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Abstract: Somaclonal variations in tissue cultures can be used in plant breeding programs. However,
it is still unclear whether somaclonal variations and their original parent have differences in volatile
compounds, and the candidate genes which result in the differences in volatile compounds also need
to be identified. In this study, we utilized the ‘Benihoppe’ strawberry and its somaclonal mutant
‘Xiaobai’, which has different fruit aromas compared with ‘Benihoppe’, as research materials. Using
HS-SPME-GC-MS, 113 volatile compounds have been identified in the four developmental periods of
‘Benihoppe’ and ‘Xiaobai’. Among them, the quantity and content of some unique esters in ‘Xiaobai’
were much higher than that in ‘Benihoppe’. In addition, we found that the contents and odor activity
values of ethyl isovalerate, ethyl hexanoate, ethyl butyrate, ethyl pentanoate, linalool, and nerolidol
in the red fruit of ‘Xiaobai’ were much higher compared with ‘Benihoppe’, which may result from the
significantly increased expression of FaLOX6, FaHPL, FaADH, FaAAT, FaAAT1, FaDXS, FaMCS, and
FaHDR in ‘Xiaobai’. However, the content of eugenol in ‘Benihoppe’ was higher than that in ‘Xiaobai’,
which may result from the higher expression of FaEGS1a in ‘Benihoppe’ compared with ‘Xiaobai’.
The results provide insights into the somaclonal variations that affect the volatile compounds in
strawberries and can be used for strawberry quality improvement.

Keywords: Fragaria × ananassa; somaclonal variation; volatile compounds; gene expression

1. Introduction

Strawberries belong to the Rosaceae family. Strawberry fruits with pleasant aromas
are popular with consumers all over the world [1]. The volatile aroma is one of the most
important features of strawberries. The aromas of strawberries are typically complex
mixtures, which include esters, furanones, terpenoids, lactones, aldehydes, alcohols, and
sulfur compounds [2,3]. The biosynthetic pathways of aromas mainly include the amino
acid pathway, terpenoid pathway, fatty acid pathway, and carbohydrate pathway [4,5]. To
date, more than 360 volatile aroma components have been isolated and identified in
strawberries [6]. A significant negative correlation has been found between the threshold
and intensity of the aroma [7]. The odor activity value (OAV) is a good indicator of key
aroma components [8]. The OAV of volatile components makes a great contribution to the
strawberry’s flavor only when the value is greater than one [9]. In addition, some aroma
components have lower sensory thresholds despite higher concentrations, while some
volatile compounds have a significant effect on the characteristic volatile compounds of
strawberries at lower levels, such as sulfur [8].

Previous research has illustrated that esters account for 25~90% of total volatile
components in most strawberry cultivars [10]. Methyl ester and ethyl ester significantly

Plants 2023, 12, 1109. https://doi.org/10.3390/plants12051109 https://www.mdpi.com/journal/plants

https://doi.org/10.3390/plants12051109
https://doi.org/10.3390/plants12051109
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/plants
https://www.mdpi.com
https://doi.org/10.3390/plants12051109
https://www.mdpi.com/journal/plants
https://www.mdpi.com/article/10.3390/plants12051109?type=check_update&version=2


Plants 2023, 12, 1109 2 of 15

accumulate in ripening fruits [10]. The biosynthesis of esters mainly results from the
fatty acid pathway [11] and the amino acid pathway [12]. Linear esters are mostly synthe-
sized by the lipoxygenase or the β-oxidation pathways, whereas most branched-chain
esters are derived from the degradation of branched-chain amino acids [13]. Lactones
are cyclic esters with peach-like aromas, and are prominent volatile compounds in some
plant species [14], such as peach [15] and strawberry [16,17]. Both γ-decalactone and
γ-dodecalactone have sweet-enhancing effects, whereas only γ-dodecalactone plays an
important role in taste [18]. Aldehydes and furans also play important roles in strawberry
flavor, and they account for 50% of the total volatile compounds [19]. Terpenoids and
sulfur compounds [20] make up less than 10% and 2% of the total volatile compounds,
respectively. They play an important role in the aroma characteristics of strawberries.
Alcohols make up 35% of the total volatile compounds, but they have little effect on
strawberry flavor [21]. These results indicate that different aroma components are syn-
thesized through different metabolic pathways, and different aroma components have
different contents, concentrations, and effects on the characteristic volatile compounds
in strawberries. The discovery of important genes involved in volatile biosynthesis
pathways reveals the molecular mechanism of plant and fruit aroma regulation, such
as HPL, ADH, AAT, TPS, etc. [22]. In addition, many factors affect the volatile aromas
of strawberries, including genetics [23], temperature [24,25], maturity [26], pre-harvest
and post-harvest [9]. However, whether the somaclonal mutation of strawberries affects
variations in volatile compounds is largely unknown.

Somaclonal disparity originated from tissue culture germinating variations in regener-
ated plants [27]. The variant with useful agronomic traits is a source for breeding [28]. In
this study, we detected the volatile compounds in different developmental stages of ‘Beni-
hoppe’ and its somaclonal mutant ‘Xiaobai’ using HS-SPME-GC-MS. We further analyzed
the expression of volatile-related genes in the main volatile metabolic pathways to identify
the genes responsible for volatile compound differences between ‘Benihoppe’ and ‘Xiaobai’.
An integration of volatile compounds and volatile-related gene expression of the ‘Benihoppe’
strawberry and ‘Xiaobai’ will provide a new vision for the impact of somaclonal mutants on
aroma components of strawberries, and will be useful for strawberry quality improvement.

2. Results
2.1. Comparative Analysis of Phenotypes and Nine Categories of Volatile Compounds in the Fruits
of ‘Benihoppe’ and ‘Xiaobai’ at Different Developmental Stages

We first compared the phenotypes of ‘Benihoppe’ (WT) and ‘Xiaobai’ (mut) strawberry
fruit at four different developmental stages. The fruit skin and flesh color of ‘Benihoppe’
and ‘Xiaobai’ showed no significant differences at the green fruit, white fruit and turning
fruit stages. During the ripening fruit stage, ‘Benihoppe’ had red skin and red flesh,
whereas ‘Xiaobai’ had red skin and white flesh (Figure 1A). To investigate whether the
volatile compounds found in ‘Benihoppe’ and ‘Xiaobai’ were also different, we tested
volatile compounds in the four developmental stages of ‘Benihoppe’ and ‘Xiaobai’ fruit
using HS-SPME-GC-MS. A total of 113 volatile compounds were detected in the four
developmental stages of ‘Benihoppe’ and ‘Xiaobai’ fruit (Tables S2 and S3).

We further analyzed the relative abundance of the volatile compounds in the four
developmental stages of ‘Benihoppe’ and ‘Xiaobai’ fruit (Figure 1B). We found the
highest relative abundances were aldehydes and ketones in the green fruit, white fruit,
and turning fruit stages (Figure 1B). During the red fruit stage, the relative accumulation
of aldehydes and ketones gradually decreased, whereas the relative accumulation of
esters gradually increased (Figure 1B). The relative contents of acids, ethyl esters,
acetates esters, other esters, benzene and volatile phenols, isoprenoids, and furan
gradually increased in ‘Benihoppe’ and ‘Xiaobai’ during fruit ripening (Figure 1B). In
the red fruit stage, the relative contents of acids (2.96-fold), ethyl esters (56.57-fold),
acetates esters (7.29-fold), other esters (1.23-fold), aldehydes and ketones (1.04-fold),
alcohols (1.12-fold), benzene and volatile phenols (5.93-fold), isoprenoids (3.60-fold),
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and furan (5.99-fold) in the ‘Xiaobai’ were significantly higher than those in ‘Benihoppe’
strawberry fruit (Table S5). These results indicated that the contents of the volatile
compounds, except for alcohols, aldehydes, and ketones, were dramatically increased
in the red fruit of ‘Xiaobai’ compared with ‘Benihoppe’. In the red fruit stage, the
aldehydes and ketones accounted for 33.74% of the total volatile compounds and the
esters (including the ethyl esters, acetates esters, and other esters) accounted for 32.24%
of the total volatile compounds in ‘Benihoppe’ (Table S4). However, the aldehydes
and ketones accounted for only 7.52% of the total volatile compounds and the esters
(including the ethyl esters, acetates esters, and other esters) accounted for 70.45% of
the total volatile compounds in the red fruit of ‘Xiaobai’ (Table S4). Therefore, in the
red fruit stage, the contents of esters and the percentages of esters in total volatile
compounds in ‘Xiaobai’ were much higher than those in ‘Benihoppe’.
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Figure 1. (A) Fruit phenotype in four developmental stages of ‘Benihoppe’ and ‘Xiaobai’; (B) Volatile
compounds relative content in four developmental stages of ‘Benihoppe’ and ‘Xiaobai’; 1-9: Alcohol,
acid, ethyl ester, acetate ester, other esters, benzene and other volatile phenols, aldehydes and ketones,
isoprenoids, furan. (WT: ‘Benihoppe’; mut: ‘Xiaobai’). (*, p < 0.05; **, p < 0.01).

2.2. Comparative Analysis of 113 Volatile Compounds in the Fruits of ‘Benihoppe’ and ‘Xiaobai’ at
Different Developmental Stages

Different ratios of volatile substances often determine aroma properties. In the fruit of
‘Benihoppe’ and ‘Xiaobai’, 113 compounds were identified (Figure 2). We found that the
contents of alcohols and aldehydes were similar in ‘Benihoppe’ and ‘Xiaobai’ across the four
developmental stages. Interestingly, the red fruit of ‘Xiaobai’ had higher concentrations
of acetic acid, ethyl 2-methylbutyrate, ethyl hexanoate, ethyl butyrate, ethyl pentanoate,
ethyl 2-hexenoate, 2-heptyl acetate, propyl isovalerate, methyl 2-hexenoate, ethyl benzoate,
benzyl acetate, naphthalene, methyl salicylate, ethyl cinnamate, trans-2-nonenal, linalool,
farnesene, α-terpineol, and nerolidol, whereas the contents of these substances were very
low in the red fruit of ‘Benihoppe’ (Figure 2).
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2.3. Comparative Analysis of Unique Volatile Compounds in ‘Benihoppe’ and ‘Xiaobai’

To further compare the differences in volatile compounds between ‘Benihoppe’ and
‘Xiaobai’, the unique volatile compounds in the fruit of ‘Benihoppe’ and ‘Xiaobai’ at four
developmental periods were compared. As shown in Tables S6 and S7, 12 unique volatile
compounds were identified in ‘Benihoppe’, whereas 35 unique volatile compounds were
identified in ‘Xiaobai’. In the red fruit stage, there are 12 unique volatile compounds
in ‘Xiaobai’, including 1 alcohol, 1 acid and 4 esters, 3 benzene and volatile phenols,
and 3 isoprenoids (Table S7), whereas only 1 unique volatile compound was identified
in ‘Benihoppe’ (Table S6). These results illustrated that the amounts of unique volatile
compounds were much higher in the turning and red fruit stage of ‘Xiaobai’ than those
in ‘Benihoppe’, which may be one of the reasons for the difference in aromas between
‘Benihoppe’ and ‘Xiaobai’.

2.4. The OAVs of the Main Volatile Compounds in ‘Benihoppe’ and ‘Xiaobai’

The OAVs of 30 volatile compounds in ‘Benihoppe’ and ‘Xiaobai’ fruit across four
developmental stages were calculated based on the threshold values which have been
reported in strawberries [2,7,8,14,29,30]. A total of 13 and 10 volatile compounds with OAVs
greater than 1 in the red fruit were identified in ‘Xiaobai’ and ‘Benihoppe’, respectively
(Table 1). In addition, 17 and 20 volatile compounds with OAVs less than 1 in red fruit were
identified in ‘Xiaobai’ and ‘Benihoppe’, respectively (Table 1). Among them, the OAVs of
ethyl isovalerate, ethyl hexanoate, ethyl butyrate, ethyl pentanoate, and linalool in ‘Xiaobai’
were 146.5, 86.4, 34.6, 24.9, and 3.6 times higher than those in ‘Benihoppe’, respectively.
Therefore, the OAVs of these characteristic aroma compounds in ‘Xiaobai’ were much
higher than those in ‘Benihoppe’, which illustrated that these volatile compounds had an
important contribution to the aroma of ‘Xiaobai’. In addition, in the red fruit stage, the
OAVs of ethyl acetate and nerolidol in ‘Xiaobai’ were greater than one, whereas the OAVs
of these two components in ‘Benihoppe’ were less than one, which indicated that ethyl
acetate and nerolidol also contributed to the aroma of ‘Xiaobai’.

Table 1. Odor activity values (OAVs) of selected aroma compounds in ‘Benihoppe’ and ‘Xiaobai’.

Aroma Components Threshold
(mg·kg−1) WT-Green WT-White WT-

Turning WT-Red mut-
Green

mut-
White

mut-
Turning mut-Red

Ethyl butyrate 0.001 bde 1.50 0.90 3.60 127.80 1.30 2.20 10.00 4421.60
Ethyl isovalerate 0.002 e 0.00 0.00 0.00 3.70 0.00 0.00 0.55 542.15
Ethyl pentanoate 0.0015 c 0.00 0.00 0.00 1.00 0.27 0.40 0.67 24.87
Ethyl hexanoate 0.0003 ad 7.00 2.00 6.00 226.33 1.67 2.67 22.67 19,548.33

Ethyl Acetate 1 bc 0.01 0.01 0.01 0.03 0.02 0.02 0.02 3.75
Hexyl acetate 0.002 ade 0.20 0.20 4.85 34.50 0.00 0.60 7.50 52.10

Methyl butyrate 0.01 bc 0.00 0.00 1.76 45.72 0.00 0.42 6.07 42.76
Methyl hexanoate 0.087 ad 0.01 0.00 0.04 4.20 0.00 0.04 0.55 6.07

Hexanal 0.1 b 5.50 3.55 7.41 6.23 0.92 6.82 4.62 6.94
Octanal 0.001 e 1.10 1.10 1.80 4.30 0.50 1.20 1.70 10.00
Nonanal 0.001 e 0.50 0.40 0.50 0.90 0.30 0.50 0.50 1.30
Linalool 0.001 bcd 1.50 1.30 20.70 146.90 0.60 4.50 36.30 528.00

Nerolidol 0.1 b 0.00 0.00 0.00 0.06 0.00 0.00 0.01 1.47
Hexanol 0.1 b 0.94 0.08 0.13 0.37 0.12 0.19 0.15 0.10

cis-3-Hexenol 0.03 c 0.53 0.03 0.03 0.04 0.19 0.11 0.05 0.04
trans-2-Hexenol 1 b 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.02

1-Octanol 0.11 e 0.02 0.02 0.04 0.07 0.01 0.03 0.03 0.09
Acetic acid 100 b 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Butanoic acid 1 b 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.04
Hexanoic acid 10 b 0.00 0.00 0.01 0.11 0.00 0.00 0.02 0.34
Heptylic acid 0.64 c 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
Octanoic acid 0.91 c 0.00 0.00 0.00 0.12 0.00 0.00 0.01 0.37
Benzaldehyde 0.35 e 0.01 0.01 0.02 0.04 0.00 0.01 0.03 0.38
Benzyl acetate 0.75 e 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

Methyl salicylate 0.04 c 0.03 0.01 0.02 0.09 0.01 0.01 0.05 0.26
Benzyl alcohol 0.62 c 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

trans-3-Hexenyl
acetate 0.016 c 0.00 0.03 0.03 0.19 0.00 0.07 0.03 0.19
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Table 1. Cont.

Aroma Components Threshold
(mg·kg−1) WT-Green WT-White WT-

Turning WT-Red mut-
Green

mut-
White

mut-
Turning mut-Red

trans-2-Hexenyl
acetate 0.21 c 0.00 0.00 0.05 0.52 0.00 0.00 0.11 0.33

Butyl butylate 0.11 c 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.14
Hexyl butyrate 0.25 ae 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

The thresholds for the 30 volatiles are from the following literature: a [29], b [7], c [2], d [8], e [14]. The contents of
volatiles are shown in Supplementary Tables S2 and S3. (WT: ‘Benihoppe’; mut: ‘Xiaobai’).

2.5. Principal Component Analysis of Volatile Compounds in ‘Benihoppe’ and ‘Xiaobai’

To detect the changing trend of the relative contents of volatile substances in the fruit
of ‘Benihoppe’ and ‘Xiaobai’ in four developmental stages, principal component analysis
was conducted based on the content of nine categories of volatile substances. The first
principal component (PC1) accounted for 75.26% of the total variance, and the second
principal component (PC2) accounted for 15.19%. PC1 and PC2 successfully distinguished
the contents of volatile compounds in ‘Benihoppe’ and ‘Xiaobai’ at four developmental
stages (Figure 3). There are also obvious differences in the relative contents of volatile
compounds between ‘Benihoppe’ and ‘Xiaobai’ in the same fruit development period
(Figure 3). Based on the principal component loading matrix of the volatile compounds in
Table S8, we found that the contribution rates of volatile compounds under PC1 from largest
to smallest were isoprenoids, benzene and volatile phenols, acetates esters, acids, furans,
ethyl esters, other esters, alcohols, aldehydes, and ketones. Together, these results showed
that significant differences in the contents of volatile compounds between ‘Benihoppe’ and
‘Xiaobai’ were found at four fruit developmental stages.
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in ‘Benihoppe’ and ‘Xiaobai’ (WT: ‘Benihoppe’; mut: ‘Xiaobai’).

2.6. Expression Analysis of Genes Related to Volatile Compounds Metabolic Pathway

In order to understand why the volatile compounds were different between ‘Beni-
hoppe’ and ‘Xiaobai’, we examined the correlation between the transcript abundance of
volatile-related genes and the contents of volatile compounds in ‘Benihoppe’ and ‘Xiaobai’
at four different developmental stages.

2.6.1. Fatty Acid Pathway

The aroma volatiles of fruit are mainly synthesized through the fatty acid pathway;
this pathway can produce alcohols, aldehydes, esters, and lactones. This pathway contains
the lipoxygenase (LOX) and β-oxidation pathways. For the LOX pathway, linoleic acid or
linolenic acid is first oxidized to hydroperoxide by LOX, which is subsequently cleaved by
hydroperoxide lyase (HPL) to form hexanal and hexenal. The C6 aldehyde is reduced to
the corresponding C6 alcohol by alcohol dehydrogenase (ADH), then converted to ester by
alcohol acyl-transferases (AAT) [31,32] (Figure 4A).
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Figure 4. Fatty acid pathway analysis. (A) Schematic diagram of the fatty acid pathway. Multiple
enzymatic reactions are illustrated by stacked arrows. Abbreviations: ACX: acyl-CoA oxidases; FAD:
fatty acid desaturase; FAE: fatty acid elongase; HPL: hydroperoxide lyase; CYP: cytochrome P450;
FAH: fatty acid hydroxylase; PXG: peroxygenase; EH: epoxide hydrolase; LOX:lipoxygenase; ADH:
alcohol dehydrogenases; AAT: alcohol acyl-transferases; (B) Expression levels of biosynthetic genes
related to the fatty acid pathway of the ‘Benihoppe’ strawberry (WT) and its ‘Xiaobai’ (mut) fruit
at four developmental stages. Darker red indicates a higher expression level, whereas darker blue
indicates a lower expression level.

In this study, we found that the content of esters in ‘Xiaobai’ was higher than that
in ‘Benihoppe’ in the red fruit stage. There were significant differences in the expression
levels of FaLOX6, FaHPL, FaADH, FaAAT, and FaAAT1 genes in the fatty acid pathway in
the fruit of ‘Benihoppe’ and ‘Xiaobai’ at four different developmental stages. During the
fruit development of ‘Benihoppe’ and ‘Xiaobai’, the expression level of FaLOX6, FaHPL,
and FaADH first increased and then decreased. However, the expression levels of these
genes reached the highest values in the turning fruit stage of ‘Benihoppe’ and the white
fruit stage of ‘Xiaobai’. In addition, the content of hexanal in ‘Xiaobai’ also first increased
and then decreased (Table S3). The content of hexanal in ‘Xiaobai’ reached the maximum in
the white fruit stage compared with other fruit development stages, which was consistent
with the expression of FaHPL in ‘Xiaobai’ (Figure 4B). The gene expression of FaAAT and
FaAAT1 in ‘Benihoppe’ and ‘Xiaobai’ gradually increased during fruit ripening, which
was consistent with the changing trend of esters in ‘Benihoppe’ and ‘Xiaobai’ during fruit
ripening (Figure 4B). Interestingly, the expression levels of FaLOX6, FaHPL, and FaADH in
the red fruit stage of ‘Xiaobai’ were 3.6, 3.2, and 4.0 times higher, respectively, than those in
‘Benihoppe’, which was consistent with the significantly increased esters in the red fruit
stage of ‘Xiaobai’ compared with ‘Benihoppe’ (Figure 4B).

2.6.2. Amino Acid Pathway

The amino acid metabolic pathway produces branched-chain alcohols, aldehydes, and
acids [12]. Amino acid-derived alcohols and acids can be esterified into compounds that
have a greater impact on fruit aromas, such as 3-methyl-butyl acetate and 3-methyl butyrate
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in bananas [33]. Aromatic amino acids such as phenylalanine, utilize phenylalanine as
the initial substrate, which undergoes a deamination reaction under the catalytic action
of phenylalanine lyase (PAL) to generate trans-cinnamic acid [34]. Trans-cinnamic acid
produces eugenol through a series of enzymes [35] (Figure 5A).
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Figure 5. Amino acid pathway analysis. (A) Schematic diagram of the amino acid pathway. Multiple
enzymatic reactions are illustrated by stacked arrows. Abbreviations: BCAT: branched-chain amino
acid transaminase; PDC: pyruvate decarboxylase; ADH: alcohol dehydrogenases; AAT: alcohol
acyl-transferases; PAL: phenylalanine ammonia lyase; EGS: eugenol synthase; (B) Expression level of
biosynthetic genes related to the amino acid pathway in the fruit of ‘Benihoppe’ (WT) and ‘Xiaobai’
(mut) at four developmental stages. Darker red indicates a higher expression level, whereas darker
blue indicates a lower expression level.

The transcript abundances of genes involved in the amino acid pathway were analyzed
in ‘Benihoppe’ and ‘Xiaobai’ at four developmental stages of fruit. The highest expression
levels of FaBCAT2, FaPDC, FaPDC1, and FaADH (Figure 4B) were identified in the white
fruit stage of ‘Xiaobai’, but in the turning fruit stage of ‘Benihoppe’. The expression
levels FaAAT and FaAAT1 gradually increased during fruit ripening, and were similar
between ‘Benihoppe’ and ‘Xiaobai’ (Figure 5B). In addition, the content of eugenol in
‘Benihoppe’ was higher than that in ‘Xiaobai’ (Tables S2 and S3). To explore the reason
for the difference in eugenol content between ‘Benihoppe’ and ‘Xiaobai’, we analyzed the
expression levels of FaEGS1a and FaEGS2, which were the key genes that participated
in eugenol biosynthesis [36]. We found that there was an opposite expression pattern of
FaEGS1a and FaEGS2 in ‘Benihoppe’ and ‘Xiaobai’. The expression of FaEGS1a was higher
in the green fruit stage, and its expression significantly decreased during fruit ripening. In
the four developmental stages, the expression of FaEGS1a in ‘Benihoppe’ was higher than
that in ‘Xiaobai’. The expression levels of FaEGS1a in ‘Benihoppe’ were 2.64, 5.38, 1.93, and
1.15 times higher than those in ‘Xiaobai’, respectively. The gene expression level of FaEGS2
significantly increased during fruit ripening, and its expression in ‘Benihoppe’ was higher
than that in ‘Xiaobai’ in the red fruit stage. The transcript level of FaEGS2 in ‘Benihoppe’
was 2.5 times higher than that in ‘Xiaobai’ (Figure 5B). Therefore, the higher expression
of FaEGS1a and FaEGS2 in ‘Benihoppe’ compared with in ‘Xiaobai’ may lead to a higher
content of eugenol in ‘Benihoppe’ than in ‘Xiaobai’, which may be one of the reasons for
the difference in aroma between ‘Benihoppe’ and ‘Xiaobai’.
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2.6.3. Terpenoid Pathway

Terpenoids are important volatile compounds that play important roles in the forma-
tion of aromas [37,38]. Terpenoids are derived from the common precursor isopentenyl
pyrophosphate (IPP) and its allylic isomer, dimethylallyl diphosphate (DMAPP), which are
produced by the mevalonic acid (MVA) and methylerythritol phosphate (MEP) pathways,
respectively [39]. The MEP pathway operates in the plastids and is mainly responsible
for the formation of monoterpenes and diterpenes [40]. The MVA pathway operates in
the cytoplasm, endoplasmic reticulum, and peroxisomes, providing precursors for the
synthesis of sesquiterpenes (Figure 6A).
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Figure 6. Terpenoid pathway analysis. (A) Schematic diagram of terpenoid pathways. Abbrevia-
tions: MEP: methylerythritol phosphate; MVA: mevalonic acid; G3P: glyceraldehyde 3-phosphate; DXP:
1-deoxy-D-xylulose-5-phosphate; DXS: DXP synthase; DXR: DXP reductoisomerase; CMS: 2-C-methyl-
D-erythritol 4-phosphate cytidylyltransferase; CMK: 4-(cytidine 5′-diphospho)-2-C-methyl-D-erythritol
kinase; MCS: 2-C-methyl-D-erythritol 2, 4-cyclodiphosphate synthase; HDS: 4-hydroxy-3-methylbut-2-
en-1-yl diphosphate synthase; HDR: HMBPP reductase; IPP: isopentenyl diphosphate; IDI: isopentenyl
pyrophosphate isomerase; DMAPP: dimethylallyl diphosphate; FPP: farnesyl diphosphate; GPP: geranyl
pyrophosphate; GGPP: geranylgeranyl pyrophosphate; AACT: acetyl-CoA acetyltransferase; HMGS:
HMG-CoA synthase; HMGR: HMG-CoA reductase; PMK: phosphomevalonate kinase; MPDC: meval-
onate diphosphate decarboxylase; NES1: nerolidol synthase 1; CCD: carotenoid cleavage dioxygenases;
(B) Transcript level of biosynthetic genes related to terpenoid pathways in the fruit of ‘Benihoppe’ (WT)
and ‘Xiaobai’ (mut) at four developmental stages. Darker red indicates a higher expression level, whereas
darker blue indicates a lower expression level.

Nerolidol and linalool play important roles in the aroma of strawberries. Linalool
and nerolidol were generated through FaNES1 based on geranyl diphosphate (GPP) and
farnesyl diphosphate (FPP), respectively [23]. We found that the contents of nerolidol and
linalool in ‘Xiaobai’ were higher relative to ‘Benihoppe’. To explore the reason for the dif-
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ference between nerolidol and linalool in ‘Benihoppe’ and ‘Xiaobai’, we analyzed the genes
involved in the terpenoid pathways in the fruit of ‘Benihoppe’ and ‘Xiaobai’ at four devel-
opmental stages. We found that the expression levels of FaDXS, FaDXR, FaCMS, FaMCS,
FaHDS, and FaHDR in the MVA pathway and FaHMGR2, FaMVK, and FaPMK in the MEP
pathway first increased and then decreased in ‘Benihoppe’ and ‘Xiaobai’. The expression
levels of these genes reached their maximum in the turning stage of ‘Benihoppe’ and in the
white fruit stage of ‘Xiaobai’. In addition, the transcript abundance of FaNES1 gradually in-
creased with the ripening of the fruit in ‘Benihoppe’ and ‘Xiaobai’ (Figure 6B). Interestingly,
the expression levels of FaDXS, FaMCS, and FaHDR were significantly increased in the red
fruit of ‘Xiaobai’ compared with ‘Benihoppe’, which may result in increased linalool and
nerolidol in ‘Xiaobai’.

3. Discussion

Somatic variation can be used for plant improvement [41]. In the progeny of micropropa-
gated plants of ‘Benihoppe’, we identified a somaclonal mutant ‘Xiaobai’, which had a special
aroma compared to ‘Benihoppe’. To clarify the differences in aroma between ‘Benihoppe’
and ‘Xiaobai’, the main differential components and the differentially expressed genes in
‘Benihoppe’ and ‘Xiaobai’ involved in the pathway of volatile compounds were investigated.

Approximately 360 volatile compounds have been identified in strawberries to date,
which mainly include esters, furanones, terpenoids, lactones, aldehydes, alcohols, and
sulfur compounds [6]. Significant differences in the aroma compositions of strawberry
fruit are related to different cultivars [42,43] and different developmental stages [44]. In
this study, we identified 113 volatile compounds in the four developmental periods of
‘Benihoppe’ and ‘Xiaobai’. Volatile compounds were more abundant in ‘Xiaobai’ than in
‘Benihoppe’. Fruit aromas are primarily made up of esters [21]. Our results illustrated that
the proportion of esters in the four stages of fruit development in ‘Xiaobai’ was much higher
than that in ‘Benihoppe’, especially in the red fruit stage of ‘Xiaobai’ (Table S4). In addition,
the OAVs of ethyl isovalerate, ethyl hexanoate, ethyl butyrate, and ethyl pentanoate in
‘Xiaobai’ were much higher than those in ‘Benihoppe’ (Table 1). These results showed
that the differences in esters were the key reason for the differences in aroma between
‘Benihoppe’ and ‘Xiaobai’. The formation of aroma is closely related to the expression of
aroma-related genes [45]. Ester compounds are mainly synthesized through the fatty acid
pathway [11] and the amino acid pathway [12]. Therefore, we examined the expression of
genes involved in the fatty acid and amino acid pathways. The expression levels of FaLOX6,
FaHPL, and FaADH in the four developmental stages of ‘Xiaobai’ fruit were higher than
those in ‘Benihoppe’. In addition, the transcript abundances of FaAAT and FaAAT1 were
higher in ‘Xiaobai’ than those in ‘Benihoppe’ in the white fruit, turning fruit and red fruit
stages (Figure 4B). FcAAT1 plays an important role in strawberry flavor, and this gene is
positively correlated with ester synthesis [46]. FaAAT2 is involved in the synthesis of fruit
volatile substances in strawberries, and the expression pattern of this gene during receptacle
growth and ripening is consistent with the production of esters during the ripening of
strawberry fruit [47]. In this study, we found that the expression levels of FaAAT and
FaAAT1 were higher than FaAAT2, suggesting that FaAAT and FaAAT1 play an important
role in ester synthesis in ‘Benihoppe’ and ‘Xiaobai’ (Figure 4B).

Eugenol is a type of phenylpropene that plays different roles in different organs of plants.
It can induce insect pollination and defend against animals and microorganisms [48]. Aromatic
compounds, such as phenylpropenes, are produced by fruits [49]. In strawberries, eugenol
production in the ripening fruit has been reported [50]. In this study, the content of eugenol in
the red fruit stage of ‘Benihoppe’ was higher than that in ‘Xiaobai’ (Tables S2 and S3). FaEGS1a
and FaEGS2 are the key genes for the synthesis of eugenol and isoeugenol, respectively [36]. A
recent study showed that eugenol synthase 1 (EGS1) and eugenol synthase 2 (EGS2) have
the same catalytic activity, but they have opposite expression patterns [51]. The expression
level of FaEGS1a is higher in the green fruit stage and significantly decreased in the white fruit
and red fruit stages, whereas the expression level of FaEGS2 is lower in the green fruit and
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white fruit stages and higher in the red fruit stage [36], which is consistent with our results.
Taken together, the higher expression of FaEGS1a in ‘Benihoppe’ than that in ‘Xiaobai’ may
result in the increased content of eugenol in ‘Benihoppe’ compared with ‘Xiaobai’. In addition,
the content of benzene and volatile phenol in ‘Xiaobai’ was 5.93 times higher than that in
‘Benihoppe’ and the content of anthocyanins in ‘Xiaobai’ flesh was significantly decreased
compared with ‘Benihoppe’ [52]. Phenylalanine ammonia-lyase (PAL) participates in both the
flavonoid biosynthetic pathway and the phenylpropanoid/benzenoid biosynthetic pathway,
which might be a trade-off relationship between them.

Terpenoids play an important role in the characteristic aroma of strawberries [6]. The
main terpenoids in cultivated strawberries are monoterpenoid linalool and sesquiter-
penoid nerolidol [23]. The biosynthesis of nerolidol and linalool is based on isopentenyl
diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). FaNES1 is an important
gene for the synthesis of nerolidol and linalool [53]. In this study, the contents of linalool
and nerolidol in ‘Xiaobai’ were higher than those in ‘Benihoppe’ in the red fruit stage
(Tables S2 and S3). The OAVs of linalool and nerolidol in ‘Xiaobai’ were higher than
those in ‘Benihoppe’ (Table 1). It has been reported that the synthesis of linalool and
nerolidol may be positively correlated with the transcriptional level of the FaNES1 gene.
We found that the expression of FaNES1 increased with fruit development. However, we
found no significant difference in the expression of FaNES1 between ‘Benihoppe’ and
‘Xiaobai’. Next, we detected the transcript abundances of other genes involved in the
terpenoid pathway in the fruit of ‘Benihoppe’ and ‘Xiaobai’ at different developmental
stages. Interestingly, the expression levels of FaDXS, FaMCS, and FaHDR in ‘Xiaobai’
were significantly increased compared with ‘Benihoppe’ in the red fruit stage, which
might lead to increased linalool and nerolidol in ‘Xiaobai’.

4. Materials and Methods
4.1. Plant Materials

The strawberry materials were ‘Benihoppe’ and ‘Xiaobai’. ‘Xiaobai’ was a cultivar pro-
duced from the tissue culture of apices of stolon tips of ‘Benihoppe’, which was from the Li
Jian of Beijing Aoyi Kaiyuan vegetable planting cooperative. ‘Benihoppe’ and ‘Xiaobai’ were
cultivated in the greenhouse of Shenyang Agricultural University, China. The fruit was divided
into four stages at 8 days (green fruit stage), 16 days (white fruit stage), 24 days (turning fruit
stage), and 32 days (red fruit stage) after pollination [54]. The fruit samples of ‘Benihoppe’ and
‘Xiaobai’ from four stages were used for RT-qPCR and HS-SPME-GC-MS analysis.

4.2. Volatile Compounds Extraction

The extraction of volatile compounds from fruit samples was based on the methods
described in [54]. We weighed 50 g of the powder, then blended this with 0.5 g of
D-glucolactone (to inhibit glycosidase activity) and 1 g of PVPP (to remove polyphenols
and prevent sample oxidation). To obtain a clear juice, the powder was immediately
centrifuged at 8000 rpm at 4 ◦C for 15 min after maceration at 4 ◦C for 240 min.

4.3. HS-SPME-GC-MS Analysis

The detailed method used for the identification of volatile compounds in strawberries
using HS-SPME-GC-MS described in [54] was followed.

4.4. Quantitative Real-Time PCR

Total RNA was extracted from the fruit at four developmental stages of ‘Benihoppe’
and ‘Xiaobai’ using a modified CTAB method as described in [55]. We tested the RNA
concentration and RNA quality using an ultramicro ultraviolet spectrophotometer (Nan-
oDrop 20,000.5 µL, 190–840 nm). The genome DNA was removed by enzymolysis. The
reaction contained 2.0 µL 5 × gDNA Eraser Buffer, 1.0 µL gDNA Eraser, 1 µg RNA and
RNase-free ddH2O to 10 µL. The reaction was conducted at 42 ◦C for 5 min. Total RNA
(1 µg) was reverse-transcribed using a PrimeScriptTM RT kit (TaKaRa, Dalian, China), and
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the volume of the cDNA was 20 uL. The gene sequences involved in volatile biosynthetic
pathways were based on the published literature [4,6]. Then, we used these sequences as
baits for BLAST on the Fragaria × ananassa database (https://www.rosaceae.org/, accessed
on 20 June 2021) [56,57]. The sequences from Fragaria × ananassa with the highest similarity
were selected, and RT-qPCR primers were designed using the online software Primer 3.0
based on the conserved sequences. The sequences of primers used in this study are listed in
Table S1. We performed quantitative real-time RT-PCR (RT-qPCR) using the QuantStudioTM

6 Flex system (Applied Biosystems, Foster City, CA, USA) according to the manufacturer’s
instructions. Measurements of the gene expression levels of aroma-related genes were
carried out using SYBR® Premix Ex Taq TM II (CWBio, Beijing, China). The reaction system
was established as described in [53]. Strawberry 26S rRNA (Fa26S) is a housekeeping gene
in strawberries and was selected as a reference gene [58,59]. Each sample was analyzed in
triplicate with three biological replicates. The 2−∆∆Ct method was used for calculating the
relative gene expression level [60].

4.5. Statistical Analysis

Statistical analysis was performed using IBM SPSS Statistics 19. Three replicates were
used for each measurement. Based on Duncan’s test (p < 0.05), different letters represent
significant differences between different treatments. For the nine categories of volatile
compounds, a T-test was used to determine whether there was a significant difference
between the two treatments (*, p < 0.05; **, p < 0.01). SigmaPlot 12.5 (Systat Software, Inc.,
San Jose, CA, USA) was used to visualize the data. Principal component analysis was
conducted using Origin 8.0 software (MicroCal Software Inc., Northampton, MA, USA). We
analyzed the results of RT-qPCR using Microsoft Excel, and the heatmap of gene expression
of fruit at four developmental stages was generated using TBtools1.082 [61].

5. Conclusions

As shown in Figure S1, the gene expression levels of FaHPL and FaADH gradually
increased in the early stages of fruit development, which was consistent with the higher
contents of aldehydes and alcohols, and was responsible for the grassy aroma in the early
stages of fruit development in ‘Benihoppe’ and ‘Xiaobai’. With the growth and development
of strawberry fruit, the transcript levels of FaHPL and FaADH decreased and the gene
expression levels of FaAAT and FaAAT1 increased. Therefore, the contents of aldehydes
and alcohols gradually decreased, whereas the content of esters significantly increased,
which led to the strong fragrance of ‘Benihoppe’ and ‘Xiaobai’ in the red fruit stage.

In addition, the expression of FaEGS1a in the red fruit stage of ‘Benihoppe’ was higher
than that in ‘Xiaobai’, and the content of eugenol in ‘Benihoppe’ was higher than that in
‘Xiaobai’, which may be one of the reasons for the difference in aroma between ‘Benihoppe’
and ‘Xiaobai’. Higher contents of esters, linalool, and nerolidol in the red fruit stage
of ‘Xiaobai’ were related to the increased expression of genes involved in the fatty acid
pathway (FaADH, FaAAT, and FaAAT1) and the terpenoid pathway (FaDXS, FaMCS, and
FaHDR) in the red fruit stage of ‘Xiaobai’ compared with ‘Benihoppe’. The results provide
insights into the somaclonal variations that affect the volatile compounds in strawberries
and can be used for strawberry quality improvement.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/plants12051109/s1, Figure S1: Overview of differential volatile
compounds and possible key genes responsible for the differential volatile compounds between
‘Benihoppe’ and ‘Xiaobai’. Table S1: Primers used for gene expression analysis. Table S2: Relative
contents of volatile components in four periods of ‘Benihoppe’ (WT). Table S3: Relative contents of
volatile components in four periods of somaclonal mutant ‘Xiaobai’ (mut). Table S4: The proportion
of nine categories of volatile compounds in four developmental stages of fruit between ‘Benihoppe’
(WT) and somaclonal mutant ‘Xiaobai’ (mut). Table S5: The ratio of volatile substances contents
in ‘Benihoppe’ (WT) and somaclonal mutant ‘Xiaobai’ (mut) in four periods. Table S6: The unique
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volatile components in ‘Benihoppe’ (WT). Table S7: The unique volatile components in somaclonal
mutant ‘Xiaobai’ (mut). Table S8: Principal component load matrix of volatile compounds.
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