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Global patterns of water storage in the 
rooting zones of vegetation

Benjamin D. Stocker    1,2,3,4,5  , Shersingh Joseph Tumber-Dávila    1,6, 
Alexandra G. Konings    1, Martha C. Anderson7, Christopher Hain8 & 
Robert B. Jackson    1,9,10

The rooting-zone water-storage capacity—the amount of water accessible 
to plants—controls the sensitivity of land–atmosphere exchange of water 
and carbon during dry periods. How the rooting-zone water-storage 
capacity varies spatially is largely unknown and not directly observable. 
Here we estimate rooting-zone water-storage capacity globally from the 
relationship between remotely sensed vegetation activity, measured by 
combining evapotranspiration, sun-induced fluorescence and radiation 
estimates, and the cumulative water deficit calculated from daily time 
series of precipitation and evapotranspiration. Our findings indicate 
plant-available water stores that exceed the storage capacity of 2-m-deep 
soils across 37% of Earth’s vegetated surface. We find that biome-level 
variations of rooting-zone water-storage capacities correlate with observed 
rooting-zone depth distributions and reflect the influence of hydroclimate, 
as measured by the magnitude of annual cumulative water-deficit extremes. 
Smaller-scale variations are linked to topography and land use. Our findings 
document large spatial variations in the effective root-zone water-storage 
capacity and illustrate a tight link among the climatology of water deficits, 
rooting depth of vegetation and its sensitivity to water stress.

To sustain activity during dry periods and resist impacts of droughts, 
plants rely on water stored below the surface. The larger the 
rooting-zone water-storage capacity (S0), the longer plants can with-
stand soil moisture limitation1. S0 is therefore a key factor determining 
drought impacts, land–atmosphere exchanges and run-off regimes, 
particularly in climates with a seasonal asynchrony in radiation and 
precipitation (P)2–4. In models, S0 is commonly conceived as a function 
of the soil texture and the plants’ rooting depth (zr), limited to the depth 
of the soil3,5. Recent research has revealed a substantial component of S0 
and contributions to evapotranspiration (ET) by water stored beneath 
the soil, in weathered and fractured bedrock and groundwater6–11.  

Plant access to such deep moisture plays an important role in con-
trolling near-surface climate12–14, run-off regimes4, global patterns of 
vegetation cover15 and mitigating impacts of droughts16.

However, S0 is impossible to observe directly across large scales, 
and its spatial variations are poorly understood17. Global compilations 
of local plant zr measurements18,19 yield information related to S0 but 
have resolved this observational challenge only partly because of their 
limited size and large documented variations in zr across multiple sca
les7,18,18–21. Empirical approaches for estimating the global zr distri-
bution have made use of relationships between in situ observations 
and climatic factors22. Modelling approaches for predicting zr have 
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and the evident plasticity of zr and variations of S0 within plant types 
and along climatic and topographic gradients are often ignored. Impli-
cations of this simplification may be substantial for the simulation of 
land–atmosphere coupling and drought impacts8,12,13.

In this Article, we present a method for diagnosing S0 from the 
relationship between vegetation activity and CWD. By fusing multiple 
time series of Earth observation data streams with global coverage, we 
estimate the global distribution of S0 at a resolution of 0.05° (~5 km). 
Using a mass-balance approach2,26 and field observations of zr from 
a globally distributed dataset, we then show that the sensitivity of 
vegetation to water stress across the globe is strongly related to the 
magnitude of CWD extremes and reflects the rooting depth of plants.

Estimating S0 from Earth observations
We started by estimating S0 as the CWD at which vegetation ‘activity’ 
ceases. Our approach accounts for the constraint of the rooting-zone 
water availability on ET and photosynthesis and relates S0 to the sensi-
tivity of vegetation activity to water stress. The parallel information of 

conceived their spatial variations as the result of optimal adaptation 
to the prevailing hydroclimate23–25 or as being adapted to just buffer 
water demand to sustain ET during dry periods2,26. Such mass-balance 
approaches make use of the maximum cumulative water deficit (CWD) 
during dry periods as an indication of the effective S0. An additional 
hypothesis posits that it would not be beneficial for plants to root even 
deeper and thus size their S0 even larger26. However, a link among the 
magnitude of CWD extremes, the sensitivity of vegetation activity to 
an increasing CWD and local zr observations remains to be shown, and 
the prevalence of plant access to water stored at depth (here taken as 
>2 m) across the globe remains to be quantified.

Despite its crucial role in controlling water and carbon fluxes and 
the scarcity of observations, virtually all models simulating water and 
carbon exchange between the land surface and the atmosphere rely 
on a specification of S0 either directly as the depth of a ‘water bucket’ 
or indirectly through prescribed zr and soil texture across the profile. 
Typically, water stored at depth and along the entire critical zone 
(including weathered bedrock) is not fully represented in models8,9, 
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Fig. 1 | Rooting-zone water-storage capacity from vegetation activity.  
a,b, Rooting-zone water-storage capacity estimated from SdEF (a) and SdSIF (b) 
to the CWD. The red box in a shows the outline of the magnified map provided 

in Fig. 2. Data shown are aggregated to 0.1° resolution. Blank cells (white) mark 
areas where all underlying cells at the original 0.05° resolution did not exhibit a 
significant and single, linearly declining relationship with increasing CWD.
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ET, P and the modelled snow mass balance enables a quantification of 
CWD over time. Vegetation activity was estimated from two alternative 
observations: from the evaporative fraction (EF, defined as ET divided 
by net radiation) and from sun-induced fluorescence (SIF, normalized 
by incident short-wave radiation (Methods)).

Figure 1 reveals large global variations in S0. Estimates based on 
EF and SIF correlate closely and agree in magnitude (R2 = 0.78; Sup-
plementary Fig. 1). The lowest sensitivity of vegetation activity to an 
increasing CWD, and thus the largest apparent S0, is found in regions 
with a strong seasonality in radiation and water availability and substan-
tial vegetation cover—particularly in monsoonal climates. By contrast, 
the lowest S0 values appear not only in regions where seasonal water 
deficits are limited due to short inter-storm duration (for example, 
western Amazon and Congo basin) and/or low levels of potential ET 
(for example, high latitudes), but also in deserts and arid grasslands. 
This probably reflects the limited water storage accumulating during 
rain events from which vegetation can draw during dry periods. In these 
regions, a rapid decline of ET and SIF with an increasing CWD is related 
to vegetation cover dynamics, governed by greening after rain pulses 
and browning during dry periods27.

Clear patterns emerge also at smaller scales (Fig. 2 and Extended 
Data Figs. 1–3). The sensitivity of SIF (SdSIF) and sensitivity of the EF 
(SdEF) consistently (Supplementary Fig. 1) reveal how the sensitivity of 
photosynthesis and transpiration to drought stress varies across differ-
ent topographical settings, indicating generally larger S0 in mountain 
regions (’M’ in Fig. 2) and along rivers (’R’) and deltas (’D’). We note, 
however, that ET estimates from the product used here (ALEXI28,29) 
may be biased high over mountainous terrain where low incident net 
radiation and surface temperatures are caused not by high EFs but 
rather by topography effects and local shading. The maps of SdSIF and 
SdEF also bear strong imprints of human land use. Major irrigated crop-
land areas are congruent with some of the highest apparent S0 values. 
In these areas, our analysis yields particularly high CWD values and a 
low sensitivity of SIF and EF to CWD, without using information about 
the location and magnitude of irrigation. Other major irrigated areas 
appear as blank cells in Fig. 2 because the algorithm used to calculate 
CWD (Methods) fails due to a long-term imbalance between P and 
ET and a ‘runaway CWD’. This indicates sustained overuse of water 
resources, caused by lateral water redistribution at scales beyond ~5 km 
via streamflow diversion or groundwater flow and extraction (or bias 
in P and ET estimates).

Regressing vegetation activity against CWD also identifies loca-
tions where a decoupling of the two variables appears, that is, where 
the sensitivity of EF or SIF significantly decreases beyond a certain 
CWD threshold (‘flattening’ in Fig. 2; Methods). Such areas are par-
ticularly common in the vicinity of mountain regions, in areas with 
irrigated croplands and in savannahs (Supplementary Fig. 2). Related 
mechanisms may be at play. A flattening of the EF (SIF) versus CWD 
relationship is probably due to different portions of the vegetation 
having access to distinct water resources and respective storage capaci-
ties. In areas with large topographic gradients, this may be due to 
within-grid-cell heterogeneity in plant access to the saturated zone. 
Although relevant for land–atmosphere coupling12, land surface mod-
els typically do not account for such effects. This has potential impli-
cations for simulations of ET during prolonged dry periods in these 
regions. In savannahs, a shift in ET contributions from grasses and trees 
and a related shift in transpiration occurs as grasses, which are often 
more shallow rooted than trees30, senesce. In irrigated cropland areas, 
the flattening probably reflects land-use heterogeneity within ~5 km 
grid cells and the persistent water access on irrigated fields while EF 
and SIF are reduced more rapidly in surrounding vegetation.

What controls spatial variations in S0 and zr and the sensitivity of 
vegetation activity to water stress? Following ref. 2, we hypothesized 
that annual CWD maxima reflect the total amount of plant-accessible 
water. That is, zr and S0 are sized to just maintain transpiration and 
photosynthesis under extreme water deficits, commonly experienced 
over the course of a plant’s lifetime (recurring with a return period of 
T yr). Hence, a correlation between the magnitude of CWD extremes 
and the sensitivity of vegetation activity to an increasing CWD should 
emerge. For estimating CWD extremes, we started by using T = 80 yr 
and assessed other choices as described in Supplementary Text 1  
(also see Extended Data Fig. 4).

Figure 3a shows the global distribution of SCWDX80 and reveals pat-
terns across multiple scales—in close agreement with SdSIF and SdEF 
(R2 = 0.76 and R2 = 0.83, respectively; Supplementary Fig. 3). This indi-
cates that the sensitivity of vegetation activity to an increasing CWD 
(measured by SdSIF and SdEF) is strongly controlled by hydroclimate (as 
measured by SCWDX80). The agreement between S0 estimates based on 
water mass-balance approaches2,26 and vegetation activity suggests 
that plants tend to size their roots no deeper, and S0 no larger, than what 
is suggested by observed CWD extremes. Magnitudes of SCWDX80 inferred 
for 55% (37%) of Earth’s vegetated regions indicate plant access to 
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Fig. 2 | Rooting-zone water-storage capacity in Central Asia, estimated 
from SdEF. Blue areas (flattening) show grid cells where a significant reduction 
in the slope in EF versus CWD was identified beyond a certain threshold. SdEF 
values are not calculated for grid cells classified as flattening. Red lines outline 
major irrigated areas, where the irrigated land area fraction is above 30%41. 

Information about irrigated areas was used only for mapping here, but is not 
used for other parts of the analysis. Blank grid cells (white) indicate areas with a 
sustained imbalance of ET being greater than P. Green letters indicate locations 
of mountains (M), rivers (R) and delta (D), referred to in the main text. Additional 
regional maps are provided by Extended Data Figs. 1–3.
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water stored beyond 1 (2) m soil, assuming texture-dependent WHC31–33 
(Extended Data Figs. 5 and 6).

Fine granularity and large spatial heterogeneity of SCWDX80 at 
regional scales reveal the importance of land use and the local top-
ographical setting for determining plant-available water-storage 
capacities (Extended Data Figs. 7 and 8). Complex patterns emerge. 
Mountainous areas feature higher SCWDX80 than their surrounding 
lowlands. In other regions, lowlands feature some of the highest 
recorded SCWDX80. In these regions, irrigated agriculture is widespread 
(Fig. 2 and Extended Data Fig. 1). Variations are likely to extend to even 
smaller scales along the hillslope topography7 and within individual 
forest stands34. These scales lie beyond the resolution of the satellite 
remote-sensing data used here to calculate CWD.

Evaluation with rooting-depth observations
The S0 provides an estimate of the effective total plant-available water, 
independent of assumptions about physical constraint (limited soil 
depth, shallow bedrock or groundwater) and independent of uncertain 
soil texture and water-holding capacity (WHC). Due to the absence of 
direct observational constraints on S0, we converted S0 to a correspond-
ing apparent zr, enabling an evaluation of S0 estimates against fully 
independent observations. We focused on comparing biome-level dis-
tributions of inferred apparent rooting depth (zCWDX80) with a dataset30 
containing 5,524 individual field observations of plant rooting depth 
from 1,705 globally distributed sites (Supplementary Fig. 4). We thus 

tested the link between hydroclimate and below-ground vegetation 
structure across large climatic gradients.

Predicted and observed biome-level maximum rooting depth (90% 
quantiles) are correlated (Pearson’s r = 0.68; Fig. 4c) while the lower 
(10%) quantiles appear to be overestimated by zCWDX80 (Fig. 4b). Using 
a subset of the data where information about the water-table depth 
(WTD) is provided (489 entries from 359 sites), we limited values of 
zCWDX80 to the value of the observed local WTD (53% of all observations). 
This yields a strongly improved correlation of observed and estimated 
biome-level 10% rooting-depth quantiles (Pearson’s r = 0.91; Fig. 4d) 
compared with estimates that are not capped at the observed WTD 
(Fig. 4b). This suggests that inferred zr overestimates values where 
roots access the groundwater and indicates that groundwater access 
is relevant across more than half of the globally distributed sites in 
our dataset. While acting as a constraint on the rooting depth7, plant 
access to groundwater or a perched water table implies sustained 
transpiration during dry periods, correspondingly large CWDs and, by 
implication of the model design, large SCWDX80 and (apparent) zCWDX80.

Influence of biotic and abiotic factors
Using first-principles modelling and integrating multiple data streams, 
we diagnosed a hydrologically effective ecosystem-level S0 from the 
sensitivity of vegetation activity to CWD. We found that large-scale 
variations in S0 are driven by the hydroclimate and that global patterns 
of seasonal water deficits are reflected in the rooting depth of plants.  
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Fig. 3 | Rooting-zone water-storage capacity and apparent rooting depth 
from the water mass balance. a,b, Spatial variations of the rooting-zone 
water-storage capacity, estimated by SCWDX80 (a) and the apparent rooting depth 
zCWDX80 (b). Values are remapped to 0.1° resolution. Blank grid cells (grey) are 

either permanent inland water bodies and ocean or locations with long-term 
accumulation of water deficits. Values are removed in grid cells where more than 
99% is non-vegetation surface according to MODIS Landcover42.
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More fine-grained variations in S0 within regions and biomes are 
linked to land use and irrigation of agricultural land (Fig. 2), to topog-
raphy (Extended Data Figs. 7 and 8) and to the WTD, as indicated by 
the comparison with plant-level rooting-depth observations. The 
method applied here makes use of the sensitivity of remotely sensed 
ET to an increasing CWD and thus provides estimates of S0 even if 
below-ground water stores are never fully depleted during the obser-
vational period. Additional analyses, where S0 was diagnosed from a 
simple water-balance model with prescribed S0, confirmed the reli-
ability of the method across a broad range of hydroclimates (Supple-
mentary Text 2 and Supplementary Fig. 5).

The S0 reflects a combination of biotic and abiotic factors. Biotic 
factors that determine the total plant-available water are, for example, 
the rooting depth of the vegetation and plant hydraulic properties. 
Abiotic factors include the hydroclimate and physical constraints to 
the rooting depth, related to the texture and depth of the soil and the 
weathered bedrock7. Similarly, human management activities such as 
irrigation and tile drainage can impact ET, and thus S0, in agricultural 
systems. Physical constraints to roots are largely unknown across 
large scales. Our estimation of S0 makes no assumptions about such 

constraints. Instead, the magnitude of the water-storage capacity is 
inferred from mass-balance considerations. The CWD we derive from 
the balances of ET and P imply that the corresponding amount of water 
is supplied by local storage or supplied from lateral subsurface water 
convergence—likely a smaller contributor at the ~5 km spatial resolu-
tion of the data analysed here35.

Diagnosed values of S0 implicitly include water intercepted by leaf 
and branch surfaces, internal plant water storage and moisture stored 
in the topsoil and supplied to soil evaporation. These components are 
generally smaller in magnitude compared with moisture storage sup-
plied to transpiration36, and their contribution to ET declines rapidly 
as CWD increases. Hence, spatial variations in S0 reflect primarily vari-
ations mediated by moisture stored across the root zone.

Particularly in regions with pronounced dry seasons, our estimates 
of S0 greatly exceed typical values of the total soil WHC when consider-
ing the top 1 or 2 m of the soil column and texture information from 
global databases31 (Extended Data Fig. 5). The discrepancy in magnitude 
and spatial patterns of total 1 (2) m soil WHC and S0 diagnosed here hints 
at a critical role of plant access to deep water and the need to extend the 
focus beyond moisture in the top 1–2 m of soil for understanding and 
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simulating land–atmosphere exchange10,11. Indications of widespread 
plant access to deep water stores are consistent with observations of 
bedrock-penetrating roots7,37 and with evidence for dry-season mois-
ture withdrawal from the weathered bedrock9,11. We note that using 
the global map of SCWDX80 (zCWDX80) for directly parameterizing S0 (zr) in 
models may be misleading in areas with particularly small maximum 
CWDs and consequently small SCWDX80. Scaling relationships of above- 
and below-ground plant architecture30 and additional effects of how 
zr determines access to below-ground resources and function (for 
example, nutrients and mechanical stability) should be considered.

Underlying the estimates of SCWDX80 is the assumption that plant 
rooting strategies are reflected by CWD extremes with a return period 
T = 80 yr; SdSIF and SdEF provide an independent constraint to test this 
assumption. Extended Data Fig. 4 suggests that T is not a global con-
stant. A tendency towards higher T emerges with an increasing grid-cell 
average forest-cover fraction.

Our analysis identified mountain regions as being characterized 
by particularly high S0, despite shallow soil and regolith depths38. 
This could be due to hillslope-scale variations in groundwater depth, 
enabling sustained transpiration during prolonged rain-free periods. 
Lateral subsurface flow at scales beyond the resolution of the data used 
here (~5 km) may additionally supply water for ET and thus contribute 
to large inferred S0 in valley bottoms of large drainage basins. Local 
convergence (divergence) acts to supply (remove) subsurface mois-
ture and sustain (reduce) ET, leading to larger (smaller) CWD values. 
Without relying on a priori assumptions regarding S0 or functional 
dependencies of water stress effect on ET, thermal infrared- (TIR-) 
based remote-sensing data (as used here) offer an opportunity to detect 
such effects8. Our analysis yielded strong contrasts in diagnosed S0 
along topographic gradients (Extended Data Figs. 7 and 8). However, 
further research should assess the accuracy of spatial variations in 
annual mean ET and potential effects of terrain, where land surface 
temperature signals on shaded slopes may be misinterpreted by the 
ALEXI algorithm as signatures of higher ET.

Our global S0 estimates are a ‘snapshot’ in time. Regional- to 
continental-scale variations in average tree ages may be associated 
with changes in rooting depth and S0. Furthermore, environmental 
change may trigger changes in vegetation composition and struc-
ture39, with consequences for S0. Similarly, deforestation implies 
changes in rooting depth18, S0 and the surface energy balance14. Such 
temporal changes are not considered here due to the limited length 
of available time series of satellite observations (16 yr). It remains 
to be seen whether plasticity in zr is sufficiently rapid to keep pace 
with a changing climate with strong and widespread increases in 
rainfall variability40 and to what degree rising CO2 alters plant water 
use and their carbon economy and thereby the costs and benefits of  
deep roots.

Taken together, constraints available from local zr observations 
and from global remote sensing of vegetation activity reveal consistent 
patterns across multiple spatial scales and suggest widespread plant 
access to deep water storage, including the weathered bedrock and 
groundwater, or to other ancillary sources of water, such as irrigation. 
Our study revealed a tight link of the climatology of water deficits and 
vegetation sensitivity to drought stress. We demonstrated how land–
atmosphere interactions and the critical zone water-storage capacity 
are linked with the rooting depth of vegetation and how below-ground 
vegetation structure is influenced by the hydroclimate and topography 
across the globe.
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Methods
Estimating ET
Unbiased estimates of ET during rain-free periods are essential for 
determining CWD and estimating S0 and implied zr. We tested different 
remote-sensing-based ET products and found that the ALEXI-TIR prod-
uct, which is based on TIR remote sensing28,29, exhibits no systematic 
bias during progressing droughts (Supplementary Text 3 and Supple-
mentary Fig. 6), in contrast to other ET estimates assessed here. The 
stability in ET estimates from ALEXI-TIR during drought is enabled by 
its effective use of information about the surface energy partitioning, 
allowing inference of ET rates without reliance on a priori specified and 
inherently uncertain surface conductances44 or shapes of empirical 
water stress functions45, and without assumptions of rooting depth or 
effective S0. ALEXI-TIR is thus well suited for estimating actual ET behav-
iour during drought without introducing circularity in inferring S0.

CWD estimation
The CWD is determined here from the cumulative difference of actual 
ET and the liquid-water infiltration to the soil (Pin). ET is based on ther-
mal infrared remote sensing, provided by the global ALEXI data product 
at daily and 0.05° resolution, covering years 2003–2018. Values in 
energy units of the latent heat flux are converted to mass units account-
ing for the temperature and air-pressure dependence of the latent heat 
of vaporization following ref. 46. The Pin is based on daily reanalysis data 
of P in the form of rain and snow from WATCH-WFDEI47. A simple snow 
accumulation and melt model48 is applied to account for the effect of 
snowpack as a temporary water storage that supplies Pin during spring 
and early summer. Snow melt is assumed to occur above 1 °C and with 
a rate of 1 mm d−1 °C−1. The CWD is derived by applying a running sum 
of (ET – Pin), initiating on the first day when (ET – Pin) is positive (net 
water loss from the soil) and terminating the summation after rain has 
reduced the running sum to zero (Supplementary Fig. 7). This yields a 
continuous CWD time series of daily values. In general, P > ET for annual 
totals. This implies that the CWD summation is initiated at zero each 
year. In very rare cases, the CWD accumulates over more than one year, 
and data were discarded if the accumulation extended over five years 
(‘runaway CWD’). All P and snow melt (Pin) are assumed to contribute 
to reducing the CWD. This implicitly assumes that no run-off occurs 
while the CWD is above zero. The period between the start and end 
of accumulation is referred to as a CWD event. Within each event, 
co-varying data, used for analysis, are removed after rain has reduced 
the CWD to below 90% of its maximum value within the same event. 
This concerns the analysis of SIF and EF (see the following) and avoids 
effects of relieved water stress by re-wetting topsoil layers before the 
CWD is fully compensated. The algorithm to determine daily CWD 
values and events is implemented by the R package cwd49.

Diagnosing S0 from vegetation activity
By employing first principles for the constraint of the rooting-zone 
water availability on vegetation activity1, we developed a method to 
derive how the sensitivity of these fluxes to water stress relates to S0 and 
how this sensitivity can be used to reveal effects of access to extensive 
deep water stores. Two methodologically independent sources of 
information on vegetation activity were used: EF (defined as ET divided 
by net radiation) and SIF (normalized by incident short-wave radiation). 
SIF is a proxy for ecosystem photosynthesis50 and is taken here from a 
spatially downscaled data product51 based on GOME-2 data52,53. Since net 
radiation and short-wave radiation are first-order controls on ET and 
SIF, respectively, and to avoid effects by seasonally varying radiation 
inputs, we used EF instead of ET and considered the ecosystem-level 
fluorescence yield, quantified as SIF divided by short-wave radiation 
(henceforth referred to as ‘SIF’) for all analyses. The resulting estimates 
for S0 are referred to as SdEF and SdSIF, respectively.

The principles for relating vegetation activity to the rooting-zone 
water availability were considered as follows. As the ecosystem-level 

CWD increases, both gross primary production (ecosystem-level pho-
tosynthesis) and ET are limited by the availability of water to plants. In 
the following, we refer to gross primary production and ET as a generic 
‘vegetation activity’ variable X(t). This principle can be formulated, in its 
simplest form, as a model of X(t) being a linear function of the remain-
ing water stored along the rooting zone S(t), expressed as a fraction of 
the total rooting-zone water-storage capacity S0:

X(t) = X0 × S(t)/S0 (1)

Following equation (1), S0 can be interpreted as the total rooting-zone 
water-storage capacity, or the depth of a water bucket that supplies 
moisture for ET. Following ref. 1 and with X(t) representing ET, the 
temporal dynamics during rain-free periods (where run-off can be 
neglected) are described by the differential equation

dS/dt = −X(t) ⇒ dS/dt = −X0 × S(t)/S0 (2)

and solved by an exponential function with a characteristic decay 
timescale λ:

X(t) = X0 × exp(−[t − t0]/λ) (3)

λ is related to S0 as S0 = λX0, where X0 is the initial ET at S(t0) = S0.  
In other words, the apparent observed exponential ET decay time-
scale λ, together with X0, reflects the total rooting-zone water-storage 
capacity S0.

Fitting exponentials from observational data is subject to assump-
tions regarding stomatal responses to declines in S(t) and is relatively 
sensitive to data scatter. Hence, resulting estimates of S0 may not be 
robust. With CWD(t) = S0 − S(t) and equation (1), the relationship of X(t) 
and CWD(t) can be expressed as a linear function

X(t) = X0 − X0/S0 × CWD(t) (4)

and observational data for X(t) can be used to fit a linear regression 
model. Its intercept a and slope b can then be used as an alternative, 
and potentially more robust, estimate for S0:

S0 = −a/b (5)

This has the further advantage that estimates for S0 can be derived 
using any observable quantity of vegetation activity X(t) (not just ET 
as in ref. 1) under the assumption that activity attains zero at the point 
when the CWD reaches the total rooting-zone water-storage capacity; 
that is, X(t*) = 0 for CWD(t*) = S0.

Here we use a spatially downscaled product of SIF51, normalized 
by incident short-wave radiation (WATCH-WFDEI data47), and the EF, 
defined as the ratio of ET (ALEXI-ET data29) over net radiation (GLASS 
data54), as two alternative, normalized proxies for water-constrained 
vegetation activity, termed X′. Normalization by net radiation and 
incident short-wave radiation, respectively, removes effects by season-
ally varying energy available for vegetation activity. X′0 is thus assumed 
to be stationary over time, and the relationship of X′(t) and CWD(t) is 
interpreted here as a reflection of effects by below-ground water avail-
ability and used to derive SdSIF and SdEF. All data used for X′0 are provided 
at 0.05° and daily resolution.

SdSIF and SdEF were then derived on the basis of the relationship of 
EF and normalized SIF versus CWD, guided by equation (5). The rela-
tionship was analysed for each pixel with pooled data belonging to the 
single largest CWD event of each year and using the 90% quantile of EF 
and normalized SIF within 50 evenly spaced bins along the CWD axis. 
Binning and considering percentiles were chosen to reduce effects of 
vegetation activity reduction due to factors other than water stress 
(CWD). We then tested, for each pixel, whether the data support the 
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model of a single linear decline of SIF (EF) with increasing CWD (equa-
tion (5)) or, alternatively, a segmented regression model with one 
or two change points, using the R package segmented55. The model 
with the lowest Bayesian information criterion was chosen, and SdSIF 
and SdEF were quantified only for pixels where no significant change 
point was detected and where the regression of EF (SIF) versus CWD 
had a significantly negative slope. Flattening EF (SIF) versus CWD 
relationships were identified where a significant change point was 
detected and where the slope of the second regression segment was 
significantly less negative (P = 0.05 of t test) compared with the slope 
of the first segment. Examples, visualizing the diagnosing of S0 from 
EF, are given in Supplementary Fig. 8. We performed additional tests 
of the method’s reliability in estimating S0 by deriving SdEF from simula-
tions of the ecosystem water balance and ET, where S0 was prescribed, 
using the SPLASH (Simple Process-Led Algorithms for Simulating 
Habitats) model46. This demonstrates that the method applied for 
SdSIF and SdEF yields accurate estimates of S0 across all climatic condi-
tions and independent of the size of S0 (Supplementary Text 2 and  
Supplementary Fig. 5).

Diagnosing S0 from CWDs
Following ref. 2, the S0 is estimated on the basis of CWD extremes occur-
ring with a return period of T years. Magnitudes of extremes with a given 
return period T (SCWDXT) are estimated by fitting an extreme value dis-
tribution (Gumbel) to the annual maximum CWD values for each pixel 
separately, using the extRemes R package56. Values SCWDXT. are translated 
into an effective depth zCWDXT using estimates of the plant-available soil 
WHC, on the basis of soil-texture data from a gridded version of the Har-
monized World Soil Database31,32 and pedo-transfer functions derived 
by ref. 33. Associations of SCWDXT and topography were analysed consider-
ing the Compound Topography Index57 and elevation from ETOPO158. 
The Compound Topography Index is a measure for subsurface flow 
convergence and the WTB based on the topographical setting59.

Estimating return periods
Diagnosed values of SdSIF and SdEF provide a constraint on the return 
period T. To yield stable estimates of T and avoid effects of the strong 
nonlinearity of the function to derive T from the fitted extreme value 
distributions and magnitudes estimated by SdSIF and SdEF, we pooled 
estimates SdSIF (SdEF) and SCWDXT values within 1° pixels (≤400 values).  
A range of discrete values T was screened (10, 20, 30, 40, 50, 60, 70, 
80, 90, 100, 150, 200, 250, 300, 350, 400, 450, 500 yr), and the best 
estimate T was chosen on the basis of comparison with SdSIF (TSIF) and 
to SdEF (TEF), that is, where the absolute value of the median of the loga-
rithm of the bias was minimal. Relationships of best matching T with 
topography (measured by the Compound Topography Index57) and 
with the forest-cover fraction (MODIS MOD44B60) were analysed.

Rooting-depth estimation and observations
We converted root-zone water-storage capacity estimates, SCWDX80, 
to a corresponding apparent rooting depth (zCWDX80) using a global 
soil-texture map31,32. The conversion of SCWDX80 into a correspond-
ing depth zCWDX80 accounts for topsoil and subsoil texture and WHC 
along the rooting profile (Methods and Fig. 3b) and, in view of lack-
ing information with global coverage about the WHC of the weath-
ered bedrock, assuming uniform subsoil texture extending below 
30 cm depth. The comparison of biome-level quantities (instead of 
a direct point-by-point comparison) avoids the inevitable scale mis-
match between in situ plant-level observations and global remote- 
sensing data.

The observational rooting-depth dataset (N = 5,524) was com-
piled by ref. 30 by combining and complementing published datasets 
from refs. 22,7. The data include observations of the maximum rooting 
depth of plants taken from 361 published studies plus additional envi-
ronmental and climate data. The zr was taken as the plant’s maximum 

rooting depth. Data were aggregated by sites (N = 1,705) on the basis of 
longitude and latitude information. Sites were classified into biomes 
using maps of terrestrial ecoregions43. Quantiles (10%, 90%) were 
determined for each biome. For a subset of the data (359 sites) where 
parallel measurements of the WTD were available, we conducted the 
same analysis but took the minimum of WTD and zr.

Data availability
Global datasets of SCWDX80 and zCWDX80 are available on Zenodo61. The 
rooting-depth data are published separately30.

Code availability
The CWD calculation from ET and Pin time series is implemented by 
the R package cwd49. All code for this analysis is published on Zenodo62.
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Extended Data Fig. 1 | Rooting zone water storage capacity in the Western 
USA. Estimated from the evaporative fraction (SdEF). Blue areas (‘flattening’) show 
grid cells where a significant reduction in the slope in EF vs. CWD was identified 

beyond a certain threshold. Red lines show outlines of major irrigated areas, that 
is, where the irrigated land area fraction is above 30%39. Blank grid cells indicate 
areas with a sustained imbalance of ET being greater than P.

http://www.nature.com/naturegeoscience


Nature Geoscience

Article https://doi.org/10.1038/s41561-023-01125-2

25

20

15

10

 5

  0

  5

 10

80 70 60 50 40
Longitude (°E)

La
tit

ud
e 

(°
N

)

Irrigated

Outline

Flattening

TRUE

FALSE

0
20
40
60
80
100
150
200
300
500
700
900
1200

SdEF (mm)

Extended Data Fig. 2 | Rooting zone water storage capacity in the Amazon 
region. Estimated from the evaporative fraction (SdEF). Blue areas (‘flattening’) 
show grid cells where a significant reduction in the slope in EF vs. CWD was 

identified beyond a certain threshold. Red lines show outlines of major irrigated 
areas, that is, where the irrigated land area fraction is above 30%39. Blank grid cells 
indicate areas with a sustained imbalance of ET being greater than P.
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Extended Data Fig. 3 | Rooting zone water storage capacity in Europe. 
Estimated from the evaporative fraction (SdEF). Blue areas (‘flattening’) show 
grid cells where a significant reduction in the slope in EF vs. CWD was identified 

beyond a certain threshold. Red lines show outlines of major irrigated areas, that 
is, where the irrigated land area fraction is above 30%39. Blank grid cells indicate 
areas with a sustained imbalance of ET being greater than P.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Return periods diagnosed from the evaporative 
fraction and sun-induced fluorescence. Return periods T (yr), diagnosed from 
EF (a) and SIF (b). To diagnose T, a range of alternative values of T are screened 
and the corresponding range of values SCWDXT are compared to SdEF SdSIF) within 1∘ 
grid cells (resolution of maps shown here). The best matching T was retained for 
each gridcell, yielding a global distribution of TEF (TSIF). The bottom panel shows 

the distribution of diagnosed return periods T (mean of TEF and TSIF) within bins 
of the Compound Topography Index60 (c) and forest cover fractions (MOD44B62) 
(d). Boxes represent the interquartile ranges of binned values  
(Q25, Q75), and whiskers cover Q25 − 1.5(Q75 − Q25) to Q75 + 1.5(Q75 − Q25). Numbers of 
data points per bin are given above boxes.
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Extended Data Fig. 5 | Integrated soil water holding capacity in the soil. 
Integrated soil water holding capacity across the top 1 m (a) and the top 2 m (b). 
Values are calculated based on soil texture information from a gridded version30 
of the Harmonized World Soil Database29 and pedo-transfer functions based on 

ref. 31. HWSD provides information for a top layer (0-30 cm depth) and a bottom 
layer (30-100 cm depth). For the top 2 m shown in (b), we assumed values from 
the bottom layer for 100-200 cm depth.
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Extended Data Fig. 6 | Locations of plant access to deep water storage. Plant access to deep water storage. Green colors indicate regions where SCWDX80 suggests a 
rooting zone water storage capacity larger than the integrated water holding capacity across the top 1 m (a) and 2 m (b).
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Rooting zone water storage capacity along 
topographic gradients in central Asia. (a) Rooting zone water storage capacity 
in central Asia, estimated by the magnitude of cumulative water deficit extreme 
events with a return period of 80 years SCWDX80). (b) Compound Topography 
Index60, shown as 90% quantiles of underlying pixels, given at 15 arcsec, within 
matching 0.05∘ gridcells. (c) Elevation from ETOPO143. Red and blue rectangles 

indicate the domains for which SCWDX80 distributions along a CTI and an elevation 
gradient are shown in (d), (e), (f) and (g). The Compound Topography Index (CTI) 
is a measure for subsurface flow convergence and the water table depth based on 
the topographical setting61. Boxes represent the interquartile ranges of binned 
values (Q25, Q75), and whiskers cover Q25 − 1.5(Q75 − Q25) to Q75 + 1.5(Q75 − Q25). 
Numbers of data points per bin are given above boxes.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Rooting zone water storage capacity along 
topographic gradients in the western United States. (a) Rooting zone water 
storage capacity in the western United States, estimated by the magnitude of 
cumulative water deficit extreme events with a return period of 80 years SCWDX80). 
(b) Compound Topography Index60, shown as 90% quantiles of underlying 
pixels, given at 15 arcsec, within matching 0.05∘ gridcells. (c) Elevation from 
ETOPO143. Red and blue rectangles indicate the domains for which SCWDX80 

distributions along a CTI and an elevation gradient are shown in (d), (e), (f), and 
(g). The Compound Topography Index (CTI) is a measure for subsurface flow 
convergence and the water table depth based on the topographical setting61. 
Boxes represent the interquartile ranges of binned values (Q25, Q75), and whiskers 
cover Q25 − 1.5(Q75 − Q25) to Q75 + 1.5(Q75 − Q25). Numbers of data points per bin are 
given above boxes.
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