tremes may also impose a great risk to the global food supply chain
and amplify threats to global food security (12, 13, 20–23). As
supply chains are increasingly interconnected, climate-induced
production failures in one region may trigger societal impacts in
other regions through the trade networks, and simultaneous
climate extremes in several agricultural regions may threaten
global food security and affect the international financial market
(21, 23). Beyond these impacts on our society, co-occurring
climate extremes also pose serious threats to terrestrial ecosystems,
for example, simultaneous large wildfires associated with hot and
dry weather can overwhelm the suppression capacity, leading to
greater fire damages and widespread forest mortality and environ-
mental impacts (24).

There is mounting evidence to suggest that anthropogenic
climate change has led to more frequent and more intense climate
extremes over land (25–29). As climate extremes are emerging over
an increasing fraction of land area, co-occurring climate extremes at
different locations are expected to be more frequent with CO2-en-
hanced global warming (30). However, the spatial co-occurrence
pattern of climate extremes and the extent to which its changes
can be attributed to global climate change are unknown. Anthropo-
genic climate change alters the mean and variability of climate var-
iables as well as the strength of dependence between climate drivers
(4). We therefore hypothesize that anthropogenic climate change
increases the frequency and intensity of spatially concurrent
climate extremes through changes in the mean and increases in
climate variability and in the spatial dependence of climate ex-
tremes. Given the tremendous impacts of spatially co-occurring
climate extremes, it is crucial to test the hypothesis for a better un-
derstanding of whether and by how much anthropogenic climate
change has altered and will continue to affect the spatial co-occur-
rence of climate extremes around the world.

To gain insight into these questions, we propose a statistical
framework to assess the prevalence of spatial co-occurrence of
climate extremes at the grid, regional, and global scales, and quan-
tify how the concurrence of extremes changed in the past and is
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likely to change in the future because of anthropogenic climate
forcing. The statistical framework identifies the spatial dependence
of climate extremes when the null hypothesis that climate extremes
occur independently at two grid cells is rejected at a confidence level
of 95% (Materials and Methods). We use monthly climate observa-
tions including Climate Research Unit temperature and precipita-
tion products (31), Berkeley Earth (BE) temperature product (32),
and Global Precipitation Climate Center precipitation product (33),
and an ensemble of 11 General Circulation Models (GCMs) in
Coupled Model Intercomparison Project phase 6 (CMIP6) (table
S1 and Materials andMethods) (34). To better characterize regional
co-occurrence, we use the updated Intergovernmental Panel on
Climate Change Sixth Assessment Report (IPCC AR6) climate ref-
erence regions, which are identified according to consistent regional
climate features using observational and modeling (CMIP5 and
CMIP6) climate datasets (35). We present the global pattern of con-
current climate extremes among 44 land regions (excluding Antarc-
tica; table S2) and identify the hotspot regions where the spatial
concurrence of climate extremes is particularly responsive to an-
thropogenic climate forcing over historical and future periods.

RESULTS
Increased global concurrent climate extremes due to
anthropogenic climate forcing
To assess the spatial concurrence of climate extremes, we first
analyze the proportion of land grid cells (excluding Antarctica) ex-
periencing climate extremes each month over the period 1901–
2020. Temperature extremes are defined as months when tempera-
ture anomalies relative to the monthly mean values in 1901–2020
are either above their 95th percentiles or below their 5th percentiles,
and precipitation extremes are likewise defined. According to this
definition, 10% of land grid cells is expected to experience climate
extremes for each month of 1901–2020 if they occur independently
at different grid cells. Departures from the expected 10%, i.e., either
higher or lower than 10%, would therefore indicate the existence of
spatial dependence of climate extremes, and the greater the depar-
ture, the stronger the spatial dependence.

The observed proportion of land grid cells experiencing simul-
taneous temperature extremes ranges from 0 to 50% during the
period of 1901–2020 (Fig. 1A), which indicates a strong spatial de-
pendence of temperature extremes worldwide. The annual mean
proportion of land grid cells with co-occurring temperature ex-
tremes remains ~10% in the 20th century and sharply increases to
~20% in the early 21st century (Fig. 1A). This proportion increase is
dominated by the proportion of extreme high temperature, while
the proportion of extreme low temperature is decreasing (fig. S1,
A to D). Consistent with the observations, the historical ensemble
from CMIP6 also suggests that land regions become substantially
more likely to experience concurrent temperature extremes in the
early 21st century (Fig. 1C). However, there is practically no in-
crease in the proportion of land grid cells having co-occurring tem-
perature extremes throughout 1901–2020 in the hist-nat ensemble
forced by natural forcing only (Fig. 1C). These results suggest that
the observed increases in global concurrent temperature extremes
would not have occurred without historical anthropogenic
climate forcing.

The spatial dependence of monthly precipitation extremes is also
evident, with an observed proportion of land grid cells ranging from

2 to 27% at the monthly scale (Fig. 1B). The annual mean propor-
tion of land grid cells experiencing precipitation extremes increases
from ~6 to ~13% in the first 60 years of the 20th century, contrib-
uted by increases in both extreme low and extreme high precipita-
tion (fig. S1, E to H). The annual mean proportion is decreased
slightly over the past 60 years but remains above 10%. The historical
simulations show a relatively stable annual mean proportion of 10%
in the 20th century, but the proportion gradually increases to about
11% in the early 21st century (Fig. 1D). In contrast, the probability
of precipitation extremes remains centered around 10% throughout
the hist-nat simulations (Fig. 1D). The divergent trends between the
historical and hist-nat simulations in recent 2 decades indicate that
anthropogenic climate forcing may also enhance the risk of global
concurrent precipitation extremes.

Anthropogenic climate forcing affects concurrent climate ex-
tremes through climate trend and/or variability. With the long-
term temperature trends removed, the proportion of observed tem-
perature extremes is reduced greatly, especially in the 21st century,
and the difference between the hist-nat and historical ensembles is
also reduced noticeably (Fig. 1, A, C, and E). This demonstrates that
the observed increases in co-occurring temperature extremes are
mainly caused by the anthropogenic warming trend. In contrast,
the precipitation trend exerts little influence on concurrent precip-
itation extremes in both observations andmodel simulations (Fig. 1,
B, D, and F). The increasing co-occurring precipitation extremes are
mainly induced by increased precipitation variability (fig. S2),
which increases the likelihood of crossing precipitation thresholds.
The proportion of land grid cells experiencing climate extremes also
vary greatly in hist-nat simulations (Fig. 1, C to F). This indicates the
widespread existence of spatially co-occurring climate extremes in
nature, while anthropogenic climate forcing enhances the strength
and extent of spatial co-occurrence of climate extremes around
the world.

Continued greenhouse gas emissions are projected to further in-
crease global concurrent climate extremes. In the high-end emission
scenario, i.e., Shared Socioeconomic Pathway 5-8.5 (SSP585), the
proportion of land grid cells experiencing temperature extremes
defined according to historical thresholds are projected to increase
from 21% in 2020 to 95% in 2100; during the same period, the pro-
portion for concurrent precipitation extremes doubles from 11 to
22% (Fig. 1, C and D). The lower forcing in the SSP126 scenario
substantially reduces the projected proportion to 43% for tempera-
ture extremes and 13% for precipitation extremes in 2100 (Fig. 1, C
and D). These model projections indicate that climate extremes will
co-occur in more regions, depending on the greenhouse gas emis-
sion pathways. It is therefore crucial to further identify the spatial
patterns of co-occurring climate extremes in current and future
climate and determine the hotspot regions where climate extremes
are becoming increasingly co-dependent at different levels of an-
thropogenic climate forcing.

Global pattern of spatially concurrent climate extremes
We develop a statistical framework for assessing the spatial concur-
rence of climate extremes at the grid, regional, and global scales
(Materials and Methods). The concurrence probability of climate
extremes is identified according to the dependence of climate ex-
tremes at different land grid cells (2° × 2°). For a pair of grid cells,
if their climate extremes are tested to be positively or negatively de-
pendent, we calculate the associated concurrence probability of
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climate extremes. This concurrence probability (p1) is compared to
the probability (p0 = 0.005) had climate extremes occurred indepen-
dently for each pair of grid cells, to obtain a probability multiplica-
tion factor (PMF), i.e., p1/p0, which is used to measure the spatial
concurrence strength of climate extremes at the grid scale. PMF
greater than 1.8 would indicate dependent climate extremes at the
0.05 significance level for a period of 120 years or 1440 months (fig.
S3 and Materials and Methods). We also assess each pair among the
44 AR6 land regions to obtain the mean grid cell–based PMF for
dependent climate extremes at the regional scale (Fig. 2) and calcu-
late the global mean PMF across all dependent grid cell pairs.

Temperature extremes tend to co-occur positively, with the
mean PMF of 3.25 across 58% of land grid cell pairs, while the neg-
ative dependence of temperature extremes is only detected across

15% of grid cell pairs. The positive concurrence strength is especial-
ly strong over neighboring regions (close to the diagonal in Fig. 2B)
and decreases with the distance between regions (Fig. 3A). As a
result of global warming, high PMF is also found over many far
distant regions, where the PMF is reduced considerably without
the warming trends (Fig. 3A and fig. S4A). We also find evidence
to indicate stronger positive concurrence in the tropics and
higher latitude regions in both hemispheres (Fig. 3E). The strong
positively dependent temperature extremes in the tropics are
largely driven by the warming trends (Fig. 2B and fig. S5B), and
the mean PMF is reduced from 5.4 to 4.5 (18°S-18°N) when the
temperature trends are removed (Fig. 3E). The observed negative
dependence of temperature extremes is found mainly in the north-
ern mid- and high-latitude regions (Figs. 2C and 3E). Without the

Fig. 1. Prevalence of concurrent climate extremes over land. (A and B) Proportion of land grid cells experiencing monthly temperature and precipitation extremes
during the period of 1901–2020 using observations. Climate extremes are identified using temperature (precipitation) data with and without long-term trends, which are
determined as themean temperature (precipitation) of a 20-year moving window. The solid lines show themeanmonthly proportion, and the upper and lower bounds of
the shading indicate the maximum and minimum monthly proportions, i.e., the greatest departure from the expected proportion (10%, gray dashed lines) when occur-
rence of climate extremes is independent among different grid cells, for each year. (C to F) Same as (A) and (B) but using monthly temperature and precipitation data
during 1901–2100 with (C and D) and without (E and F) long-term trends from hist-nat, historical, SSP126, and SSP585 simulations of 11 GCMs in CMIP6. The mean,
maximum, and minimum proportions shown in the figure represent the mean values of observations and the 11 GCMs, respectively.
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Fig. 2. Global pattern of spatially concurrent climate extremes based on observations and CMIP6 simulations. (A) IPCC AR6 climate reference land regions (ex-
cluding Antarctica). See table S2 for detailed information on these regions. (B and C) The mean PMF for positively (B) and negatively (C) dependent climate extremes
between AR6 regions (top-left triangle, temperature extremes; bottom-right triangle, precipitation extremes) using observations for 1901–2020. Label refers to AR6
regions from 1 to 44. Stippling denotes the proportion of grid cell pairs in which climate extremes are tested to be significantly dependent for each AR6 region pair.
(D to G) Same as (B) and (C) but for historical (D and E) and hist-nat (F and G) simulations of 11 GCMs in CMIP6.
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warming trend, we find higher PMF and larger spatial extent of neg-
atively dependent temperature extremes (Fig. 2C and fig. S5C), in-
dicating that global warming shifts land grid cells with negative
dependence toward positive dependence.

Precipitation extremes co-occur both positively and negatively,
and the positive and negative dependence is detected across 27%
and 25% of land grid cell pairs, with mean PMFs of 2.64 and
2.40, respectively. In many of these grid cell pairs, precipitation
time series follow the Student’s t copula with both positive and neg-
ative tail dependence (see fig. S6 for an example). We also find con-
sistent spatial patterns of positively and negatively dependent PMF
at the regional scale (Fig. 2, B and C), with a correlation coefficient
of 0.67. Both spatial patterns show higher PMF of precipitation ex-
tremes for neighboring regions and higher latitude regions in the
two hemispheres (Fig. 3, B, D, and F). The global pattern of concur-
rent precipitation extremes is consistent using precipitation with
and without long-term trends (Fig. 2, B and C, and fig. S5, B and

C), suggesting that the observed co-occurrence of precipitation ex-
tremes is mainly associated with the spatial dependence structure of
precipitation, with little influence of precipitation trends.

The modeled historical pattern of regional PMF derived from
each GCM and particularly from the 11-GCM ensemble matches
the observed pattern well (r = 0.81 to 0.95; Fig. 2, B to E, and fig.
S7, C and D), indicating that the GCM ensemble realistically repre-
sents the global pattern of concurrent climate extremes. The spatial
dependence of climate extremes is also detected for ~50% of land
grid cell pairs in the hist-nat ensemble (Fig. 2, F and G). As the an-
thropogenic climate forcing is not included in the hist-nat simula-
tions, the identified spatial dependence of climate extremes is
largely driven by the internal climate variability, such as large-
scale atmospheric and ocean modulations. The proportion of pos-
itively dependent regions and the mean PMF for temperature ex-
tremes from the hist-nat ensemble are much lower than that in
the historical ensemble (Fig. 2, D and F). This anthropogenic

Fig. 3. Geographical distributions of spatially concurrent climate extremes. (A to D) Decrease in regional PMF of climate extremes with increase in the distance
between the centers of each region pair based on observations during 1901–2020. Center location of these AR6 regions is listed in table S2. The spectral color shows the
density of points, with higher density in blue/purple and lower density in red. The coefficient of determination (R2) for the segmented linear regression is shown for each
panel. (E and F) Latitudinal distributions of PMF for climate extremes using observations with and without long-term trends and the historical and hist-nat simulations
from CMIP6 during 1901–2020. The latitudinal distribution is represented by the mean PMF between grid cell pairs within each 10° moving zonal band at 2° increment
(Materials and Methods). The solid and dashed lines refer to positively and negatively dependent climate extremes, respectively.
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forcing–induced increases in the mean PMF are tested to be statisti-
cally significant (Student’s t test, P < 0.05) over at least 9 of the 11
GCMs for 56% of 946 global region pairs (Fig. 4C). We also note
that the difference between the historical and hist-nat ensembles
largely resembles the observed difference in regional PMF obtained
with and without temperature trends (Fig. 4). When the long-term
temperature trends are removed, the global pattern of positively de-
pendent temperature extremes from the observations and those
from the historical and hist-nat simulations are highly consistent
(r > 0.96; fig. S5, B, D, and F). The anthropogenic warming
trends are therefore largely responsible for the observed increasing
concurrence strength of temperature extremes. In contrast, we find
minimal differences in the regional PMF for precipitation extremes
between the historical and hist-nat ensembles (Fig. 4, C andD). This
suggests that the spatial co-occurrence of precipitation extremes has
not been significantly (P > 0.05) affected by the anthropogenic
climate forcing over the period 1901–2020.

Projected increases in global concurrent climate extremes
To understand future changes in global concurrent climate ex-
tremes, we split the historical and future (SSP126 and SSP585)

simulations into two 100-year periods, historical (1901–2000) and
future (2001–2100) periods, and use the historical thresholds to
define climate extremes for both periods. In future simulations,
all grid cells exhibit strong positive dependence of temperature ex-
tremes due to the global warming trends (Fig. 5A), while negative
dependence is seldom detected (<3% of grid cell pairs in SSP585).
Compared to the historical ensemble, the global PMF of positively
dependent temperature extremes increases from 3.2 to 40.7 in
SSP126 and to 88.9 in SSP585. Future increases in the regional
PMF for positively dependent temperature extremes is stronger
across the tropics than other regions in both SSP126 and SSP585
(Fig. 5, A and D). Unlike global temperature extremes that tend
to co-occur positively instead of negatively in the future, the
PMFs of both positively and negatively dependent precipitation ex-
tremes increase across almost all region pairs (Fig. 5, B and C), as
increased precipitation variability leads to increased probability of
precipitation thresholds being exceeded (fig. S2). At the same time,
we find a twofold increase in the spatial extent (i.e., proportion of
global grid cell pairs) of positively and negatively dependent precip-
itation extremes in SSP126 and a threefold increase in SSP585, com-
pared to the proportion of ~20% in the historical period. Increases

Fig. 4. Influence of anthropogenic climate change on PMF in observations and CMIP6. (A and B) Difference in regional PMF between observations with (Fig. 2, B and
C) and without (fig. S5, B and C) long-term trends for positively (A) and negatively (B) dependent climate extremes (top-left triangle, temperature extremes; bottom-right
triangle, precipitation extremes) during 1901–2020. Stippling denotes that the difference in PMF is significant at the 95% confidence level (Student’s t test), and the sign
of the difference is the same for all datasets. (C andD) Same as (A) and (B) but for the difference between historical (Fig. 2, D and E) and hist-nat (Fig. 2, F and G) simulations
for positively (C) and negatively (D) dependent climate extremes during 1901–2020 based on 11 GCMs in CMIP6. Stippling denotes that the difference in PMF is significant
at the 95% confidence level (Student’s t test), and the sign of the difference is consistent with the sign of multimodel means (as shown in the figure) for at least 9 of the
11 GCMs.
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in the co-occurrence strength and spatial extent of positively depen-
dent precipitation extremes are particularly strong across northern
high-latitude regions, while tropical regions are projected to expe-
rience large increases in both positively and negatively dependent
precipitation extremes due to future increases in precipitation var-
iability (Fig. 5, E and F, and fig. S2). Increases of concurrent precip-
itation extremes, particularly in these high-risk regions, are much
stronger in SSP585 than in SSP126, emphasizing that the low-

forcing scenario can substantially curb future increases in global
concurrent climate extremes.

Increases of global concurrent climate extremes are largely
driven by anthropogenic warming trends and increased climate var-
iability, but may also arise from strengthening spatial dependence of
climate extremes. To examine future changes in the spatial depen-
dence, we redefine climate extremes according to thresholds in his-
torical and future simulations separately. This would also allow us to

Fig. 5. Projected increases in global concurrent climate extremes in CMIP6. (A to C) Ratio of regional PMF in SSP126 and SSP585 (2001–2100, top-left triangle, SSP585;
bottom-right triangle, SSP126) over historical (1901–2000) simulations (PMFf/PMFh). Climate extremes are identified according to historical thresholds for both periods.
Stippling denotes changes in the proportion of grid cell pairs in which climate extremes are tested to be positively or negatively dependent in each AR6 region pair. (D to
F) Latitudinal distribution of PMFf/PMFh between grid cell pairs within each 10°moving zonal band at 2° increment in SSP126 and SSP585 relative to historical simulations.
The solid lines are multimodel mean of PMFf/PMFh, and the shading shows the SD of PMFf/PMFh across the 11 GCMs in CMIP6.
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assess changes in the intensity of climate extremes. Comparison of
the thresholds indicates that both extreme high and low temperature
are projected to becomewarmer globally, with greater warming over
boreal regions as a result of arctic amplification (fig. S8, A to D) (36).
We also find increases in the co-occurrence strength and spatial
extent of positively dependent temperature extremes, which are par-
ticularly evident over tropical and boreal regions (fig. S9, A and E).
Concomitantly, negatively dependent temperature extremes reduce
greatly around the globe (fig. S9, B and F). This suggests a tendency
of negative spatial dependence of temperature extremes to shift
toward positive spatial dependence due to anthropogenic climate
forcing. Changes in the spatial dependence of precipitation ex-
tremes are weaker, but the intensity of precipitation extremes in-
creases greatly in future simulations (figs. S8, E to H, and S9, C
and D). Extreme high precipitation increases across 90% of land
grid cells, especially over wet regions of the tropics (except the
Amazon) and northern high latitudes; over the tropical andmid-lat-
itude regions, extreme low precipitation also becomes more
extreme, with lower thresholds indicating larger drought risks
(fig. S8, E to H). Overall, future increases in the intensity, co-occur-
rence strength, and spatial extent of climate extremes suggest in-
creasing risks of concurrent climate extremes caused by
anthropogenic climate forcing to the end of this century.

DISCUSSION
Our analysis of observations and model simulations consistently
shows a strong spatial dependence of climate extremes. This has
led to frequently concurrent climate extremes in different parts of
the world. We find that the global pattern of spatial dependence of
climate extremes, which is also evident in the historical simulations
with natural forcing only, primarily arises from the internal climate
variability. This is because regional climates around the globe are
interconnected through teleconnections, and the global drivers of
atmospheric variability, such as the El Niño–Southern Oscillation,
can bring about climate extremes simultaneously in far distant
regions (37). The strong spatial co-occurrence of temperature ex-
tremes over tropical regions is probably driven by the warm
phases of the Pacific Decadal Oscillation (38), while concurrent
climate extremes in the mid- and high-latitude regions are likely
related to Rossby wave patterns (13, 39). We also demonstrate
that anthropogenic climate forcing has greatly enhanced the
spatial co-occurrence strength of temperature extremes over 56%
of global region pairs and will continue to increase the frequency,
intensity, and extent of co-occurring climate extremes over global
land regions, particularly in the tropics and northern high latitudes.
Future amplification of global concurrent climate risks is especially
strong in high-end forcing SSP585, while the ambitious emissions
mitigation pathway of SSP126 substantially moderates future exac-
erbation of concurrent climate extremes, especially for the high-
risk regions.

While our study has clearly identified the impacts of natural
climate variability and anthropogenic climate change on global con-
current climate extremes, the analysis may inherit uncertainties
from model simulations. To reduce this uncertainty, we use the
11-GCM ensemble, which agrees with the observations better
than individual GCMs (fig. S7). We also note that the initial condi-
tions of model simulations may affect the internal variability in the
climate system, and this can lead to uncertainties in the attribution

of spatial concurrence of climate extremes to anthropogenic climate
change and natural climate variability. To account for the effect of
initial conditions, we consider CanESM5 and MIROC6 with a large
number of realizations that differ in the initial conditions only for
meaningful statistical analysis.We find small variations in the global
mean PMF (1 SD < 0.05) and the proportion of dependent regions
(1 SD < 0.04) among the 25 realizations of CanESM5 and 50 reali-
zations of MIROC6 (fig. S10, A to D). The interregion dependence
based on the first realization used in this study is strongly correlated
with that based on the multi-realization mean for both PMF and
proportion and for both historical and hist-nat simulations
(r = 0.88 to 0.99; fig. S10, E to H). We therefore conclude that the
initial conditions have a limited impact on the spatial dependence of
climate extremes for the GCMs considered. Although our study
identifies the global pattern of concurrent climate extremes associ-
ated with natural climate variability and anthropogenic climate
change, the physical mechanisms that are responsible for the
spatial dependence of climate extremes in each pair of dependent
regions are not fully understood. Future work is needed to elucidate
the underlying mechanisms, such as atmospheric teleconnections
(13, 37) and land-atmosphere interactions (40, 41), to support pre-
dictability and management of spatially concurrent climate
extremes.

The increasing global concurrent climate extremes pose large
risks to our society and ecosystems. In particular, the strongest in-
creases in the past and projected future concurrent temperature ex-
tremes occur in tropical regions, where many developing countries
have been mostly affected by climate change and are probably the
least able to afford the consequences of future increases in temper-
ature extremes (42). Increasingly co-occurring temperature ex-
tremes will also weaken the capability of tropical biomes to act as
the largest terrestrial carbon sink (43) and further amplify global
climate change. At the same time, increasing precipitation variabil-
ity and concurrent precipitation extremes will cause more droughts
and floods simultaneously, particularly in tropical and northern
high-latitude regions, making the adaption to future climate
change more difficult. Even if the ambitious climate mitigation
targets such as those simulated in SSP126 are ultimately achieved,
climate extremes are still projected to greatly increase compared to
historical conditions. The increasing concurrent climate extremes
and their severe impacts demand urgent international actions to
reduce emissions of greenhouse gases and limit climate change
impacts. Long-term mitigation and adaptation strategies are
needed to deal with the elevated risk arising from increased fre-
quency, intensity, and spatial extent of climate extremes (44).

In summary, our study identifies the global pattern of concur-
rent climate extremes and indicates an increasing risk of global con-
current climate extremes enhanced by historical climate change and
will be exacerbated by future anthropogenic climate forcing. Global
patterns of the spatial dependence in the past and future show the
high-risk regions for concurrent climate extremes, which have far-
reaching implications for managing the risks of climate extremes
across different regions. Although future risks of climate extremes
vary geographically, they are becoming more strongly interlinked
through further warming with increased climate variability and
spatial dependence of climate extremes. Our understanding of the
global pattern of concurrent climate extremes and their responses to
different levels of anthropogenic forcings will inform effective
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mitigation and adaptation strategies to enable better preparation for
future climate extremes.

MATERIALS AND METHODS
Observational climate products
We used global climate observations to assess global concurrent
climate extremes. We used the CRU TS (Climatic Research Unit
gridded Time Series v4.05) dataset, which provides long-term
monthly temperature and precipitation observations with a high
spatial resolution of 0.5° over land regions (excluding Antarctica)
(31). The CRU TS dataset has been widely used since its first pub-
lication in 2000, and the recent version (v4.05) has been updated to
span 1901–2020. It was produced by interpolating monthly climate
anomalies from extensive networks of weather station observations
onto 0.5° × 0.5° land grids using angular-distance weighting (31).
The implementation of angular-distance weighting improved inter-
polation efficiency and accuracy and the traceability between
gridded values and the input observations.

We also used observedmonthly temperature from the BE surface
temperature project (32) and monthly land surface precipitation
from Global Precipitation Climatology Centre (GPCC) (33). The
BE surface temperature project provides gridded global temperature
anomaly produced by merging weather station thermometer mea-
surements from 14 databases. BE used an automated geostatistical
approach to detect local inhomogeneities in temperature time
series, and split the records into separate slices, and used a statistical
framework that allows for short and discontinuous temperature
records to be included to obtain average temperatures (45). The
framework used the Kriging interpolation to obtain temperature
for global land coverage, which is a well-established statistical tech-
nique for interpolation and has been widely used. The BE project
provides land surface temperature spanning 1753 to 2020 at the
spatial resolution of 1° × 1°.

We used GPCC Full Data Monthly Precipitation Product at
1° × 1° (version 2020) (33). This version was produced by superim-
posing gridded monthly precipitation anomalies on the GPCC Pre-
cipitation Climatology version 2020, which incorporated data from
84,800 stations with climatological averages. The anomalies were
spatially interpolated by using a modified version of the robust em-
pirical interpolation method SPHEREMAP that is preferred by
GPCC (46). The monthly precipitation product has been extended
to cover the entire period from 1891 to 2019 and will be updated at
irregular time intervals after substantial database improvements.

These observational climate data were used to assess spatially
concurrent climate extremes over land during the historical
(1901–2020) period. To facilitate comparisons across observational
and modeling datasets, all data were bilinearly interpolated to a
common 2° × 2° grid, and the grid cells with the fraction of land
higher than 30% were used for data analysis. To identify the
climate extremes, we accounted for the effect of seasonal cycle by
removing the mean monthly values during the study period
1901–2020 from monthly temperature and precipitation data to
obtain their monthly anomalies. These climate anomalies were
used to identify climate extremes and calculate the concurrence
strength of climate extremes at the grid, regional, and global scales.

CMIP6 climate outputs
We used climate simulations from the latest state-of-the-art climate
models that participate in CMIP6 (34) to assess the past and project-
ed future concurrent climate extremes.

In CMIP6, we used the historical simulations (1850–2014) with
radiative forcing from both human-induced emissions (greenhouse
gases and aerosols) and natural forcing (volcanic and solar activity),
and historical simulations with natural forcing only (hist-nat, 1850–
2020).We also usedmodel projections of two SSPs (2015–2100): the
low forcing sustainability pathway SSP126 (+2.6 Wm−2 imbalance)
and the high-end forcing pathway SSP585 (+8.5Wm−2 imbalance).
For our analysis, we used 11 GCMs that archive monthly tempera-
ture and precipitation data of all four simulations (historical, hist-
nat, SSP126, and SSP585). For each model, we extracted monthly
near-surface air temperature (“tas”) and total precipitation (“pr”)
from the first ensemble member (table S1), as simulations from dif-
ferent ensemble members of each model are similar (fig. S10). From
CanESM5 and MIROC6, we extracted all ensemble members, 25
and 50, respectively, to assess the effect of initial conditions on
the spatial dependence of climate extremes. Consistent with obser-
vational products, we removed the mean monthly values during the
period of 1901–2020 from monthly temperature and precipitation
data to eliminate the effect of climate seasonality and obtain
monthly anomalies of temperature and precipitation.

Spatial concurrence of climate extremes
We proposed a statistical framework to assess the spatial concur-
rence of climate extremes at the grid, regional, and global scales.
To define climate extremes, we used a simple and straightforward
approach by counting the number of months in which the
climate anomalies exceed a percentile-based threshold. Tempera-
ture (precipitation) extremes are defined as months when temper-
ature (precipitation) anomalies are above their 95th percentile or
below their 5th percentile over the study period. This percentile-
based definition allows comparable extreme thresholds across dif-
ferent climates, regions and periods, and identification and quanti-
fication of the co-occurrence strength of climate extremes at
different locations.

The concurrence probability of climate extremes is largely affect-
ed by the spatial dependence (correlation) of climate variables. For
example, we consider the time series of temperature anomalies at
two grid cells, Gi and Gj, and transform them into normalized
ranks as gi and gj, respectively. If Gi and Gj are positively correlated,
extreme high (low) temperatures tend to occur in the same month,
and the probability of positively concurrent temperature extremes at
two grid cells, P+(Gi, Gj), is expressed as

PþðGi;GjÞ ¼ P½ðgi . 0:95 > gj . 0:95Þ or ðgi , 0:05 > gj
, 0:05Þ�; i= j ð1Þ

As the concurrence probability of temperature extremes gener-
ally increases with the correlation strength (5, 11), the stronger the
correlation r(Gi, Gj), the higher the probability P+(Gi, Gj). There-
fore, P+(Gi, Gj) is expected to be higher than that if Gi and Gj are
independent (P0 = 0.05 × 0.05 × 2 = 0.005).

On the other hand, ifGi andGj are negatively correlated, extreme
high temperature for one grid cell would co-occur with extreme low
temperature at the other grid cell. In this case, the probability of
negatively concurrent temperature extremes at the two grid cells,
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P−(Gi, Gj), is given by

P� ðGi;GjÞ ¼ P½ðgi . 0:95 > gj , 0:05Þ or ðgi , 0:05 > gj
. 0:95Þ�; i= j ð2Þ

Similarly, P−(Gi,Gj) is also expected to be higher than P0 = 0.005
and decreases with r(Gi, Gj).

It is also possible that Gi and Gj are positively or negatively cor-
related, but their extremes do not positively or negatively co-occur,
for example, P+(Gi, Gj) or P−(Gi, Gj) < 0.005, which may be caused
by the so-called tail independence (47). In contrast, tail dependence
in extreme deviations may also occur when Gi and Gj are not cor-
related. To account for the effect of tail (in)dependence, we directly
tested the dependence of temperature extremes for each pair of grid
cells. To identify whether temperature extremes are significantly
positively and mutually dependent at two grid cells, we tested the
following hypothesis:

1) The null hypothesis is that temperature anomalies at two grid
cells are independent; therefore, for each month k, the probability of
positively concurrent temperature extremes at the two grid cells
equals 0.005 (P = 0.005).

p ¼ P½ðgi . 0:95 > gj . 0:95Þ or ðgi , 0:05 > gj , 0:05Þ� ð3Þ

The alternative hypothesis is that temperature extremes are pos-
itively dependent, namely, P > 0.005.

2) To test the null hypothesis, we construct a test statistic: the
number of months (m) of all assessed months (n) that temperature
extremes positively co-occur at the two grid cells.

3) If we assume that the occurrence of temperature extremes at
two grid cells is independent for different months, the number of
such concurrences would follow the binomial distribution. The
probability of positively dependent temperature extremes that
occur exactly m times in n months, Pm, is given by

Pm ¼
n!

m!ðn � mÞ!
pmqn� m; p ¼ 0:005; q ¼ 0:995 ð4Þ

According to the probability density function of the binomial
distribution, if the positively dependent temperature extremes
occur ≥13 times in the historical period (1901–2020, n = 1440),
which corresponds to a probability of >0.009 (or ≥13 of 1440), we
can reject the null hypothesis (P <0.05; fig. S3). In this case, extreme
high and low temperatures at the two grid cells are positively co-de-
pendent at a confidence level of 95%.

4) Otherwise, if the null hypothesis cannot be rejected, temper-
ature extremes do not significantly positively co-occur.

We also performed similar hypothesis testing for negatively de-
pendent temperature extremes at the grid scale and used the statis-
tical method to identify the spatial concurrence of precipitation
extremes as well. For each grid cell pair where climate extremes pos-
itively or negatively co-occur at the confidence level of 95%, we
measured the concurrence probability of climate extremes at the
two grid cells. To quantify the spatial concurrence strength, we cal-
culated PMF, which is defined as the ratio of the concurrence prob-
ability of climate extremes at two grid cells over that if climate
extremes occurred independently in each grid cell (P0 = 0.005)

PMFi;j ¼
PðGi;GjÞ

P0
ð5Þ

where P(Gi, Gj) here represents both P+(Gi, Gj) for grid cell pairs
where climate extremes are tested to be positively dependent and
P−(Gi, Gj) for negatively dependent climate extremes. Accordingly,
climate extremes between two grid cells are significantly and mutu-
ally dependent when PMF is greater than 1.8 (0.009/0.005).

At the regional scale, we assessed the co-occurrence strength of
climate extremes among the 44 IPCC AR6 land regions. For each
AR6 region pair, we calculated PMF of each pair of grid cells in
the two regions where climate extremes positively or negatively
co-occur and obtained separately the mean PMF for positively
and negatively co-occurring climate extremes at the regional scale.
The mean PMF for each region pair is expressed as

PMFRm;Rn ¼
PðGi;GjÞ

P0
; iεRm; jεRn ð6Þ

where PðGi;GjÞ is the mean of P(Gi, Gj) of grid cell pairs in the two
regions Rm and Rn.

To capture the latitudinal distribution of PMF, we obtained the
mean PMF across grid cells for a moving 10° zone at 2° increment,
i.e., from latitude −90° to −80°, −88° to −78°, etc.

PMFLm ¼
PðGi;GjÞ

P0
; i; jεLm; i= j ð7Þ

where m refers to the center of each 10° zone that varies from −85°
to 85°, again at 2° increment.

The global mean PMFwas calculated across land grid cells where
climate extremes positively or negatively co-occur.

PMFLand ¼
PðGi;GjÞ

P0
; i; jεLand; i= j ð8Þ

For data analysis, we used the observations and CMIP6 model
simulations to identify the spatial concurrence of climate extremes
in the historical period (1901–2020). We first tested the hypothesis
of spatial independence of temperature extremes and precipitation
extremes individually for each pair of grid cells. Temperature ex-
tremes are either positively or negatively dependent in most land
grid cell pairs, while precipitation extremes at two grid cells can
be positively or negatively dependent or both positively and nega-
tively dependent when precipitation time series follow the Student’s
t copula with both positive and negative tail dependence (fig. S6).
For grid cell pairs where climate extremes positively or negatively
co-occur at the confidence level of 95%, we calculated the mean
PMF and the proportion of grid cell pairs for positively and nega-
tively dependent climate extremes at the regional and global scales
using the above statistical framework. The mean PMF and propor-
tion from observational products and from the 11 GCMs were used
to assess the global pattern of concurrent climate extremes (Fig. 2).
We also examined the consistency of the mean PMF and proportion
between observations and GCMs at the regional and global scales
(fig. S7).

Influence of anthropogenic climate change on concurrent
climate extremes
We combined observational products and CMIP6 model simula-
tions to identify whether and how much anthropogenic climate
change has affected the spatial co-occurrence of climate extremes.
Anthropogenic climate forcing generally influences climate
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extremes through changes in the mean or variability or both. In ad-
dition to local climate change, co-occurring climate extremes in dif-
ferent regions also rely on the spatial dependence structure of
climate variables (4). Therefore, anthropogenic climate change
may strengthen or weaken the spatial dependence of climate vari-
ables to further amplify or moderate concurrent climate extremes.

We first identified the impact of historical climate trends on
global concurrent climate extremes using observed temperature
and precipitation with and without long-term trends during
1901–2020. Considering that the climate trends may not be linear,
we removed the nonlinear trends in temperature and precipitation
determined as the mean values of a 20-year moving window. These
observations were also used to obtain the global pattern of PMF
across the IPCCAR6 climate regions and the latitudinal distribution
of PMF to identify the hotspot regions where the spatial co-occur-
rence of climate extremes was most affected by climate trends.

We also detected the signal of anthropogenic climate forcing on
historical concurrent climate extremes by comparing historical sim-
ulations with and without (hist-nat) anthropogenic forcing from the
11 GCMs of CMIP6. As the historical simulations end in 2014, we
extended the historical simulations with those from the SSP585 sim-
ulations, which closely tracks the recent emissions trajectory, until
2020 to match the observational record period for each model. We
also extended historical simulations with the SSP126 simulations,
and the results are very similar (Fig. 1, C to F). For regional analysis,
we obtained PMF across the IPCC AR6 land regions and compared
the regional PMF between historical and hist-nat simulations to
identify region pairs where the difference in PMF is significant at
the 95% confidence level (Student’s t test). Given that anthropogen-
ic climate forcing may affect regional PMF in either positive or neg-
ative manner, we further tested whether the sign of multimodel
mean difference in PMF is statistically consistent. The null hypoth-
esis is that if the impact of anthropogenic climate forcing on region-
al PMF is random and independent, then it would be equally likely
to have a positive or negative difference in PMF. Using the binomial
distribution, we can reject the null hypothesis at a significance level
of 0.05 if no less than 9 of the 11 GCMs agree in terms of the sign of
the mean difference in PMF.

Pðm � 9Þ ¼
X11

m¼9

11!

m!ð11 � mÞ!
0:5m � 0:511� m , 0:05 ð9Þ

We identified all region pairs where anthropogenic climate
forcing has led to significant impacts on spatially concurrent
climate extremes if the difference in PMF between historical and
hist-nat simulations is significant at the 95% confidence level (Stu-
dent’s t test) and the sign of the difference is consistent with the sign
of the multimodel means for at least 9 of the 11 GCMs (Fig. 4, C
and D).

To assess the impact of future climate change on the risk of
global concurrent climate extremes, we compared the projected
spatial co-occurrence of climate extremes in SSP126 and SSP585
to historical simulations. In CMIP6, SSP585 tracks the recent emis-
sions trajectory, while SSP126 represents the ambitious mitigation
targets of the Paris Agreement. This comparison allows us to quan-
tify future risks of co-occurring climate extremes for different
forcing levels and evaluate the benefits of implementing climate
mitigationmeasures. To examine the impact of future anthropogen-
ic forcing on concurrent climate extremes, we split the whole period

into two 100-year periods and defined climate extremes according
to (i) historical (1901–2000) thresholds and (ii) separate thresholds
for each of historical (1901–2000) and future (2001–2100) periods
to determine the influence of anthropogenic climate forcing on the
spatial co-occurrence strength of climate extremes and, especially,
on the spatial dependence of climate extremes. We also compared
the thresholds of climate extremes in (ii) to assess future changes in
the intensity of concurrent climate extremes.

Influence of natural climate variability on concurrent
climate extremes
Global concurrent climate extremes may also be affected by natural
climate variability, such as large-scale atmospheric and ocean mod-
ulations. The influence of natural climate variability on global con-
current climate extremes can be assessed using the hist-nat
simulations with natural forcing only, in which the anthropogenic
climate forcing is not included and the detected spatial concurrence
of climate extremes is largely driven by natural climate variability.
However, the natural climate variability and its influence on global
concurrent climate extremes may be sensitive to models selected
and the initial conditions of model simulations. Therefore, we
used the hist-nat ensemble from the 11 GCMs of CMIP6 to assess
the influence of natural climate variability on historical concurrent
climate extremes at the global and regional scales and evaluated the
influence of initial conditions on concurrent climate extremes using
25 realizations from CanESM5 and 50 realizations from MIROC6.
These realizations differ in the initial conditions only.

Sensitivity of spatial dependence to the definition of
climate extremes
We tested the sensitivity of spatial dependence to the threshold used
to define climate extremes. We calculated the global mean PMF and
the proportion of land grid cell pairs with dependent climate ex-
tremes using observations and a series of probability thresholds of
0.01/0.99, 0.02/0.98, 0.03/0.97, ……, 0.08/0.92, 0.09/0.91, 0.1/0.9 for
hypothesis testing. The global mean PMF of dependent climate ex-
tremes increases, while the proportion of dependent grid cell pairs
decreases with more extreme thresholds (fig. S11, A to D), indicat-
ing that the spatial dependence of concurrence is strengthened but
the number of region pairs is reduced using stricter criteria for
climate extremes. We also obtained the global pattern of concurrent
climate extremes across the 44 AR6 regions with a smaller tail of
0.01/0.99 and a larger tail of 0.1/0.9 and compared the results to
that shown in Fig. 2 (B and C). Although the global patterns of con-
current extremes are broadly consistent using different thresholds,
it is evident that the regional PMF is higher, but the proportion of
grid cell pairs is lower with a more extreme threshold (fig. S11, E
to H).

Supplementary Materials
This PDF file includes:
Figs. S1 to S11
Tables S1 and S2
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