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Abstract During cell division, chromosome segregation is orchestrated by a microtubule-based
spindle. Interaction between spindle microtubules and kinetochores is central to the bi-orientation
of chromosomes. Initially dynamic to allow spindle assembly and kinetochore attachments, which

is essential for chromosome alignment, microtubules are eventually stabilized for efficient segrega-
tion of sister chromatids and homologous chromosomes during mitosis and meiosis |, respectively.
Therefore, the precise control of microtubule dynamics is of utmost importance during mitosis and
meiosis. Here, we study the assembly and role of a kinetochore module, comprised of the kinase
BUB-1, the two redundant CENP-F orthologs HCP-1/2, and the CLASP family member CLS-2 (here-
after termed the BHC module), in the control of microtubule dynamics in Caenorhabditis elegans
oocytes. Using a combination of in vivo structure-function analyses of BHC components and in vitro
microtubule-based assays, we show that BHC components stabilize microtubules, which is essential
for meiotic spindle formation and accurate chromosome segregation. Overall, our results show that
BUB-1 and HCP-1/2 do not only act as targeting components for CLS-2 at kinetochores, but also
synergistically control kinetochore-microtubule dynamics by promoting microtubule pause. Together,
our results suggest that BUB-1 and HCP-1/2 actively participate in the control of kinetochore-
microtubule dynamics in the context of an intact BHC module to promote spindle assembly and
accurate chromosome segregation in meiosis.

Editor's evaluation

This paper on the regulation of microtubule dynamics during C. elegans meiosis presents important
findings that will be of interest to scientists in the broad field of microtubule function in both
mitosis and meiosis. The experiments are beautifully conducted and presented and support the
conclusions of the paper in a compelling manner. The results are interesting and add to our under-
standing of the control of microtubule dynamics at the kinetochore and its functional consequences
for meiosis.
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Introduction

Equal partitioning of the replicated genome between the two daughter cells is a key step of cell divi-
sion. Throughout meiosis and mitosis, proper interactions between spindle microtubules and kineto-
chores, multiprotein complexes assembled at the centromeres of meiotic and mitotic chromosomes,
are essential for accurate chromosome segregation (Musacchio and Desai, 2017). Kinetochore-
microtubule attachments are required for co-orientation of homologous chromosomes attached to
the same spindle pole during meiosis | and for chromosome bi-orientation with sister chromatids
attached to microtubules emanating from opposite spindle poles in meiosis || and mitosis (Dumont
and Desai, 2012).

After nuclear envelope breakdown (NEBD), dynamic microtubules grow toward the chromosomes
where they engage in lateral interactions with kinetochore-localized motor proteins (Rieder and Alex-
ander, 1990; Scaérou et al., 1999; Yao et al., 1997, Kapoor et al., 2006; Ferreira and Maiato,
2021; Renda et al., 2022). These initial interactions promote chromosome orientation and accelerate
stable end-on attachments with kinetochore-microtubules mediated by the Ndc80 complex (DeLuca
et al., 2006; Cheeseman et al., 2006; Wei et al., 2007; Ciferri et al., 2008, Cheerambathur et al.,
2013). Initially spindle microtubules are highly dynamic to allow spindle assembly and capture by
kinetochores, which is essential for chromosome alignment. But as meiosis and mitosis progress, kine-
tochore microtubules become stabilized for efficient segregation of homologous chromosomes and
sister chromatids (Maia et al., 2012, Kabeche and Compton, 2013; Dumitru et al., 2017). Thus,
precise control of microtubule dynamics is essential for spindle assembly and the stepwise attachment
of chromosomes followed by their accurate segregation.

Proteins of the cytoplasmic linker-associated protein (CLASP) family are evolutionary-conserved
regulators of microtubule dynamics (Akhmanova et al., 2001; Akhmanova and Steinmetz, 2010;
Lawrence et al., 2020). During meiosis and mitosis, CLASP proteins prevent spindle abnormalities
and chromosome segregation errors in most species including yeast, Drosophila, C. elegans and
mammals (Pasqualone and Huffaker, 1994; Lemos et al., 2000, Cheeseman et al., 2005; Maiato
et al., 2002). In vitro, CLASPs maintain microtubules in a growing state by promoting microtubule
rescue while inhibiting catastrophe (Al-Bassam et al., 2010; Yu et al., 2016; Moriwaki and Goshima,
2016; Lawrence et al., 2018; Aher et al., 2018). In dividing human cells, two paralogous CLASP1/2
proteins act redundantly at the kinetochore where they are targeted through their C-terminal domain
(CTD) by a poorly characterized pathway that involves the motor protein CENP-E and the kineto-
chore and spindle-associated protein SPAG5/Astrin (Maiato et al., 2003; Pereira et al., 2006; Maffini
et al., 2009; Manning et al., 2010; Kern et al., 2016). In C. elegans, CLS-2 is the sole CLASP ortholog
that localizes at the kinetochore and is essential for normal spindle assembly and chromosome segre-
gation (Cheeseman et al., 2005). During meiosis in C. elegans oocytes, CLS-2 is essential for meiotic
spindle assembly, chromosome segregation and polar body extrusion (Dumont et al., 2010; Laband
et al., 2017, Pelisch et al., 2019, Schlientz et al., 2020). Kinetochore localization of CLS-2 requires
interaction with the two CENP-F-like proteins HCP-1/2, which are themselves localized downstream of
BUB-1 (Figure 1A; Cheeseman et al., 2005; Essex et al., 2009, Edwards et al., 2018).

Bub1 (BUB-1 in C. elegans) is a kinase originally identified for its role in the Spindle Assembly
Checkpoint (SAC), a safety mechanism that ensures proper connection of kinetochores to spindle
microtubules (Lara-Gonzalez et al., 2021; Zhang et al., 2022). During meiosis and mitosis, Bub1 is
also directly involved in chromosome bi-orientation through its non-SAC functions that: (1) promote
kinetochore recruitment of dynein and CENP-F, (2) ensure proper inner-centromere localization of
Aurora B, (3) recruit PP2A:B56 on meiotic chromosomes, and (4) limit kinetochore-microtubule attach-
ment maturation by the SKA complex in mitosis (Essex et al., 2009, Edwards et al., 2018; Johnson
et al., 2004; Klebig et al., 2009; Kawashima et al., 2010; Zhang et al., 2015; Ciossani et al., 2018,
Berto et al., 2018; Bel Borja et al., 2020). During mitosis, Bub1 interacts physically with Bub3 via
its ‘Bub3-binding motif’, formerly known as the GLEBS domain (Wang et al., 2001; Larsen et al.,
2007, Primorac et al., 2013). The Bub1/Bub3 complex is then recruited to kinetochores through
Bub3 direct-binding to phosphorylated MELT (Met-Glu-Leu-Thr) repeats located in the N-terminal
half of Knl1 (Primorac et al., 2013; Cheeseman et al., 2004; Shepperd et al., 2012; London et al.,
2012; Yamagishi et al., 2012; Vleugel et al., 2013). During meiosis in C. elegans oocytes, BUB-1
also localizes to kinetochores, which display characteristic cup-like shapes (Monen et al., 2005). This
kinetochore localization requires KNL-1, but whether it occurs via BUB-3 and the KNL-1 MELT repeats
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Figure 1. The N-terminal MELT repeats of KNL-1, but not BUB-3, are required for BHC module kinetochore targeting in oocytes. (A) Schematic of
kinetochore and ring domain protein organization around a bivalent chromosome during metaphase | in a C. elegans oocyte. CPC: Chromosome
Passenger Complex. (B) Immunolocalization of BUB-1 (left) and quantification of BUB-1 signal at kinetochores (right) in bub-3(0k3437) mutants (bub34,
n=>58) compared to wild type controls (n=58). Error bars, Mean and standard deviation. Unpaired t-test, alpha = 0.05, p<0.0001. (C) Schematic of KNL-
1::mCherry protein fusions. (D-F) Localization of BUB-1::GFP (D), GFP::HCP-1 (E) and CLS-2::GFP (F) in worms carrying full length or MELT-deleted
KNL-1:mCherry (KNL-1™ and KNL-14%% respectively, n>10). (G) Localization of CLS-2::GFP at ring domains in knl-1-depleted oocytes (left) with
corresponding schematic (right). (H) Localization of BUB-1::mCherry in gei-17-depleted oocytes (n=29) compared to controls (n=25). Scale bars 5 pm,
1 pmin insets.

The online version of this article includes the following source data and figure supplement(s) for figure 1:
Source data 1. Panel B source data.

Figure 1 continued on next page
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Figure 1 continued

Figure supplement 1. BUB-3 is not required for BHC module kinetochore targeting.
Figure supplement 1—source data 1. Panel A source data 1.

Figure supplement 1—source data 2. Panel A source data 2.

Figure supplement 1—source data 3. Panel B source data.

Figure supplement 1—source data 4. Panel C source data.

is unknown (Dumont et al., 2010). BUB-1 additionally concentrates at trilaminar ring domains located
between each pair of homologous chromosomes in meiosis | and between sisters in meiosis || (Dumont
et al., 2010). This localization lies downstream of the Chromosomal Passenger Complex (CPC) and
requires BUB-1 sumoylation (Pelisch et al., 2019; Pelisch et al., 2017, Davis-Roca et al., 2018).
The specific functions of these two distinct chromosomal BUB-1 localizations are at present unclear.
However, BUB-1 plays a critical role during oocyte meiosis as its depletion leads to severe chromo-
some segregation errors and meiotic spindle abnormalities (Dumont et al., 2010). These meiotic
phenotypes have been attributed to the role of BUB-1 in the recruitment of HCP-1/2 and CLS-2 at
kinetochores and ring domains, the SUMO-dependent targeting of the chromokinesin KLP-19, and
the phospho-dependent recruitment of PP2A:B56 to ring domains (Dumont et al., 2010, Bel Borja
et al., 2020; Davis-Roca et al., 2018; Wignall and Villeneuve, 2009). However, the exact function of
BUB-1 during meiosis in oocytes is unclear.

In mammals, CENP-F is a large coiled-coil protein recruited to kinetochores through the physical
interaction between a specific targeting domain and the kinase domain of Bub1 (Ciossani et al.,
2018, Liao et al., 1995). CENP-F contains two high-affinity microtubule binding domains (MTBDs),
located at either terminus of the protein, required for the generation of normal interkinetochore
tension and stable kinetochore-microtubule attachments (Feng et al., 2006; Musinipally et al., 2013;
Volkov et al., 2015; Kanfer et al., 2017). CENP-F is also involved in the recruitment of the dynein
motor at kinetochores via its direct interaction with the NudE/L dynein adaptor proteins (Faulkner
et al., 2000; Tai et al., 2002, Liang et al., 2007; Vergnolle and Taylor, 2007; Simées et al., 2018).
Despite these contributions to the process of chromosome alignment, CENP-F is non-essential in
mammals as evidenced by the lack of segregation defects in CRISPR knockouts in human cells and by
the viability of CENP-F knockout mice (Pfaltzgraff et al., 2016, McKinley and Cheeseman, 2017,
Raaijmakers et al., 2018). In contrast in C. elegans, the two CENP-F-like proteins HCP-1/2 are essen-
tial for embryonic viability (Cheeseman et al., 2005). Together with their downstream partner CLS-2,
kinetochore-localized HCP-1/2 control kinetochore-microtubule dynamics to prevent sister chromatid
co-segregation to the same spindle pole in mitosis, and promote midzone microtubule assembly for
central spindle formation in anaphase (Cheeseman et al., 2005; Maton et al., 2015; Edwards et al.,
2015; Hirsch et al., 2022). During meiosis in C. elegans oocytes, HCP-1/2 and CLS-2 localize along
spindle microtubules, at the cup-shaped kinetochores and on the ring domains (Dumont et al., 2010;
Laband et al., 2017). Together they are essential for the formation of bipolar meiotic acentrosomal
spindles in oocytes, for meiotic chromosome segregation and for efficient cytokinesis during polar
body extrusion (Dumont et al., 2010; Laband et al., 2017; Pelisch et al., 2019, Schlientz et al.,
2020). Therefore, BUB-1, HCP-1/2, and CLS-2, hereafter termed the BHC module, form a kinetochore
module essential for meiosis and mitosis. How is this kinetochore module assembled and whether
BUB-1 and HCP-1/2 only act as CLS-2 kinetochore-targeting subunits or whether they participate in
regulating kinetochore microtubule dynamics is unknown.

In this study, we investigated the assembly and function of the BHC kinetochore module in the
C. elegans oocyte and one-cell embryo. Through a combination of genetic approaches and live cell
imaging, we found that the BUB-1 kinase domain, specific C- and N-terminal sequences of HCP-1,
and the CLS-2 CTD are essential for BHC module assembly. Our in vitro TIRF (Total Internal Reflection
Microscopy)-based microtubule assays demonstrated that BHC module components decreased the
catastrophe frequency, while increasing the growth rate and rescue frequency. Surprisingly, they also
induced a strong synergistic increase of the time spent in pause by microtubules. Overall, our results
suggest that BUB-1 and HCP-1/2 are not mere targeting components for CLS-2 at the kinetochore,
but instead actively participate in the control of kinetochore-microtubule dynamics in the context of
an intact BHC module, which is essential for accurate chromosome segregation.
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Results

The N-terminal MELT repeats of KNL-1, but not BUB-3, are essential for
BHC module kinetochore targeting in oocytes (Figure 1)

We first determined the molecular mechanisms that target the BHC module to kinetochores and ring
domains in C. elegans oocytes. In most systems during mitosis, Bub1 localization to kinetochores
requires a physical interaction with Bub3, which in turn interacts with the phosphorylated MELT
repeats of KNL-1 (Primorac et al., 2013; Cheeseman et al., 2004; Shepperd et al., 2012, London
et al., 2012; Yamagishi et al., 2012; Vleugel et al., 2013; Espeut et al., 2015). We first analyzed if
this was the case in C. elegans by analyzing a viable bub-3 deletion mutant (bub-3(o0k3437), referred
to as bub-34). As previously shown, BUB-1 is destabilized in this mutant with its overall protein levels
down to below 25% of the levels in control worms (Figure 1—figure supplement 1A) Kim et al.,
2015. Accordingly, BUB-1 was also significantly reduced at meiotic kinetochores in this mutant, albeit
to a much lower extent (57% reduction on average compared to controls) than the overall protein
level reduction (Figure 1B). This surprisingly suggested that, in contrast to in yeasts or mammalian
cells, BUB-1 can be recruited at kinetochores independently of BUB-3 in C. elegans oocytes. Impor-
tantly, the reduced BUB-1 kinetochore level in the bub-3 deletion mutant, correlated with significant
reductions of HCP-1 (36% reduction) and CLS-2 (58% reduction) at meiotic kinetochores (Figure 1—
figure supplement 1B-C). This suggests that in C. elegans oocytes the BHC module can be recruited
independently of BUB-3 to kinetochores.

We next tested if the KNL-1 MELT repeats are required for BUB-1 kinetochore targeting in meiosis
by using a C. elegans strain expressing a truncation mutant of KNL-1 (KNL-1285%%) that lacks all MELT
repeats (Kim et al., 2015; Moyle et al., 2014; Figure 1C). We analyzed the localization of GFP-
tagged BUB-1 in strains expressing RNAi-resistant transgenes encoding full-length KNL-1 (KNL-1%) or
KNL-128-505 after depletion of endogenous KNL-1 by RNAI treatment. As expected, in the presence of
KNL-1%, BUB-1 localized to cup-shaped kinetochores and to ring domains. In contrast in the presence
of KNL-14853%5 BUB-1 failed to localize to kinetochores (Figure 1D). GFP-tagged HCP-1 and CLS-2
also did not localize to kinetochores in KNL-1483°% (Figure 1E and F). The remaining chromosomal
signal of GFP-tagged HCP-1 and CLS-2 in this mutant corresponded to their KNL-1-independent ring
domain localization, as evidenced by the identical GFP pattern observed in KNL-1-depleted oocytes
(Figure 1G). Thus kinetochore, but not ring-domain, localization of BUB-1 depends on the KNL-1
MELT repeats. In line with a previous study, we also confirmed that BUB-1 ring domain localization
required the E3 SUMO-protein ligase GEI-17, and thus probably BUB-1 sumoylation (Figure 1H;
Pelisch et al., 2017). These results show that the BHC module is recruited to kinetochores via the
KNL-1 MELT repeats.

Molecular determinants of BHC module assembly (Figure 2)

Next, we analyzed the domains of BUB-1, HCP-1, and CLS-2 necessary for BHC module assembly.
During mitosis, CENP-F in mammals and HCP-1 in C. elegans, are recruited to kinetochores through
the BUB-1 kinase domain (Edwards et al., 2018; Ciossani et al., 2018). We first tested if that was also
the case during meiosis by analyzing HCP-1 and CLS-2 localization in C. elegans oocytes expressing
RNAi-resistant transgenes encoding full length BUB-1 (BUB-1™) or a kinase domain-deleted mutant
of BUB-1 (BUB-1%*P) after depletion of endogenous BUB-1 (Figure 2A; Edwards et al., 2018). GFP-
tagged HCP-1 (and CLS-2) localized to kinetochores and ring domains in the presence of BUB-1™, but
not BUB-1%%P (Figure 2B and C). To determine if the kinase activity of BUB-1 was required for HCP-1
and CLS-2 kinetochore and ring targeting, we also analyzed their localizations in oocytes expressing a
kinase dead (BUB-1P%"*N) version of BUB-1 (Moyle et al., 2014; Figure 2A). Upon depletion of endog-
enous BUB-1 in the presence of the kinase-dead BUB-1°8"*N mutant, HCP-1 (and CLS-2) were normally
targeted to kinetochores and rings (Figure 2B and C). Therefore, BUB-1 recruits HCP-1 (and CLS-2)
to kinetochores and rings through its kinase domain, but independently of kinase activity, in meiosis
in C. elegans.

In mammals, CENP-F kinetochore targeting involves a physical interaction between the specific
C-terminal CENP-F targeting domain and the kinase domain of Bub1 (Ciossani et al., 2018). HCP-1
and 2 are long coiled-coil proteins that only share 27.5% and 24.7% similarity respectively with CENP-F,
which makes identification of conserved functional domains more challenging (Hirsch et al., 2022). To
identify the domains of HCP-1 responsible for its localization, we thus generated a series of transgenic
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Figure 2. Molecular determinants of BHC module assembly. (A) Schematic of BUB-1::mCherry protein fusions. (B,C) Localization of indicated RNAI-
resistant BUB-1::mCherry and GFP::HCP-1 (B) or CLS-2::GFP (C) upon depletion of corresponding endogenous gene products (n>10). (D) Schematic of
truncated GFP::HCP-1 fusions. (E) Embryonic viability assay in indicated transgenic hcp-2(ijmé) (hcp-24) mutants upon depletion of endogenous hcp-1.
(F) Localization of indicated GFP::HCP-1 fusions in hcp-2A worms depleted of endogenous hep-T (n29). (G) Localization of CLS-2::mCherry in indicated
conditions (n213). (H) Localization of schematized (top) RNAi-resistant CLS-2::GFP fusions upon depletion of endogenous cls-2 (bottom, n210). (I) Yeast-
two-hybrid interaction assay between HCP-1 domains (baits) and CLS-2 CTD (prey). Scale bars, metaphase plate 5 um, single chromosome details 1 pm.

The online version of this article includes the following source data and figure supplement(s) for figure 2:
Source data 1. Panel E source data.
Figure supplement 1. Protein domains essential for BHC module assembly.

Figure 2 continued on next page
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Figure 2 continued
Figure supplement 1—source data 1. Panel B source data.
Figure supplement 1—source data 2. Panel C source data.

Figure supplement 2. Protein sequence alignment of indicated eukaryotic CLASP CTDs.

strains expressing RNAi-resistant GFP-fused truncations of HCP-1 (Figure 2D, Figure 2—figure
supplement 1A). We focused on HCP-1 for this work because, although HCP-1 and 2 are functionally
redundant and can compensate for each other to support embryonic development, HCP-1 plays a
more primary role in early embryos (Hirsch et al., 2022). We introduced the HCP-1 transgenes in an
hcp-2 deletion mutant (hereafter hcp-24) and analyzed embryonic viability after endogenous HCP-1
depletion by RNAi (Edwards et al., 2018). We first verified that GFP-fused wild-type HCP-1 could
rescue embryonic lethality in absence of endogenous HCP-1/2. Two main regions of HCP-1 (amino
acid 111-340 and 1311-1386, hereafter referred to as CBD (CLS-2 Binding Domain) and KTD (Kine-
tochore Targeting Domain) respectively, see below), one at either terminus, were essential for embry-
onic viability (Figure 2E, Figure 2—figure supplement 1B), even though the mutant and wild-type
transgenes were expressed at comparable levels (Figure 2—figure supplement 1C). Although this
domain conformation is reminiscent of the 2 MTBDs of human CENP-F, we could not identify signif-
icant sequence or structural similarity between the human CENP-F and C. elegans HCP-1 domains
(Volkov et al., 2015).

We next tested if these C- and N-terminal domains in HCP-1 could instead be important for kine-
tochore localization of the corresponding GFP-fused truncated proteins. We found that deleting the
KTD (HCP-1%¢®), but not the CBD (HCP-12“®%), prevented kinetochore targeting of the corresponding
deletion mutant HCP-1 (Figure 2F). The KTD could be responsible for kinetochore targeting via
binding to the kinase domain of BUB-1, although we were unable to confirm direct interaction with a
yeast-two-hybrid assay between the HCP-1 KTD, or a larger domain containing the KTD (1154-1386),
and full-length BUB-1 or the BUB-1 kinase domain (Figure 2—figure supplement 1D). As the CBD is
not required for HCP-1 kinetochore targeting, embryonic lethality in the corresponding mutant could
instead be caused by a defect in CLS-2 recruitment to kinetochores. Accordingly, we found that the
HCP-1 CBD truncation mutant prevented mCherry-fused CLS-2 kinetochore targeting (Figure 2G,
Figure 2—figure supplement 1E). We also found identical results for HCP-1 and CLS-2 localizations
in mitosis (Figure 2—figure supplement 1F). Thus HCP-1 kinetochore targeting requires its KTD,
while the HCP-1 CBD mediates CLS-2 kinetochore recruitment.

We then sought to identify the CLS-2 domain that interacts with the HCP-1 CBD and is essential for
its kinetochore targeting. In most species, CLASPs targeting to their various subcellular localizations,
including to kinetochores, relies on interactions with various adapter proteins via a C-terminal domain
(CTD; Akhmanova et al., 2001; Maiato et al., 2003; Hannak and Heald, 2006; Lansbergen et al.,
2006). To test the function of the CLS-2 CTD, we generated a transgenic strain expressing a GFP-
tagged deletion of the CTD (CLS-2°¢™). We compared the localization of the corresponding protein
to that of full length GFP-fused CLS-2 (CLS-2™) following depletion of endogenous CLS-2. Both trans-
genes were expressed at similar levels (Figure 5—figure supplement 1D). In contrast to CLS-2%, the
CTD-deleted transgenic protein did not target to the kinetochores during meiosis in oocytes or in
mitosis in zygotes (Figure 2H, Figure 5—figure supplement 1E), which is in line with previous find-
ings on vertebrate CLASPs (Maiato et al., 2003). Moreover, by comparing the CLASP CTD sequences
of various species, we identified few, but strongly, conserved residues, including a stretch of three
amino acids comprised of a Valine, an Arginine and a Lysine (VRK) (Figure 2—figure supplement 2).
To determine the functional significance of this conservation, we mutated the central Arginine of the
conserved VRK motif to an Alanine, and we generated the corresponding transgenic strain expressing
a GFP-tagged R970A mutated version of CLS-2 (CLS-2%7%4). Although this transgene was expressed at
similar levels to the wild-type version (Figure 5—figure supplement 1D), the R970A mutated protein
did not localize at kinetochores, which confirmed the importance of this residue for the CLS-2 CTD
function (Figure 2H). We next performed a yeast two-hybrid-based assay between the CLS-2 CTD
wild-type or R970A and the HCP-1 CBD, which confirmed that both CLS-27 and the CLS-2 CTD only,
but not the R?70A mutated version of the CTD, directly interact with CLS-2 and likely mediate CLS-2
kinetochore targeting (Figure 2I, Figure 2—figure supplement 1G). Overall, our results show that

Macaisne, Bellutti, Laband et al. eLife 2023;12:e82579. DOI: https://doi.org/10.7554/eLife.82579 7 of 32


https://doi.org/10.7554/eLife.82579

eLife

Cell Biology

BHC module assembly in meiosis and mitosis requires the BUB-1 kinase domain and the HCP-1 KTD,
and involves HCP-1 CBD binding to the CLS-2 CTD through a conserved C-terminal VRK motif.

Kinetochore and ring domain pools of the BHC module act redundantly
in spindle assembly and chromosome segregation in oocytes (Figure 3)
We next tested the phenotypic effect of delocalizing the BHC module from kinetochores in meiosis
by preventing its recruitment in KNL-14%35% mutant oocytes. For this we performed live imaging to
monitor spindle assembly and chromosome segregation in a strain expressing H2B::mCherry and
GFP::B-Tubulin to label chromosomes and microtubules respectively. Depletion of endogenous KNL-1
in KNL-1%855% mutant oocytes did not prevent assembly of bipolar spindles, but the spindles were
smaller and displayed a reduced microtubule density (Figure 3A and B), demonstrating that BHC
module kinetochore targeting is essential for normal spindle assembly. These shorter KNL-148-30
mutant spindles were however capable of efficient chromosome segregation, unlike spindles assem-
bled in the complete absence of KNL-1 (Figure 3A-B, Video 1, Video 2, Figure 3—figure supple-
ment 1). The KNL-148-3% mutant spindles also contrasted with oocytes fully depleted of BUB-1, which
displayed severe spindle abnormalities and chromosome segregation defects (Figure 3A, Video 1,
Video 2, Figure 3—figure supplement 1A). These stronger phenotypes following full BUB-1 deple-
tion correlated with apparent delayed cell cycle progression. However, this delay, and associated
spindle and chromosome segregation phenotypes, are not caused by activation of the Spindle
Assembly Checkpoint (SAC), as BUB-1 itself is an essential component of the SAC and is therefore
required for its functionality. Instead, the cell cycle progression delay observed in absence of BUB-1
is likely caused by its non-SAC function in promoting anaphase onset (Kim et al., 2015; Kim et al.,
2017). Indeed, co-depletion of BUB-1 with another SAC component MDF-2 (ortholog of Mad2) led to
an identical delay and similar defects as BUB-1 depletion alone (Figure 3—figure supplement 1B and
C). In control oocytes with endogenous wild-type KNL-1, BHC module components localized at kine-
tochores and at ring domains. In KNL-148%3% mutant oocytes, the BHC module still targeted to ring
domains downstream of GEI-17-dependent BUB-1 sumoylation (Figure 1D-H). Yet in the presence
of endogenous wildtype KNL-1, GEI-17-depleted oocytes formed normal bipolar spindles and chro-
mosome segregation was accurate (Figure 3A, Video 2). We thus hypothesized that the kinetochore
and ring domain pools of BHC module could act redundantly for spindle assembly and chromosome
segregation in oocytes.

To determine if the mild spindle phenotype observed in KNL-
depletion is due to the persistence of the ring domain BHC pool, we depleted GEI-17 in these
oocytes. Consistent with our hypothesis, the mild spindle phenotypes observed in the absence of
BHC module localization at kinetochores was strongly aggravated upon simultaneous BHC delo-
calization at ring domains after simultaneous depletion of KNL-1 and GEI-17 in KNL-14853% mutant
oocytes (Figure 3A-B, Video 2). Therefore, functions of kinetochore and ring domain pools of the
BHC module are partially redundant in the control of spindle assembly and chromosome segregation.
This finding also implies that CLS-2 is primarily acting at the chromosomes and not as a diffuse pool
of protein along the spindle.

1285505 mutant oocytes after KNL-1

BHC module integrity is essential for spindle assembly and
chromosome segregation (Figure 4)

During mitosis in C. elegans, HCP-1/2 have been proposed to primarily act as CLS-2 kinetochore-
targeting proteins (Cheeseman et al., 2005). We tested if this was also the case during meiosis by
analyzing the effect of compromising BHC module integrity in oocytes. For this, we analyzed spindle
assembly and chromosome segregation in oocytes expressing the BUB-12° mutant in absence of
endogenous BUB-1, and the HCP-1%¢"®, or HCP-12“®® mutants in the hcp-2A strain following deple-
tion of endogenous HCP-1. The three mutants should prevent BHC module assembly via different
means. BUB-12° blocks HCP-1/2 and CLS-2 recruitment to the kinetochores and ring domains, but
does not disrupt HCP-1/2 and CLS-2 binding. HCP-12¢P binds CLS-2 and does not disrupt KNL-1 and
BUB-1 binding, but does not localize to kinetochores. HCP-14°” |ocalizes to kinetochores, but blocks
CLS-2 kinetochore recruitment (Figure 4A). Spindle assembly was severely disrupted in all mutants
with an apolar spindle phenotype and reduced microtubule density. Meiotic chromosome segrega-
tion occurred, although lagging chromosomes during anaphase and retracted polar bodies during
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Figure 3. BHC module has both kinetochore-dependent and -independent functions in spindle assembly and
chromosome segregation in oocytes. (A) Schematic of the meiotic spindle during meiosis | division (top) and
stills from live imaging of meiosis | in indicated conditions (bottom). Microtubules (GFP:: TBA-2%“e¥") in green,
chromosomes (mCherry::HIS-11"%) in magenta. Time in seconds relative to anaphase | onset. Scale bar 5 um.
Graphs on the right show quantifications of meiotic defects. (B) Plots of spindle density (corrected GFP intensity,
left) and spindle area (right) 45 seconds before anaphase | onset. Tests, One-way ANOVA multiple comparisons

Figure 3 continued on next page
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Figure 3 continued

alpha = 0.05, *p<0.05, **p<0.01, ***p<0,001, ****p<0,0001, n.s. not significant. Error bars, Mean and standard
deviation.

The online version of this article includes the following source data and figure supplement(s) for figure 3:
Source data 1. Panel A source data.

Source data 2. Panel B source data.

Figure supplement 1. SAC activation is not responsible for defects observed upon BHC module perturbation.
Figure supplement 1—source data 1. Panel A source data.

Figure supplement 1—source data 2. Panel B-C source data.

telophase were evident (Figure 4B-C, Video 3, Figure 4—figure supplement 1A). Mitotic chro-
mosome segregation was also strongly perturbed in the HCP-14°® or HCP-14€"® mutants in absence
of endogenous HCP-1/2 proteins, with evident sister chromatid co-segregation (Figure 4—figure
supplement 1B). Thus, expression of BUB-12¢®, HCP-120, or HCP-1%<T° following depletion and/
or deletion of BUB-1 and HCP-1/2 recapitulated the bub-1(RNAJ) and hcp-1/2(RNAI) phenotypes,
with disorganized spindles and chromosome segregation defects. As in the full BUB-1 depletion,
expression of BUB-1%® in absence of endogenous BUB-1 (or after depletion of HCP-1 in the hcp-2A
mutant) also led to delayed cell cycle progression. However, this delay, and associated spindle and
chromosome segregation phenotypes, were again not due to SAC activation as they could not be
rescued by co-depleting the SAC component MDF-2 (Figure 3—figure supplement 1B, C). Overall,
these results suggest that the primary function of
BUB-1 and HCP-1/2 occurs in the context of the
BHC module.

To further confirm that integrity of the BHC
module is essential for its function, and that
targeting CLS-2 to kinetochores is not sufficient
for normal spindle assembly and chromosome
segregation, we used protein engineering to
allow CLS-2 kinetochore targeting in the absence
of HCP-1/2. We engineered a fusion protein
between GFP-tagged CLS-2 and a fragment of
HCP-1 containing the KTD (CLS-2::GFP::HCP-
11154138 Figure 4D), which we introduced in the
hcp-2A strain and examined oocytes with and
without hcp-1(RNAIJ). We first verified that CLS-2
fused to GFP and to HCP-1""5%"3¢ |ocalized to
kinetochores and to ring domains (Figure 4E),
compared to GFP-tagged wild-type CLS2. Next
to ensure that CLS-2::GFP:HCP-1"15+13¢ \yas
functional, we checked that it could sustain
embryonic development and viability in absence
of endogenous CLS-2 (Figure 4F). Accordingly,
CLS-2::GFP::HCP-1""%*13%¢ 3lso supported normal
meiotic and mitotic spindle assembly and chro-
mosome segregation upon cls-2(RNAI) in oocytes
(Figure 4G, Video 4). Therefore, fusing CLS-2
to GFP and to HCP-1"%*"%¥ did not prevent
its correct localization nor functionality. CLS-
2::GFP::HCP-1"1%4138 3lso localized normally in
absence of HCP-1 (Figure 4E), which suggests
that the HCP-1 KTD is both necessary and suffi-
cient for localization. However, spindles and chro-
mosome segregation in oocytes and zygotes were
severely affected upon hcp-1(RNAIJ) (Figure 4G).

Video 1. Live imaging of meiosis | in indicated
conditions. Microtubules (GFP: TBA-2tuin) in green,
DNA (mCherry::HIS-11"8) in magenta. Time in seconds
relative to anaphase | onset. Scale bar 5 pm.
https://elifesciences.org/articles/82579/figures#video’
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Embryonic viability was also low in this condition
(Figure 4F), suggesting that HCP-1/2 do not act
only as targeting proteins for CLS-2 and likely have
other roles in regulating microtubule dynamics in
oocytes. We importantly obtained similar results
when the GFP:HCP-1'"5%13% was fused to the
CLS-2%°® transgene, which cannot interact with
endogenous HCP-1/2 (Figure 4—figure supple-
ment 1C-E, Video 5). Overall, these results show
that BHC module integrity and proper localization
is essential for meiotic spindle assembly and chro-
mosome segregation in oocytes.

CLS-2 function does not require
TOGL3 (Figure 5)

We next focused on the functional domains
of CLS-2. In most species, CLASP proteins are
comprised of two to three ordered TOGL (Tumor
Overexpressed Gene Like 1, 2, and 3) domains
(Al-Bassam and Chang, 2011). In human CLASP2,
these domains have specific functions. TOGL2 is
essential for microtubule catastrophe suppres-
sion, whereas TOGL3 enhances rescue (Lawrence
etal., 2018; Aher et al., 2018; Girao etal., 2020).
The C-terminal domain (CTD) of CLASPs, respon-
sible for kinetochore targeting, can inhibit these
functions in human CLASP2, while the TOGL1
is required to release this auto-inhibition (Aher
et al., 2018). Additionally, a conserved Serine/
Arginine-rich  (S/R-rich) region, important for
microtubule lattice binding through electrostatic
interactions, separates TOGL2 and 3 (Al-Bassam
et al., 2010, Patel et al., 2012). Sequence anal-
ysis showed that CLS-2 contains only two TOGL
domains (TOGL2 and 3) separated by an S/R-rich
region, and a CTD separated from TOGL3 by a
linker region predicted to be largely unfolded and

Video 2. Live imaging of meiosis | in knl-1A85- . .
a small also unfolded C-terminal tail (Figure 5—

505::mCherry transgenic worms in indicated conditions.

Microtubules (GFP::TBA-2°"*") in green, DNA figure supplement 1A-C).
(mCherry::HIS-11"%%) in magenta. Time in seconds We generated a series of transgenic strains
relative to anaphase | onset. Scale bar 5 um. expressing RNAi-resistant GFP-fused trunca-

https://elifesciences.org/articles/82579/figurest#video?  tions in CLS-2 or point mutations in conserved
and functionally important residues (Figure 5A,
Figure 5—figure supplement 2), and we quanti-
fied embryonic viability upon depletion of endog-
enous CLS-2. All transgenes were expressed at comparable levels (Figure 5—figure supplement 1D),
but only five mutants were unable to sustain embryonic viability in absence of endogenous CLS-2. These
corresponded to deletion or point mutations within TOGL2 (CLS-24T0612, CLS-2TOCL2WKR/A) the S/R-rich
region (CLS-285%ih) and the CTD (CLS-2°¢™, CLS-2%"%4) (Figure 5B). In contrast, deleting TOGL3,
or the linker region between TOGL3 and the CTD, or the C-terminal tail had no significant effect on
embryonic viability upon depletion of endogenous CLS-2 (Figure 5B). Sequence analysis revealed
that TOGL3 lacks several conserved amino-acids (present in TOGL2 and mutated in the CLS-2T0%~
WKRA mutant, Figure 5—figure supplement 2) corresponding to residues that normally contribute
to microtubule binding in human CLASPs and to tubulin binding in XMAP215 family proteins (Leano
et al., 2013; Funk et al., 2014). This evolutionary sequence divergence could potentially account for
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Figure 4. BHC module integrity is essential for spindle assembly and accurate chromosome segregation.

(A) Schematic of BHC-module integrity mutants. (B) Stills from live imaging of meiosis | in indicated conditions.
Microtubules (GFP:: TBA-2¢uin or GFP:: TBB-28") in green, chromosomes (mCherry::HIS-11"%) in magenta.
Time in seconds relative to anaphase | onset. Graphs indicate quantifications as referred to in color key. (C) Plots of

Figure 4 continued on next page
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Figure 4 continued

spindle density (corrected GFP intensity, left) and spindle area (right) 45 s before anaphase | onset. Kruskal-Wallis
multiple comparisons, alpha = 0.05, *p<0.05, ***p<0.001, ****p<0.0001, n.s. not significant. Error bars, Mean with
standard deviation. (D) Schematic of the CLS-2™::GFP::HCP-1""5+"3% protein fusion. The HCP-11""%"3% fragment
contains the KTD. (E) Localization of CLS-2f::GFP::HCP-1"">*"3% (green) in metaphase |, and magnification of a
single meiosis | chromosome. DNA (mCherry::HIS-11"%%) in magenta (n=13). (F) Embryonic lethality and (G) meiotic
defects rescue assays of indicated depletions by CLS-2™::GFP::HCP-1"3*"%¢ Scale bars, full spindle 5 pm, single
chromosome details 1 uym.

The online version of this article includes the following source data and figure supplement(s) for figure 4:
Source data 1. Panel B source data.
Source data 2. Panel C source data.
Source data 3. Panel F source data.
Source data 4. Panel G source data.

Figure supplement 1. Artificial kinetochore and ring localization of CLS-2 is not sufficient to rescue loss of BHC
module integrity.

Figure supplement 1—source data 1. Panel A source data.

Figure supplement 1—source data 2. Panel E source data.

the apparent lack of requirement for TOGL3, as mutating the corresponding residues in TOGL2 abro-
gated CLS-2 functionality (Figure 5B and D). As indicated previously, only deleting or mutating the
CTD prevented chromosomal localization of the corresponding GFP-tagged transgene (Figure 5C),
suggesting that the other three transgenes carried loss-of-function mutations.

We confirmed a loss-of-function phenotype by analyzing meiotic spindle assembly and chromosome
segregation in oocytes lacking endogenous CLS-2. Mutating or deleting TOGL2, the S/R-rich region or
the CTD led to phenotypes comparable to the full loss of function of CLS-2 with severely disorganized
spindles, inaccurate chromosome segregation and polar body extrusion failures (Figure 5D, Video 6).
While mutations in the TOGL2 or S/R-rich region usually led to complete abrogation of chromosome
segregation (70% and 92% oocytes did not attempt chromosome segregation, respectively), and
to polar body extrusion failure (80% and 100% oocytes, respectively), oocytes lacking (CLS-22¢™) or
mutated in the CLS-2 CTD (CLS-2%7%) frequently displayed attempted chromosome segregation (only
18% and 50% oocytes did not attempt chromosome segregation, respectively) and often successfully
extruded the first polar body (36% and 50% polar body extrusion failure, respectively). Chromosome
segregation defects were also observed in mitosis in the presence of the corresponding transgenes
upon depletion of endogenous CLS-2 (Figure 5—figure supplement 1E). Thus, as in human CLASP2,
CLS-2 functions via a single TOGL domain (TOGL2), and also requires the CTD for HCP-1 binding and
the S/R-rich region for potential microtubule lattice-interaction.

BHC module components synergistically stabilize microtubules in vitro
(Figure 6)

To investigate the effect of BHC module components on microtubule dynamics, we purified full-
length BUB-1, HCP-1, and GFP-tagged CLS-2 from insect cells and analyzed their activity using
an in vitro microtubule-based assay (Figure 6—figure supplement 1A). Microtubule growth from
GMPCPP-stabilized seeds was monitored by TIRF (Total Internal Reflection Fluorescence) microscopy
at 23 °C (Aumeier et al., 2016; Colin et al., 2018, Figure 6A). Consistent with BUB-1 not being a
microtubule-associated protein (MAP), analysis of microtubule dynamics showed that 100 nM BUB-1
did not display any strong effect on the microtubule growth rate, on catastrophe and rescue frequen-
cies, nor on the time spent in pause by microtubules (Figure 6B-F, Video 7). BUB-1 on its own
also did not interact with microtubules in a pelleting assay (Figure 6—figure supplement 1B), nor
show any microtubule-bundling activity (Figure 6G). In contrast, both HCP-1 and CLS-2-GFP inde-
pendently displayed strong microtubule-bundling activity (Figure 6G). Consistent with a previous
study showing that human CENP-F can stimulate microtubule polymerization in vitro Feng et al.,
2006, 100 nM HCP-1 had a mild but significant promoting effect on the microtubule growth rate (1.4-
fold increase). This was interestingly abrogated by addition of 100 nM BUB-1, but not by a combina-
tion of BUB-1 and CLS-2-GFP (100 nM each; Figure 6B-F, Video 7). In contrast, 100 nM CLS-2-GFP
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Video 4. Live imaging of meiosis | in hcp-2-mutant
worms expressing CLS-2::GFP:HCP-11""*"3 fusjon
protein in indicated conditions. Microtubules
(GFP::TBA-2%wuim) in green, DNA (mCherry::HIS-11%)
in magenta. Time in seconds relative to anaphase |
onset. Scale bar 5 ym.
https://elifesciences.org/articles/82579/figures#videod

alone had the opposite effect and inhibited the
Video 3. Live imaging of meiosis | in indicated microtubule growth rate (1.1-fold reduction),
transgenic hcp-2-mutant worms upon depletion of which is consistent with the effect of human or
endogenous hcp-1. Microtubules (GFP::TBA-20uIn) jn Drosophila CLASPs on microtubule dynamics
green, DNA (mCherry::HIS-11"%) in magenta. Time in (Yu et al., 2016; Moriwaki and Goshima, 2016
seconds relative to anaphase | onset. Scale bar 5 ym. Aher et al,, 2018). Also consistent with previous
reports on CLASPs, we found that CLS-2-GFP had
significant catastrophe-suppressing, and rescue-
and pause-promoting activities (Figure 6B-F,
Video 7; Al-Bassam et al., 2010; Lawrence et al., 2018; Aher et al., 2018). Furthermore, and like
human CLASPs, CLS-2 is unlikely to function as a microtubule polymerase, as neither of the two
TOGL domains interacted with free tubulin (Figure 6—figure supplement 1C; Aher et al., 2018). The
effect of CLS-2-GFP on catastrophe was independent of HCP-1 and/or BUB-1 (Figure 6C—F). This is in
contrast to its effect on rescue promotion, which was increased by addition of HCP-1 alone (twofold
increase), but not by a combination of HCP-1 and BUB-1. The most surprising effect of reconstituting
the full BHC module (BUB-1, HCP-1, and CLS-2-GFP together) in vitro was the strong increase in the
pause-promoting activity (21-fold increase in the time spent in pause) compared to all other condi-
tions tested (Figure 6F, Video 7). Thus, reconstituting the BHC module in vitro displays both additive
(promotion of the growth rate and rescue frequency by HCP-1 and CLS-2 respectively, and inhibi-
tion of catastrophe by CLS-2) and synergistic (promotion of pause) effects on microtubule dynamics

https://elifesciences.org/articles/82579/figures#video3
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compared to individual components, which leads
to microtubule stabilization. This also indicates
that BUB-1 and HCP-1 can modulate the effect
of CLS-2 on microtubule dynamics. To determine
if the additive and synergistic effects of BHC
module components on microtubule dynamics
depended on the formation of an intact BHC
module, we analyzed microtubule dynamics
in the presence of the CLS-2%"°A-GFP mutant,
incapable of binding to HCP-1. Importantly, this
mutant alone had identical effects on all micro-
tubule dynamics parameters tested, as compared
to wild-type CLS-2-GFP, suggesting that CLS-
2R79A_GFP was functional. However, it did not
display the same increase of microtubule pausing
when combined with HCP-1 and BUB-1, showing
that this synergistic effect specifically required
formation of an intact BHC module. Overall, our
in vitro results are consistent with our in vivo data
and suggest BUB-1 and HCP-1/2 in the context of
an intact BHC module are important contributors
in the regulation of microtubule dynamics.

Discussion

Our results highlight the importance and molec-

ular mechanisms by which a kinetochore module,

the BHC module, comprising the kinase BUB-1,
Video 5. Live imaging of meiosis | in hcp-2-mutant the two CENP-F orthologs HCP-1/2 and the
worms expressing CLS-2°T0::GFP:: HCP- 111515 CLASP family member CLS-2, regulate microtu-

fusion protein in indicated conditions. Microtubules bule dvnamics in C. elegans oocvtes and zvgotes
(GFP::TBA-2tum) in green, DNA (mCherry::HIS-11"%) ,y, - €eg Y . y9

) o . for efficient chromosome segregation.

in magenta. Time in seconds relative to anaphase |

onset. Scale bar 5 pym.

BHC module assembly and
kinetochore targeting

We found that assembly of the BHC module
requires the kinase domain of BUB-1 and the KTD
of HCP-1, although we were unable to show a direct interaction between these domains using a yeast-

https://elifesciences.org/articles/82579/figures#video5

two-hybrid assay. This may be a false negative due to proteins not being properly expressed/folded
in yeast. Supporting this view, in humans, the kinase domain of Bub1 interacts directly with a C-ter-
minal domain of CENP-F, and this interaction is necessary for CENP-F kinetochore targeting, which is
reminiscent of our findings in C. elegans oocytes and zygotes (Ciossani et al., 2018). Also consistent
with previous findings in human cells and with the fact that a kinase dead mutant of BUB-1 can sustain
embryonic viability in C. elegans, we show that the kinase domain, but not kinase activity of BUB-1, is
required for the localization of the CENP-F-like protein HCP-1 to kinetochores (Moyle et al., 2014).
Finally, we found that CLS-2 kinetochore recruitment involves a direct interaction between the HCP-1
CBD and CLS-2 CTD. In humans, CLASP kinetochore localization was also shown to depend on its
CTD (Maiato et al., 2003). However, in contrast to our present results, CENP-E, but not CENP-F,
is responsible for kinetochore targeting of CLASP (Maffini et al., 2009). Interestingly, CENP-E and
CENP-F have been speculated to be distantly related paralogs (Ciossani et al., 2018). The fact that
in C. elegans, which lack a CENP-E ortholog, the CENP-F-like protein HCP-1 is responsible for CLASP
kinetochore localization supports this hypothesis.

A surprising finding was that kinetochore targeting of the BHC module could occur independently
of BUB-3 in C. elegans oocytes, which is in contrast with previous findings in S. cerevisiae and human
cells (Primorac et al., 2013; Vleugel et al., 2013). Although this BUB-3-independent kinetochore
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Figure 5. CLS-2 function does not require TOGL3. (A) Schematic of CLS-2::GFP truncated fusions. (B) Embryonic viability assay upon depletion

of endogenous cls-2 in the presence of indicated transgene. (C) Localization of CLS-2::GFP truncations (green) during metaphase | in indicated
conditions. DNA (mCherry::HIS-11"%8) in magenta (n>9). (D) Stills from live imaging of meiosis |. Microtubules (GFP::TBA-2% 4" in green, chromosomes
(mCherry::HIS-11"%%) in magenta. Time in seconds relative to anaphase | onset. Graphs indicate quantifications of meiotic defects. Scale bars, full

spindles 5 ym, single chromosome details 1 pym.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Panel B source data.

Source data 2. Panel D source data.

Figure supplement 1. Protein domains essential for CLS-2 function.

Figure supplement 1—source data 1. Panel D source data.

Figure supplement 2. Protein sequence alignment of indicated eukaryotic TOGL domains.

localization of BUB-1 could be meiosis-specific, we suspect that it is rather a C. elegans adaptation.
Indeed, some BUB-1 is also visible at kinetochores in C. elegans zygotes during mitosis in the bub-3A
mutant (Kim et al., 2015). How then is BUB-1 targeted to kinetochores in C. elegans? We envision
two plausible scenarios. First, although Bub3, in yeasts and mammals, is the primary determinant
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Video 6. Live imaging of meiosis | in indicated
transgenic worms upon depletion of endogenous
cls-2. Microtubules (GFP: TBA-2%%un) in green, DNA
(mCherry::HIS-11"%%) in magenta. Time in seconds
relative to anaphase | onset. Scale bar 5 ym.
https://elifesciences.org/articles/82579/figures#videob
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of Knl1 MELT binding, structural analysis demon-
strated that direct contacts, which normally
reinforce Bub3 binding, exist between a unique
loop in Bub1 and the Knl1 MELT repeats (Over-
lack et al., 2015). In C. elegans, these contacts
could be sufficient for BUB-1 recruitment to kine-
tochores in absence of BUB-3. Second, prior to
the identification of the primary role of Knl1 MELT
repeats for Bub1/Bub3 kinetochore targeting, a
prevalent model implicated interaction between
a Kl (Lys-lle) motif in Knl1, which lies in the MELT
repeat region of the protein, and the conserved
TPR domain of Bub1 (Kiyomitsu et al., 2007,
Kiyomitsu et al., 2011). Although, the KI motif
was later shown to only act as a MELT-enhancing
motif for Bub3-binding, and no clear equivalent
motif could be identified in C. elegans KNL-1, it is
possible that a sequence-divergent, but function-
ally equivalent, motif exists in KNL-1 that would
be sufficient for recruiting BUB-1 to kinetochores
(Krenn et al., 2014). Furthermore, the fact that in
C. elegans a bub-3A mutant is viable and fertile
implies that it does not display any of the severe
meiotic and mitotic phenotypes associated with
loss-of-function of the BHC module (Kim et al.,
2015). This in turn indicates that the reduced
BHC pools, recruited at kinetochores and ring
domains independently of BUB-3, are functional.
Further functional analysis of BUB-1 kinetochore
targeting in this system will be required to eluci-
date the BUB-3-independent mechanism of BHC
module localization.

BHC module function in meiotic
spindle assembly and chromosome
segregation

Our findings demonstrate that integrity of the
BHC module is essential in vivo in C. elegans
oocytes for functional meiotic spindle assembly.
Specifically, our quantitative analysis of meiotic
spindle assembly and function, demonstrated
that depletion of BHC module components
individually, or perturbation of BHC module
assembly, gave rise to disorganized spindles
with reduced microtubule densities. Although
mammalian CLASPs have also been involved in
proper spindle assembly and mitotic fidelity, this
contrasts with previous work in mammals, which
demonstrated that CENP-F is largely dispensable
for spindle assembly and chromosome segre-
gation (McKinley and Cheeseman, 2017, Raai-
jmakers et al., 2018; Logarinho et al., 2012;
Haley et al., 2019). While in mammals CENP-E,
and not CENP-F, is responsible for localizing
CLASPs at kinetochores, a critical function of C.
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Figure 6. BHC module components synergistically stabilize microtubules in vitro. (A) Schematic of the TIRF
microscopy-based microtubule assay. Labeled tubulin (ATTO-565, magenta) fluoresces only when close to the
surface of the coverslip. Microtubules polymerize from biotinylated GMPCPP seeds (tubulin-ATTO-488, cyan)
bound to a Neutravidine-coated glass coverslip. (B) Representative kymographs of microtubules (magenta)

Figure 6 continued on next page
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Figure 6 continued

growing from GMPCPP seeds (cyan) in the presence or absence of BUB-1, HCP-1, CLS-2-GFP and/or CLS-2%704-
GFP (100 nM each). Schematics on the left highlights the different microtubule dynamics events observed.

(C-F) Dot plot showing the quantification of growth rate (C), and histograms showing the average catastrophe

(D), rescue (F), and pause (D) events per microtubule. Dunnett's multiple comparison tests, alpha = 0.01, **p<0.01,
***%5<0.0001, n.s. not significant. Error bars, Mean and standard deviation (C) or standard error of the mean
(D-F). (G) Microtubule bundling assay. Organization of microtubules (magenta) observed in indicated conditions.

The online version of this article includes the following source data and figure supplement(s) for figure é:
Source data 1. Panel B-F source data.

Source data 2. B-F statistics source data.

Figure supplement 1. CLS-2 decorates the microtubule lattice in vitro.

Figure supplement 1—source data 1. Panels A-B source data.

Figure supplement 1—source data 2. Panel C source data.

Figure supplement 1—source data 3. Panel D source data.

elegans HCP-1/2 is to target the CLASP family member CLS-2 to kinetochores and ring domains
(Maffini et al., 2009). Yet, our in vivo results show that localizing CLS-2 to kinetochores and rings
independently of HCP-1/2 is not sufficient to rescue the spindle phenotype of HCP-1/2-depleted
oocytes. This argues for HCP-1/2 playing additional essential roles in regulating microtubule dynamics
and spindle function, beside simply promoting CLS-2 localization.

In human cells, CENP-F binds to microtubules through two independent MTBDs located at either
terminus of the protein, both of which are required for normal tension at centromeres in human cells
(Feng et al., 2006; Volkov et al., 2015; Kanfer et al., 2017; Auckland et al., 2020). Our in vitro
experiments are consistent with HCP-1 also binding directly to microtubules, although the domain(s)
responsible for this activity has not been identified. Human CENP-F was also shown to stimulate
microtubule assembly in a bulk in vitro assay through an unknown mechanism (Feng et al., 2006).
We interestingly show here that the C. elegans orthologous protein HCP-1 increases the microtubule
growth rate in vitro. Whether microtubule binding and/or microtubule growth rate promotion, inde-
pendent of CLS-2 targeting, are the important functions of HCP-1 explaining its direct role in meiotic
spindle assembly is unclear. We interestingly found that HCP-1 could synergize the rescue promoting
effect of CLS-2 in vitro (twofold increase in the rescue frequency), but that this synergy was lost
upon addition of BUB-1. Importantly, this cannot be caused by a competition between BUB-1 and
CLS-2, for HCP-1 binding, because the pause promoting effect was only observed when all three BHC
components were added. Further work, including identification of separation-of-function mutations of
HCP-1, is clearly required to establish the exact function of HCP-1 in vivo.

Our data also show that the CTD point or deletion mutant of CLS-2 (CLS-2*7% or CLS-2°“™), which
were unable to interact with HCP-1 or support normal meiotic spindle assembly, could largely support
chromosome segregation and polar body extrusion, unlike other CLS-2 loss-of-function mutants. This
suggests that CLS-2%7%* and CLS-2°“™ have retained some functions of CLS-2, and extends previous
findings showing that CLS-2 can localize to, and promote assembly of, central spindle microtubules
in absence of its upstream partner protein BUB-1, although less efficiently (Laband et al., 2017).
Consistent with this view, our in vitro microtubule-
based assays showed that, as wild-type CLS-2,
the CLS-2%"%* mutant was capable of promoting
microtubule rescue, while inhibiting catastrophe.
Our assays also demonstrated that, as a module,
BHC components strongly enhanced microtubule
pausing relative to individual components individ-
ually or in pairs. Altogether, our data suggest that
meiotic spindle assembly, chromosome segre-
gation, and polar body extrusion are distinct
functions of CLS-2 requiring different levels of
microtubule dynamics regulation. Meiotic spindle
assembly requires an intact BHC module and the

Video 7. TIRF microscopy-mediated live imaging of in
vitro microtubule (magenta) polymerization dynamics
from GMPCPP seeds (cyan) in the presence of indicated
protein (100 nm each). Scale bar 10 um.
https://elifesciences.org/articles/82579/figures#video?
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strong microtubule pause promoting effect of the module, while chromosome segregation and polar
body extrusion only depend on the rescue promoting and catastrophe reducing effects of CLS-2
alone.

In mammals, CLASPs contain two tandemly arranged SxIP motifs that mediate End-Binding (EB)
protein interaction important for microtubule plus-end accumulation and microtubule catastrophe
suppression (Aher et al., 2018; Girdo et al., 2020; Patel et al., 2012; Maki et al., 2015). In C.
elegans oocytes and embryos, CLS-2 did not substantially accumulate at microtubule plus-ends, which
was consistent with the apparent lack of SxIP motif in the CLS-2 sequence. We noted that CLS-2
contained a divergent LxxPTPh motif (LPKRPTPQ) at the C-terminal end of the S/R-rich region, which
could potentially mediate EB protein interaction (Kumar et al., 2017). However, a GFP-fused dele-
tion of the corresponding region could support embryonic viability in absence of endogenous CLS-2,
which suggests that it is not essential (Figure 6—figure supplement 1D). Also, in contrast to human
CLASP2, which weakly but visibly accumulates at microtubule plus-ends in vitro in the absence of EB
protein, GFP-tagged CLS-2 only faintly decorated the microtubule lattice, with a speckled pattern
(Figure 6—figure supplement 1E). This weak microtubule binding was not increased in the presence
of HCP-1 and BUB-1 (Figure 6—figure supplement 1E). Finally, in contrast to work on yeasts and
Drosophila CLASPs, but in line with previous in vitro studies on human CLASPs, we did not detect
any significant correlation between the CLS-2 speckles along the lattice and the sites of microtubule
rescue or pause events (Figure 6—figure supplement 1F; Al-Bassam et al., 2010; Moriwaki and
Goshima, 2016; Lawrence et al., 2018). Therefore, unlike mammalian, or yeasts and Drosophila
CLASPs, which respectively prevent catastrophe and promote rescue by concentrating at a region
located behind the outmost microtubule end, or by accumulating at speckles along the lattice, the
stabilizing effect of C. elegans CLS-2 does not require its plus-end nor lattice speckled accumulation.

Potential conservation of BHC function in oocytes outside of C. elegans
Although BHC components are mostly conserved across evolution from fly, to worm, to mammals,
their function as a module, such as the one we described here in C. elegans, is unlikely to be identi-
cally conserved. Indeed, although CENP-F kinetochore localization depends on its direct interaction
with Bub1, CENP-E and not CENP-F is responsible for CLASPs kinetochore localization in human
cells. This could explain why, unlike HCP-1/2 in C. elegans, CENP-F is not an essential protein in
vertebrates (Pfaltzgraff et al., 2016, McKinley and Cheeseman, 2017, Raaijmakers et al., 2018). In
mammals, CENP-E interacts with the pseudokinase domain of BubR1, but does not bind to the kinase
domain of Bub1 (Ciossani et al., 2018). Overall, we showed here that, in C. elegans, binding to HCP-1
and BUB-1 could modulate CLS-2 effect on microtubules. As BubR1 and Bub1 are clear paralogous
proteins, and CENP-E and CENP-F have been proposed to be distantly related paralogs, it would
be interesting to determine if similar synergistic regulation of microtubule dynamics exists between
BubR1, CENP-E and CLASP proteins in vertebrates (Ciossani et al., 2018). More generally, deter-
mining if other CLASPs partner proteins can also modulate their microtubule dynamics-regulating
activity will be essential to fully understand CLASPs function.

Methods

C. elegans strain maintenance

C. elegans strains were maintained at 20° or 23 °C under standard growth conditions on NGM plates
and fed with OP50 E. coli (Brenner, 1974). The N2 Bristol strain was used as the wild-type control
background Sulston and Brenner, 1974, unless specified otherwise in the text. Transgenic lines were
obtained either by Mos1-mediated Single Copy Insertion (MoSCl) Frokjaer-Jensen et al., 2008, or by
crossing pre-existing strains. JDU753 was obtained by Crispr/Cas9-mediated mutagenesis of JDU244
using crJDé66 (5'- cttcgacttcaatgacacga-3’) and crJD67 (5'- tccgagatcaagcagctgaa-3') guide RNAs. We
used 5'-gcttggagaaatgcatgagaagatggaagcatctga(T)cgtcgtgtcattgaagtcgaagaacaa’ ccgeccacgagtaa
tgggactgatcgagcaagcaag-3’ as repair template, where (T) corresponds to a silent mutation in one of
the PAM, and ‘A’ indicates the deleted KTD. A potential mutation of endogenous hcp-1 was elimi-
nated through backcrosses, while the mutated gfp::hcp-1 MosSCl transgene was specifically selected
for by PCR. The list of strains used in this study is provided in . All strains produced will be provided
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upon request and/or made available through the Caenorhabditis Genetics Center (CGC, https://cgc.
umn.edu/).

RNA-mediated interference

Double-stranded RNAs were produced as described previously in Edwards et al., 2018. After DNA
amplification from total N2 cDNA by PCR using the primers listed below, reactions were cleaned (PCR
purification kit, Qiagen), and used as templates for T3 and T7 transcription reactions (MEGAscript,In-
vitrogen) for 5 hr at 37 °C. These reactions were purified (MEGAclear kit, Invitrogen), then annealed
at 68 °C for 10 minutes, 37 °C for 30 min. L4-stage hermaphrodite larvae were micro-injected with
1500-2000 pg/pL of each dsRNA, and recovered at 20 °C for 36 hr before being further processed.

Primers used to produce double-stranded RNAs targeting the indicated genes: bub-1(R06C7.8):
5'-AATTAACCCTCACTAAAGGggataattttatgatcaccag-3’

5'- TAATACGACTCACTATAGGctacttttggttggcggcaag-3'

cls-2 (R107.6):

5'-TAATACGACTCACTATAGGttcaaggaaaagttggacc-3’

5'- AATTAACCCTCACTAAAGGggtgcatttctgattccacc-3’

gei-17 (W10D5.3):
5'-AATTAACCCTCACTAAAGGTATGCTGATAATTTTGAACCGCT-3'
5'-TAATACGACTCACTATAGGTCATCAACAATAAGTCTATCATATGG-3'
hcp-1 (ZK1055.1):
5'-AATTAACCCTCACTAAAGGaagcgccagcaaaccgagtcgec-3'

5'- TAATACGACTCACTATAGGgtcaatgtgacctttgacaggaagc-3’

hcp-2 (TO6E4.1):
5'-TAATACGACTCACTATAGGtctcggaaaggaatcgaaaa-3’
5'-AATTAACCCTCACTAAAGGtcgttgtctccaattccaca-3' knl-1 (CO2F5.1):
5'-TAATACGACTCACTATAGGttcacaaacttggaagccgctg-3’

5'- TAATACGACTCACTATAGGttcacaaacttggaagccgctg-3'

mdf-2 (Y69A2AR.30)
5'-TAATACGACTCACTATAGGTCAAAGGATCTGCCCAACTC-3’
5'-AATTAACCCTCACTAAAGGCGTCGAGAATGAGCGAAGTT-3'

Embryonic viability assays

Embryonic viability assays were performed at 20 °C. Worms were singled onto plates 36 hr post-L4,
upon recovery from dsRNA micro-injection. Worms were allowed to lay eggs for 12 hr before being
removed from the laying plates. For each laying plate, the number of unhatched eggs, and of L1
larvae was counted. Plates were then left at 20 °C for another 36 hr before the total number of worms
reaching L4/adulthood was counted. Control worms were analyzed with the same protocol with no
preceding micro-injection. The proportion of viable progenies was calculated as the number of L4/
adults divided by the number of eggs/L1.

Live imaging and image analysis

All live and fixed acquisitions were performed on a Nikon Ti-E inverted microscope, equipped with
a Yokogawa CSU-X1 (Yokogawa) spinning-disk confocal head with an emission filter wheel, using
a Photometrics Scientific CoolSNAP HQ2 CCD camera. The power of 100 or 150 mW lasers was
measured before each experiment with an Ophir VEGA Laser and energy meter. Fine stage control
was ensured by a PZ-2000 XYZ Piezo-driven motor from Applied Scientific Instrumentation (ASI). The
microscope was controlled with Metamorph 7 software (Molecular Devices).

For ex utero live imaging of embryos and one-cell zygotes, embryos were freed by dissecting
worms on a cover slip in 6-8 pL meiosis medium Laband et al., 2018. Movies were acquired using a
Nikon APO 1 S 60 x/1.40 oil objective and 2x2 binning. Images were acquired at 10, 15 or 20 second
interval, over 2-4 Z-planes with a step size of 2 pm. Temperature was maintained at 23 °C using the
CherryTemp controller system (Cherry Biotech).

Immunofluorescence was performed as described in Gigant et al., 2017 using a 20 minutes cold
(=20 °C) methanol fixation. Custom-produced Dylight 550-labeled (Thermo Scientific) rabbit anti-BUB-1
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Maton et al., 2015, Dylight 650-labeled (Thermo Scientific) rabbit anti-CLS-2 Maton et al., 2015, and
FITC-labeled mouse anti-a-tubulin (SIGMA F2168, DM10a) were used at a concentration of 1 pg/mL.
DNA was stained with Hoechst at 2 pg/mL. Z-sections were acquired every 0.2 pm using a Nikon APO
1S 100 x/1.45 oil objective. Maximum projections of relevant sections are presented.

Image and movie treatment, scaling and analysis were performed in FIJI (Schindelin et al., 2012).
Protein signals at kinetochores were measured using linescans along the long axis of prometaphase
| chromosomes. Background noise was measured using a linescan of similar length and width on
the same Z-plane outside the spindle. Spindle area and fluorescence intensity of tubulin (microtu-
bule density) were measured on sum projections of 4 Z-planes 45 s before anaphase | onset. For
each sample, the background signal was measured using the same ROI placed at the center of the
oocyte. Graphs represent ratios of the Integrated fluorescence/Background noise. To assay the effect
of depleting BUB-1, HCP-1 and/or MDF-2 on the cell cycle timing and on meiotic spindle assembly
and chromosome segregation, the time between the first frame of homologous chromosome visible
separation (anaphase I) and the first frame of sister chromatid visible separation (anaphase Il) was
measured, and meiotic defects were assayed on the same movies. Spindles scored as ‘disorganized’
corresponded to visibly apolar or multipolar spindles.

Western blotting

For each sample, gravid adult worms (24 hr post-L4) were washed in M9 buffer (22 mM KH,PO,, 42 mM
Na,HPO,, 86 mM NaCl, and 1 mM MgSO,*7H,0) supplemented with 0.1% Triton X100. Samples were
then resuspended in 30 pL Laemmli buffer (1 X final) and incubated at 97 °C for 15 min, vortexed at
4 °C for 15 min, and boiled at 97 °C for 5 min. Worm extracts were loaded on NuPAGE 3-8% Tris
Acetate gels (Invitrogen). Proteins were then transferred onto nitro-cellulose membranes which were
incubated with 1 pg/uL primary antibodies in 1 X TBS-Tween (TBS-T) supplemented with 5% skim milk.
Anti-BUB-1, anti-HCP-1 and anti-CLS-2 were custom-produced in rabbits, and affinity-purified against
the antigen used for immunization (Maton et al., 2015). Mouse Anti-GFP (Roche 11814460001) was
used to specifically detect the transgenes. Mouse anti-a-tubulin (Abcam Ab7291, DM10) or rabbit
custom-made anti-KLP-7 antibodies (Gigant et al., 2017), were used as loading controls. Blockings
were performed in 1 X TBS-Tween +5% skim milk, and washes in 1 X TBS-T. Signals were revealed
with HRP-coupled goat anti-mouse or anti-rabbit secondary antibodies (Jackson ImmunoResearch
115-035-003 or 11-035-003, respectively, 1:10,000 in 5% skim milk TBS-T). Revelation was performed
on a Biorad ChemiDoc Imaging System.

Yeast two hybrid assay

Full CDS or gene domains were cloned from wild type C. elegans (N2) cDNA. The yeast two hybrid
assay was performed using the LexA-based system. In short, the HCP-1 KTD and CBD were fused to
LexA binding domain in the bait pB27 plasmid, and other CDS sequences fused to Gal4 activating
domain in the prey pPé vector. Bait-encoding plasmids were transformed into L40Agal14 S. cere-
visiae strain (MATa), prey plasmids into CG1945 strain (MAT a). Upon mating, diploid S. cerevisae
were spotted on -Leu -Trp double-selection medium, and interactions were tested on -Leu -Trp -His
medium. 5 mM of 3-amino-1,2,4-triazole (3AT) was added to abolish autoactivation by LexA::HCP-
1(CBD). Image acquisitions were done on a Biorad ChemiDoc Imaging System.

In silico protein sequence analyses
For comparison of TOGL domains among CLASPs (Ce: Caenorhabditis elegans, Dm: Drosophila mela-
nogaster, Hs: Homo sapiens, Mm: Mus musculus, XI: Xenopus laevis), protein sequence alignment and
phylogenetic tree were generated using Clustal Omega (Version 1.2.4, https://www.ebi.ac.uk/Tools/
msa/). The tree was rooted using the sequence of the TOG3 of human chTOG. The phylogenetic tree
figure was generated using the FigTree software (v1.4.4, http://tree.bio.ed.ac.uk/software/figtree/).
Sequence alignment of the TOGL2 domains (At: Arabidopsis thaliana, Ce: Caenorhabditis elegans,
Dm: Drosophila melanogaster, Hs: Homo sapiens, Mm: Mus musculus, XI: Xenopus laevis) and the
TOGL3 domain of C. elegans, or of the CLASPs CTDs (At: Arabidopsis thaliana, Ce: Caenorhabditis
elegans, Ci: Ciona intestinalis, Dm: Drosophila melanogaster, Dr: Danio rerio, Gg: Gallus gallus, Hs:
Homo sapiens, Mm: Mus musculus, X|: Xenopus laevis) was done with MAFFT using the Snapgene
software (https://www.snapgene.com/) and exported as Rich Text.
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Protein production and purification

Full-length BUB-1 and HCP-1 sequences were amplified from C. elegans cDNA and cloned in pFastBac
dual expression vector in frame with a 6xHis tag. CLS-2 was cloned in pFastBac dual in frame with
a C-terminal GFP tag, a TEV protease cleavage site, and a 6xHis tag. BUB-1, CLS-2::GFP and CLS-
2R9704:.:GFP production was performed in 2 L SF9 cells in Insect-XPRESS (Lonza) medium (1x10/6 cells/
mL), infected with amplified baculovirus for 48 hr at 27 °C. HCP-1 was produced similarly but in Hi-5
cells maintained in EX-Cell 405 medium (Sigma-Aldrich) and collected after 66 hr infection. Cells were
harvested by centrifugation at 700xg and resuspended in 10-15 mL lysis buffer (150 mM KCI, 1 mM
MgCl,, 0.1% Tween-20, protease inhibitor (Complete EDTA-free tablets, Roche)) per liter of culture,
supplemented with 5% glycerol for CLS-2::GFP and CLS-2?7%4::GFP. BUB-1 was purified in 25 mM
HEPES pH 7.2, HCP-1 in 50 mM MES pH 6.5, and CLS-2::GFP and CLS-2%"%4::GFP in 50 mM PIPES pH
6.8 supplemented with 50 mM glutamate and 50 mM arginine to increase protein solubility and puri-
fication yield (Lawrence et al., 2018; Golovanov et al., 2004). Cells were homogenized in a Dounce
homogenizer and lysed by sonication for 30 s at 50% amplitude using a 6 mm diameter probe. Lysates
were clarified by ultracentrifugation at 100,000xg for 1 hr at 4 °C. Sample loading, column washes
and elution were performed using an AKTA Pure chromatography system (Cytiva). Supernatants were
loaded on 1 mL HiTrap TALON crude (Cytiva) columns equilibrated with Buffer A (150 mM KCI, 1 mM
MgCl,). The columns were washed with 10 column volumes (CVs) of buffer A followed by 30 CVs
of buffer A’ (150 mM KCI, 1 M MgCl,). Columns were then equilibrated with 20 CVs of buffer A.
Elution was performed with 30 CVs of a gradient from 0 to 100% buffer B (150 mM KCI, 1 mM MgCl,,
300 mM Imidazole). A, A" and B buffer pHs were adjusted to protein-specific lysis buffer pH. Absor-
bance was measured at 280 nm. Fractions were analyzed by SDS-PAGE and Coomassie staining.
Fractions containing pure proteins were pooled, concentrated using Amicon Ultra-15 centrifugation
units and desalted against buffer A using Econo-Pac 10DG Desalting columns (Bio-Rad). Proteins
were aliquoted, snap frozen in liquid nitrogen and stored at —-80 °C. CLS-2::GFP and CLS-2%7A::GFP
protein were further purified using a gel filtration column Superdex 200 Increase 10/300 GL (Cytiva).
Equilibration, loading and isocratic elution were made at a flow rate of 0.4 mL/min with 25 mM HEPES
pH 7.2, 150 mM KCI, 1 mM EGTA, and 1 mM MgCl,.

CLS-2 TOGL2 (aa1-276) and TOGL3 (aa441-699) domains were expressed in E. coli Rosetta2 cells
using pProEx-HTb 6xHis expression vectors. Transformed bacteria were allowed to reach 0.4 OD600nm
at 37 °C. The cultures were then transferred to 20 °C and expression was induced overnight (~18 hr)
with 0.1 mM IPTG. Bacteria were harvested by centrifugation at 4000xg for 20 min resuspended and
washed with 1 x PBS by centrifugation. Cells were resuspended in lysis buffer (25 mM MOPS pH 7.2,
300 mM NaCl, 10 mM B-mercaptoethanol) supplemented with protease inhibitors (Complete EDTA-
free tablets, Roche). Cells were lysed by sonication using a 6 mm diameter probe at 50% amplitude
for 2 min. The lysates were clarified by ultracentrifugation at 90,000xg for 1 hr at 4 °C and loaded on
1 mL HisTrap Excel columns (Cytiva). Purification of CLS-2 domains was performed using the same
procedure as BUB-1, HCP-1 and CLS-2::GFP (see previous paragraph) but using different composition
for buffer A (25 mM MOPS pH 7.2, 300 mM NaCl, and 10 mM B-mercaptoethanol), A’ (25 mM MOPS
pH 7.2, 1 M NaCl, and 10 mM B-mercaptoethanol) and B (25 mM MOPS pH7.2, 300 mM NaCl, and
10 mM B-mercaptoethanol, 300 mM imidazole). CLS-2 domains were dialyzed against 25 mM MOPS
pH 7.4, 1 mM EGTA, 300 mM KCI, and 10 mM B-mercaptoethanol, frozen in liquid nitrogen and stored
at-80 °C.

Tubulin was purified from pig brains following high salt protocol and cycles of polymerization
and depolymerization as in Castoldi and Popov, 2003. Tubulin was then labeled with either NHS-
ester-ATTO 565 (ATTO-TEC), NHS-ester-ATTO 488 (ATTO-TEC) or EZ-Link Sulfo NHS-LC-LC-Biotin
(ThermoFisher #21338). Labeling dyes or linkers were removed by two cycles of polymerization/depo-
lymerization Hyman et al., 1991. In brief, unlabeled polymerized tubulin was incubated 40 min at
37 °C in the presence of 5 mM of succinimidyl ester-coupled reagent in labeling buffer (0.1 M HEPES
pH 8.6, 1 mM MgCl,, 1 mM EGTA, and 40% glycerol (volume/volume)). Microtubules were then spun
down through a low pH cushion (60% glycerol, 1 x BRB (80 mM K-PIPES pH 6.8, 1 mM MgCl,, and
1 mM EGTA)), resuspended in 50 mM K-glutamate pH 7.0, 0.5 mM MgCl,, and left to depolymerized
on ice for 30 min in a small glass Dounce homogenizer. Depolymerized labeled tubulin was recovered
from a 120,000xg centrifugation at 2 °C and resuspended in 4 mM MgCl,, 1 mM GTP, 1 x BRB. An
additional cycle of polymerization was performed at 37 °C for 40 min. Microtubules were sedimented
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at 120,000xg for 20 min at 37 °C and depolymerized in ice-cold 1 x BRB buffer. Soluble tubulin was
recovered from a 10 min 150,000xg centrifugation at 2 °C, diluted to 15-20 mg/mL in 1 x BRB,
aliquoted, frozen in liquid nitrogen and stored at —80 °C.

Protein-protein interactions by size exclusion chromatography

To assess the interaction of the CLS-2 domains with soluble tubulin, an equimolar mix was made at
a concentration of 25 pM of each protein in equilibration buffer (25 mM HEPES pH 7.0, 80 mM KCl,
1 mM EGTA, 1 mM MgCl,, and 5% glycerol). Samples (50 pL) were loaded on a Superdex 200 Increase
10/300 GL (Cytiva) at a flow rate of 0.4 mL/min. Proteins were followed by measuring the absorbance
at 280 nm and peaking fractions were loaded and analyzed by SDS-PAGE and Coomassie staining.

Microtubules bundling assays

A 100 pL mixture of 80 pM unlabeled and ATTO-565-labeled tubulin (12:1 ratio) was incubated 5 min
at 4 °C and centrifuged at 100,000xg for 10 min to remove aggregated labeled tubulin. The super-
natant was left to polymerize at 35 °C for 30 min in T mM GTP, 1 x BRB buffer for 30 min. An equal
volume of 1 x BRB buffer with 20 pM docetaxel (Sigma-Aldrich) was added, and the reaction was
further incubated for 15 min at room temperature before being centrifuged at 50,000xg for 10 min at
25 °C. The supernatant was discarded, the pellet was gently washed with a volume of warm (35 °C)
10 uM docetaxel, 1 x BRB. The pellet was rehydrated by incubating for 10 min at room temperature in
a volume of 10 uM docetaxel, and then resuspended by pipetting up and down. The stabilized micro-
tubule solution was diluted in 10 pM docetaxel,1x BRB to a final tubulin concentration of ~160 nM
to facilitate visualization under the fluorescent microscope. The diluted microtubule suspension was
incubated 5 min at room temperature with the protein of interest at a concentration of 200 nM to
250 nM in a microtube. The mixture was transferred in a ~10 pL microchamber between a microscope
slide and a coverslip assembled with thin strips of double-sided tape. The chamber was immediately
imaged with a spinning-disk confocal. An image of a single focal plane was captured at x60 magnifi-
cation with a 1.4 N.A. oil immersion objective, using 561 nm excitation laser.

Microtubules pelleting assays

Stabilized microtubules were prepared as stated above except that no labeled tubulin was added.
Final reaction volumes of 50-100 pL of 1 pM purified BUB-1 and 0-1.7 puM stabilized microtubules
were prepared in 10 pM docetaxel, 80 mM KCIl, 1 x BRB buffer, into ultracentrifugation microtubes.
Mixtures were incubated 15 min at room temperature and centrifuged at 50,000xg for 10 min. The
supernatants were keptin 1 x Laemli sample buffer (LSB) from a 5 x solution (400 mM TRIS-HCI pHé6.8,
450 mM DTT, 10% SDS, 50% glycerol, and 0.006% w/vol bromophenol blue). Pellets were washed
with 10 pM docetaxel in 1 x BRB and directly resuspended in 1 x LSB. Supernatants and pellets were
analyzed by SDS-PAGE (10% acrylamide) and Coomassie staining.

In vitro microtubule dynamics

Biotinylated GMPCPP-stabilized microtubule seeds were obtained by mixing biotinylated-tubulin and
fluorescent tubulin (ATTO488-tubulin) at a 4:1 ration to a 10 pM final concentration of tubulin. This
mix was incubated at 37 °C in 1 x BRB supplemented with 0.5 yM GMPCPP (Jenabioscience). After a
1 hrincubation, docetaxel (Sigma-Aldrich) was added to a final concentration of 1 uM and the reaction
was incubated for 30 min at 30 °C. Microtubule seeds were pelleted at 100,000 g for 10 min at 25 °C.
The pellet was resuspended in 1 x BRB, 0.5 mM GMPCPP, and 1 uM docetaxel. Seeds were aliquoted,
frozen in liquid nitrogen and stored at —-80 °C in cryotubes for up to 3 weeks.

Single microtubule dynamics assays were performed in a ~20 pL flow chamber between a glass
slide and a coverslip assembled with double-sided sticky tape. Glass slides were cleaned and passiv-
ated using a protocol adapted from Aumeier et al., 2016. In brief, slides were washed successively in
water, acetone, ethanol, 2% Hellmanex detergent for at least 30 min in each reagent in a glass beaker
immersed into an ultrasonic bath. Glass slides were then treated with a 1 mg/mL PEG-silane solution
(MW 30 K; Creative PEG works) in 96% ethanol, 0.1% HCI. In addition, coverslips were plasma-cleaned
for 2 min before being treated with PEG-silane-biotin (MW 10 K Creative PEG works) overnight at
room temperature under gentle agitation. Slides and coverslips were abundantly washed with large
volumes of MilliQ-water and dried using pressurized air blowing. Dried slides and coverslips were
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stored at 4 °C for a maximum of 3 weeks in clean plastic boxes. Prior to use, a microchamber of around
10 pL in volume was fabricated using a slide, a coverslip and double-sided tape (~70 pm thickness).
A total of 100 pL of 50 ug/mL neutravidin (Invitrogen A2666), BRB-BSA (1 x BRB, 0.2% BSA) solution
were flowed into the chamber. The chamber was then kept at room temperature (22-23°C) and never
allowed to dry. The neutravidin solution was incubated for 5 min in the chamber. The chamber was
washed twice for 1 min with 100 pL of 0.1 mg/mL PLL-PEG (PLL20k-G35-PEG2k, Jenkem), and a third
time with 300-400 pL of BRB-BSA. A solution of GMPCPP-stabilized microtubule seeds diluted in
BRB-BSA was flowed into the chamber and incubated for 3 min. Excess of seeds was then removed
by several washes of >300 pL BRB-BSA before introduction of the elongation mix containing 12 yM
total tubulin (94% unlabeled pig brain tubulin, 6% labeled pig brain tubulin), in 40 mM PIPES pH6.8,
10 mM HEPES pH 7.5, 44 mM KCI, 5 mM MgCl,, 1.5 mM EGTA, 0.2% methylcellulose (1500 cP), 4 mM
DTT, 1 mM GTP, 0.5 mM ATP buffer supplemented with 128 nM catalase, 500 nM glucose oxidase and
40 mM glucose antifading agents, and in the presence of 100 nM freshly thawed BUB-1, HCP-1 and/
or CLS-2::GFP. Microtubule dynamics was monitored between 22.5°C and 23°C on an azimuthal TIRF
microscope (Nikon Eclipse Ti2 equipped with the llas2 module, Gataca systems) using a 60 x, 1.47NA
oil immersion TIRF objective and a Photometrics Prime BSI sCMOS camera. Two-channel acquisitions
(488 nm and 561 nm) were performed every 3 s for 20 min. Imaged were acquired at 50 ms exposure.

Quantification of microtubule dynamics

Microtubule dynamics parameters were extracted from kymographs generated from TIRF micros-
copy image sequences using the built-in plugin ‘Multi Kymographs' in FIJI or ‘MultipleKymograph’ in
ImageJ. A macro was used to generate kymograph from each microtubule using multiple ‘Segmented
Line’ ROls (region of interests). Parameters were then extracted manually by measuring rates (slopes)
and durations (vertical distances) on kymographs (Zwetsloot et al., 2018). During our experiments
(especially in the presence of the full BHC module), microtubules often displayed complex behaviors,
such as a different growth rates during a single growth excursion with intercalated pause events and
without undergoing catastrophe (e.g. growth to pause to regrowth). Because microtubule dynamics
can be influenced by microtubule age and lattice effects (Odde et al., 1995; Gardner et al., 2011,
Rai et al., 2021), it is a better approach to consider the lifetime history of single microtubules to
quantify catastrophe and rescue events (Zanic, 2016). Lifetime refers here to the period of time from
which a microtubule emanates from the seed, to the time it starts shrinking all the way to the seed.
The rescue frequency was measured as the number of rescues observed per microtubule, divided by
the total time it spent shrinking within its lifetime. Similarly, catastrophe frequency corresponds here
to the number of observed catastrophes per microtubule, divided by the total duration of growth
excursion(s) of this microtubule, even if the elongation periods are interspersed with pause events, but
excluding phases of shrinkage. The percentage of time spent in pause corresponds the duration of
all pause events for a single microtubule divided by its lifetime. Measurements are available in Figure
6—source data 1 - Panel B-F source data.

Figure preparation, graphs and statistical analyses

Figures and illustrations were done in the Affinity Designer software (ver. 1.10.3). Graphical represen-
tation of data and statistical analyses were performed using the GraphPad Prism software (ver. 8.4.3
(471)). Statistical tests used are specified in the corresponding figure legends and their source data

file.
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