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Increased intrinsic and synaptic excitability of hypothalamic
POMC neurons underlies chronic stress-induced behavioral
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Xing Fang

Neal L. Weintraub?, Yun Lei@®" and Xin-Yun Lu

© The Author(s) 2022

3, Yuting Chen'?, Jiangong Wang’, Zligljang Zhang', Yu Bai', Kirstyn Denney
1

', Lin Gan@®", Ming Guo',

Chronic stress exposure induces maladaptive behavioral responses and increases susceptibility to neuropsychiatric conditions.
However, specific neuronal populations and circuits that are highly sensitive to stress and trigger maladaptive behavioral responses
remain to be identified. Here we investigate the patterns of spontaneous activity of proopiomelanocortin (POMC) neurons in the
arcuate nucleus (ARC) of the hypothalamus following exposure to chronic unpredictable stress (CUS) for 10 days, a stress paradigm
used to induce behavioral deficits such as anhedonia and behavioral despair [1, 2]. CUS exposure increased spontaneous firing of
POMC neurons in both male and female mice, attributable to reduced GABA-mediated synaptic inhibition and increased intrinsic
neuronal excitability. While acute activation of POMC neurons failed to induce behavioral changes in non-stressed mice of both
sexes, subacute (3 days) and chronic (10 days) repeated activation of POMC neurons was sufficient to induce anhedonia and
behavioral despair in males but not females under non-stress conditions. Acute activation of POMC neurons promoted
susceptibility to subthreshold unpredictable stress in both male and female mice. Conversely, acute inhibition of POMC neurons
was sufficient to reverse CUS-induced anhedonia and behavioral despair in both sexes. Collectively, these results indicate that
chronic stress induces both synaptic and intrinsic plasticity of POMC neurons, leading to neuronal hyperactivity. Our findings
suggest that POMC neuron dysfunction drives chronic stress-related behavioral deficits.
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INTRODUCTION

Chronic stress induces maladaptive behaviors and triggers the
development of neuropsychiatric disorders, including depression,
anxiety, and cognitive dysfunction. Extensive studies have focused
on the brain regions that are typically associated with emotional,
motivational and cognitive processes, such as the prefrontal cortex,
hippocampus and amygdala, in these stress-related disorders [3].
However, the neural substrates and the precise circuit mechanisms
that drive maladaptive behaviors and contribute to vulnerability to
neuropsychiatric conditions remain poorly understood. The arcuate
nucleus (ARC), located in the mediobasal hypothalamus around the
third ventricle near the median eminence, has emerged as a brain
site integrating and coordinating neural, neuroendocrine and
behavioral responses to stress [1, 4-12].

The ARC contains two distinct populations of neurons that
express proopiomelanocortin (POMC) or agouti-related protein
(AgRP). POMC-derived alpha-melanocyte-stimulating hormone (a-
MSH) is an endogenous agonist that activates melanocortin 3 and 4
receptors, whereas AgRP acts as an endogenous antagonist at the
same receptors [13]. POMC and AgRP neurons in the ARC exhibit
similar projection patterns throughout the brain [6, 14], innervating
brain regions involved in neuroendocrine control and adaptive
behaviors related to stress, such as the paraventricular nucleus of

the hypothalamus (PVN), bed nucleus of the stria terminalis, and
amygdala [14]. Nonetheless, these two distinct neuronal popula-
tions have so far predominately been studied in the context of
feeding and energy balance [15-23]. However, while stimulating
AgRP neurons induces a rapid and robust feeding response
and weight gain, activation of POMC neurons causes only a
marginal effect on feeding and body weight [17, 24, 25], which is in
contrast to pharmacological studies with melanocortin receptor
agonists [4, 5, 26]. We and others have demonstrated that central
injection of a-MSH or its analogs induces stress-like endocrine and
behavioral reactions [5, 27, 28], whereas blockade of melanocortin
4 receptors attenuates endocrine and behavioral responses to
stress [27, 29-31]. Importantly, POMC gene variants in humans have
been reported to interact with stress life events and associate with
antidepressant treatment responses [32]. Exposure to different
types of stressors such as restraint, immobilization or inescapable
foot shock increases expression levels of POMC mRNA in the
ARC [33-35]. We have previously shown that POMC neurons in
the ARC can be activated rapidly by acute restraint and forced swim
stress [4]. Likewise, POMC neurons recorded after acute stress or in
the acute phase after repeated stress exposure exhibit hyperexcit-
ability [9]. These results suggest that the endogenous POMC system
is involved in stress responses.
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Recently, we have shown that chronic unpredictable stress
(CUS), a stress paradigm that generates behavioral deficits such
as anhedonia and behavioral despair [1, 2], suppresses AgRP
neuron activity through increasing synaptic inhibition and
decreasing intrinsic neuronal excitability [1]. This hypoactivity
of AgRP neurons correlates with the expression of CUS-induced
behavioral deficits [1]. Moreover, direct stimulation of AgRP
neurons was sufficient to reverse CUS-induced anhedonia and
behavioral despair [1]. Given the anatomical and functional
interactions with AgRP neurons, we hypothesize that POMC
neurons may also undergo chronic stress-induced synaptic and
intrinsic plasticity to modulate behavioral adaptation. In this
study, we set out to determine how POMC neurons undergo
stress-induced plastic changes and contribute to shaping
behavioral susceptibility to chronic stress. Several important
questions were addressed: a) how chronic stress modulates
excitatory and inhibitory synaptic transmission and intrinsic
excitability of POMC neurons; b) whether stimulation of POMC
neurons mimics stress-induced behavioral responses; and c)
whether activation and inhibition of POMC neurons affect stress
susceptibility and chronic stress-induced behavioral deficits. To
answer these questions, two lines of transgenic reporter mice
were used for whole-cell patch clamp recordings to determine
synaptic inputs and intrinsic membrane properties of POMC
neurons following stress exposure. Additionally, a Cre-
dependent DREADDs (Designer Receptors Exclusively Activated
by Designer Drugs) approach was employed to remotely
manipulate POMC neuron activity to test the causal relationship
between POMC neuron activity and behavioral consequences.

MATERIALS AND METHODS

Animals

Wild-type C57BL/6J, Pomc-Cre mice (Stock No. 005965), Pomc-GFP mice
(Stock No. 009593) and Ai14 mice (Stock No. 007914) were purchased from
Jackson Laboratory (Bar Harbor, ME, USA). Ai14 mice have a loxP-flanked
STOP cassette preventing transcription of a CAG promoter-driven red
fluorescent protein variant (tdTomato) and inserted into the Gt(ROSA)26Sor
locus (Gt(ROSA)26Sort™ ! #(CAGtdTomatoly Ai74 mice express robust tdTomato
fluorescence following Cre-mediated recombination [36]. Male Pomc-Cre
mice were crossed with Ai14 tdTomato female mice to obtain Pomc-
CrestdTomato mice with tdTomato fluorescence in Cre-expressing cells,
which was used to identify POMC neurons. All animal procedures were
approved by the Institutional Animal Care and Use Committees of
University of Texas Health Science Center at San Antonio and Augusta
University. For further details see SI Materials and Methods.

Viral injections
Pomc-Cre mice at 7 weeks of age were used for virus injection as described
elsewhere [1, 2, 37]. For further details see SI Materials and Methods.

Whole-cell patch-clamp recordings
Electrophysiological recordings were performed as previously described
[1, 2, 38]. For further details see S| Materials and Methods.

Behavioral procedures

Behavioral tests were performed in adult female and male mice at
9-11 weeks of age. Animals were transferred to a testing room and
habituated to the room conditions for 3-4h before the beginning of
behavioral experiments. Behavioral testing procedures were performed in
the late light cycle except for the sucrose preference test, which was
carried out during the first 2 h of the dark cycle. For the behavioral tests
involving chemogenetic activation or inhibition, mice received an
intraperitoneal (i.p.) injection of 0.3 mg/kg clozapine N-oxide (CNO;
Sigma-Aldrich, Saint Louis, MO, USA) 30 min before testing. Behaviors
were scored by investigators who were blinded to the treatments.

Chronic unpredictable stress. Mice (7-9 weeks old) were subjected to
different types of stressors at different times of the day for 10 consecutive
days. The stressors included 2-h restraint, 15-min tail pinch, 24-h constant
light, 24-h wet bedding with 45° cage tilt, 10-min inescapable foot shocks,
30-min elevated platform and social isolation (Table 1). Stress procedures
were conducted in a procedure room. Mice exposed to the CUS procedure
were singly housed. Control mice were group housed and briefly handled
daily in the housing room.

For further details of each behavioral test, see SI Materials and Methods.

Statistical analysis

All results are presented as meanz+s.em. (standard error of mean).
Statistical analyses were performed using GraphPad Prism 8.0 (GraphPad
Software, Inc., CA). The Shapiro-Wilk test and the F test were used to test
the normality and the equality of variances, respectively. For further details
of statistical analysis, see SI Materials and Methods.

RESULTS

Chronic unpredictable stress alters spontaneous firing
patterns of POMC neurons

Our recent studies have demonstrated that repeated exposures to
a variety of stressors in an unpredictable and uncontrollable
manner for 10 consecutive days (CUS; Table 1) induce behavioral
deficits in both male and female mice [1, 2]. Given the rapid
responsiveness of POMC neurons in the ARC to acute stress [4], we
examined whether chronic repeated exposure to stress causes

Table 1. Subthreshold and chronic unpredictable stress procedures.

Stressors

AM PM
Day 1 2-h restraint 15-min tail pinch Sus® cus®
Day 2 24-h constant light 2-h restraint (3 days) (10 days)
Day 3 2-h restraint 24-h 45° cage tilt and wet bedding
Day 4 10-min inescapable shock (0.3 mA, 2-s duration, at 2-h restraint

random intervals with an average of 165s)
Day 5 2-h restraint 30-min elevated platform
Day 6 15-min tail pinch 2-h restraint
Day 7 2-h restraint 24-h constant light
Day 8 24-h 45° cage tilt and wet bedding 2-h restraint
Day 9 2-h restraint 10-min inescapable shock (0.3 mA, 2-s duration, at

random intervals with an average of 16s)

Day 10  30-min elevated platform 2-h restraint

2SUS subthreshold unpredictable stress, CUS chronic unpredictable stress.
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persistent changes in the activity ARC POMC neurons. To visualize
POMC neurons, Pomc-Cre mice were crossed with the Ai74-
tdTomato mice to produce Pomc-Cre;tdTomato reporter mice,
which enable the identification of tdTomato-positive cells as
POMC neurons. Male and female Pomc-Cre;tdTomato mice at 7-8

Molecular Psychiatry (2023) 28:1365 - 1382

X. Fang et al.

Fig. 1 Chronic unpredictable stress modulates spontaneous firing
patterns of POMC neurons. Pomc-Cre;tdTomato mice. a1 Timeline of
experimental procedures. a2 Left, representative fluorescent images
of a coronal brain slice from a Pomc-Cre;tdTomato mouse showing
fluorescent POMC neurons in the arcuate nucleus (ARC). Scale bars,
200 pm for low magnification (5x) and 20 pym for high magnification
(40x). Right, representative traces of spontaneous action potentials
of POMC neurons from control and CUS groups. a3, a4 Spontaneous
firing rate (a3) and membrane potential (a4). Left, male and female
combined, individual neurons (firing rate: Mann-Whitney test,
P<0.001; membrane potential: Mann-Whitney test, P<0.001);
middle-left, male and female combined, group neurons per mouse
(firing rate: Welch's test, P=0.0049; membrane potential: Mann-
Whitney test, P=0.0022); middle-right, male mice-individual neu-
rons (firing rate: Mann Whitney test, P=0.0129; membrane
potential: Mann Whitney test, P<0.001); right, female mice-
individual neurons (firing rate: Mann Whitney test, P=0.0196;
membrane potential: Mann Whitney test, P=0.0256). a5 Sponta-
neous firing patterns. Upper panel: spontaneous firing patterns from
male and female mice combined. Left, cumulative probability
distributions of coefficients of variation; middle-left, average
coefficients of variation, individual neurons (Mann Whitney test,
P =0.0060); middle-right, average coefficients of variation, group
neurons per mouse (tng = 2.866; P=0.0168); right, correlation
analysis between spontaneous firing rates and coefficients of
variation. Middle panel: spontaneous firing patterns from male
mice (Mann Whitney test, P=0.0102). Lower panel: spontaneous
firing patterns from female mice (Mann Whitney test, P =0.1266).
Control (Ctrl): n = 67 neurons from three male (31 neurons) and
three female (36 neurons) mice. CUS: n = 81 neurons from three
male (44 neurons) and three female (37 neurons) mice. Pomc-GFP
mice. b1 Experimental timeline. b2 Left, representative fluorescent
images of a coronal brain slice from a Pomc-GFP mouse showing
fluorescent POMC neurons in the ARC. Scale bars, 200 um for low
magnification (5x) and 20 um for high magnification (40x). Right,
representative traces of spontaneous action potentials of POMC
neurons from control and CUS groups. b3, b4 Spontaneous firing
rate (b3) and membrane potential (b4). Left, male and female mice
combined, individual neurons (firing rate: Mann Whitney test,
P <0.001; membrane potential: Mann Whitney test, P=0.0027);
middle-left, male and female mice combined, group neurons per
mouse (firing rate: t11) = 4.244, P = 0.0014; membrane potential: t(11)
= 3.180, P=0.0088); middle-right, male mice-individual neurons
(ﬁrlng rate: Mann-Whitney test, P = 0.0083; membrane potential: tzo)

= 1.973, *P=0.0556); right, female mice-individual neurons (firing
rate: toe = 4.228, P<0.001; membrane potential: Mann Whitney
test, P=0.0215). b5 Spontaneous firing patterns. Upper panel: male
and female mice combined. Left, cumulative probability distribu-
tions of coefficients of variation; middle-left, average coefficients of
variation, individual neurons (Mann Whitney test, P=0.0016);
middle-right, average coefficients of variation, group neurons per
mouse (t1) = 3.867, P =0.0026); right, correlation analysis between
spontaneous firing rates and coefficients of variation. Middle panel:
male mice (ts7 = 2.011, *P=0.0517). Lower panel: female mice
(Mann Whitney test, P =0.0209). Ctrl: n = 32 neurons from three
male (21 neurons) and three female (11 neurons) mice. CUS: n = 37
neurons from four male (20 neurons) and three female (17 neurons)
mice. *P < 0.05, **P < 0.01, ***P < 0.001 vs control group.

<
<

weeks of age were subjected to 10 days of unpredictable stress,
i.e, CUS. Whole-cell patch-clamp recordings under the current-
clamp mode were made from POMC neurons of control mice and
CUS mice 1 day after the last stress exposure (Fig. 1a1). First, data
from male and female Pomc-Cre;tdTomato mice were combined
for statistical analysis. We found that the frequency of sponta-
neous firing of POMC neurons was increased (Fig. 1a2-a3) and
membrane potential was more depolarized after CUS exposure
(Fig. 1a4). Moreover, we noticed that the percentage of silent
POMC neurons (at frequencies <0.5 Hz) decreased by CUS [control
30% (20 out of 67 neurons); CUS 14% (11 out of 81 neurons)].
Then, male and female groups were analyzed separately to detect
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potential sex-specific effects of CUS. Both male and female mice
exhibited increased spontaneous firing rates (Fig. 1a3) and
depolarized membrane potential after CUS exposure (Fig. 1a4).
These data indicate that POMC neurons become hyperactive after
CUS exposure in mice of both sexes.

To determine the effects of CUS on firing patterns of POMC
neurons, we analyzed the inter-spike interval distribution and the
coefficient of variation, a measure of spike train irregularity. Under
control conditions, POMC neurons displayed highly irregular spike
times (coefficient of variation of the interspike intervals: male-
mean, 1.127; female-mean, 0.7709). Analyses of the combined
data from male and female mice revealed that CUS caused a shift
in the cumulative probability distribution of interspike intervals to
the left and resulted in a decrease in the coefficient of variation
(Fig. 1a5). There was a negative correlation between firing rates
and coefficients of variation (Fig. 1a5). These results indicate that
POMC neurons fire more rapidly and regularly after CUS exposure.
Further analysis of male and female groups separately showed
that the cumulative probability distribution of interspike intervals
was shifted to the left and the coefficient of variation was
decreased by CUS in male but not in female mice (Fig. 1a5). Both
male and female mice showed a negative correlation between
firing rates and coefficients of variation under control and CUS
conditions (Fig. 1a5).

In Pomc-Cre;tdTomato reporter mice, tdTomato-labeled POMC
neurons could result from transient Cre expression during
development [39]. To address this, we utilized Pomc-GFP mice
to confirm the effects of CUS on the activity of POMC neurons.
Pomc-GFP mice express enhanced green fluorescent protein
(GFP) under control of the mouse Pomc promoter/enhancer
regions, which accurately label the neurons with endogenous
Pomc transcription in ARC [39, 40]. The stress procedure and the
patch-clamp recording protocols used for Pomc-GFP mice were
the same as used for Pomc-Cre;tdTomato mice (Fig. 1b1). First,
data from male and female Pomc-GFP mice were combined for
statistical analysis. Similar to that observed in Pomc-Cre;tdTo-
mato mice, CUS resulted in an increase in firing rates
(Fig. 1b2-b3) and a depolarization of the membrane potential
(Fig. 1b4) of POMC neurons in mice of both sexes combined.
Further analysis for male and female mice separately showed
that CUS-induced changes in spontaneous firing of POMC
neurons were not sex-specific. In addition, analysis of firing
patterns of Pomc-GFP neurons revealed a shift in the cumulative
frequency distribution of interspike intervals to the left and a
decrease in the coefficient of variation of interspike intervals in
male and female mice (Fig. 1b5). Additionally, a negative
correlation between firing rates and coefficients of variation of
interspike intervals was also confirmed in control and chronically
stressed Pomc-GFP mice (Fig. 1b5). These data indicate that CUS
increased firing rates and regularity of POMC neurons.

Chronic unpredictable stress induces synaptic and intrinsic
plasticity in POMC neurons

Alterations in synaptic drive could underlie the increased
spontaneous firing rates in ARC POMC neurons. To test this
possibility, we examined synaptic transmission at excitatory and
inhibitory synapses of POMC neurons 1 day after the last stress
exposure of CUS in Pomc-Cre;tdTomato mice (Fig. 2a). Whole-cell
voltage-clamp recordings of EPSCs and IPSCs were performed at
—60 mV holding potential. Spontaneous EPSCs, recorded in the
presence of 100 uM picrotoxin, a GABA, receptor antagonist used
to block GABAergic transmission, in ARC POMC neurons showed
no significant changes in the frequency or amplitude (Fig. 2b1-b4).
Recordings of spontaneous IPSCs in POMC neurons were made in
the presence of AMPA and NMDA receptor antagonists to block
glutamatergic synaptic transmission (Fig. 2c1). CUS decreased the
mean frequency and amplitude of spontaneous IPSCs when data
were pooled from males and females (Fig. 2c2); similar trends

SPRINGER NATURE

were observed when data were analyzed separately by sex
(Fig. 2c3, c4). These results suggest that both GABAergic drive to
POMC neurons, a presynaptic effect, and POMC neuron respon-
siveness to GABA, receptor activation, a postsynaptic response,
were decreased by CUS, thus leading to synaptic disinhibition of
POMC neurons.

The effects of CUS on spontaneous EPSCs and IPSCs in POMC
neurons were also examined in the ARC of Pomc-GFP mice
(Fig. 2d). Similar to the observations made in Pomc-Cre;tdTomato
mice, neither the frequency nor the amplitude of spontaneous
EPSCs was altered in POMC neurons from Pomc-GFP mice after
CUS exposure (Fig. 2e). By contrast, CUS decreased the frequency,
but not the amplitude, of spontaneous IPSCs in POMC neurons
(Fig. 2f).

Spontaneous synaptic events (EPSCs and IPSCs) could be driven
by action potential-dependent and/or -independent transmitter
release. To determine whether CUS affects action potential-
independent synaptic events, spontaneous, miniature EPSCs
(mEPSCs) and miniature IPSCs (mIPSCs) were recorded in POMC
neurons from Pomc-GFP mice in the presence of 1 uM tetrodo-
toxin to block sodium channels and action potentials. There were
no significant changes in the frequency or amplitude of mEPSCs
(Fig. 2g) or mIPSCs (Fig. 2h), suggesting that chronic stress
facilitates synaptic inhibitory transmission through an action
potential-dependent mechanism.

Alterations of intrinsic firing properties of POMC neurons
could also contribute to the increased spontaneous firing rates
in CUS mice. To explore this possibility, spontaneous, intrinsic
action potentials in POMC neurons from Pomc-GFP mice were
isolated pharmacologically using fast synaptic blockers to inhibit
ionotropic glutamate and GABA, receptors. We analyzed the
rate, pattern and shape of firing of action potentials of POMC
neurons from control mice and mice subjected to 10 days of
unpredictable stress (Fig. 3a). The intrinsic firing frequency was
increased (Fig. 3b, c¢) and the membrane potential was
depolarized after CUS (Fig. 3d) when data were pooled from
males and females. Concomitantly, the percentage of silent
POMC neurons (at frequencies <0.5 Hz) decreased from 29% (10
out of 35 neurons recorded) in control mice to 3% (1 out of 31
neurons) in CUS mice. These data indicate that the intrinsic
activity of POMC neurons was dramatically increased by CUS.
Analysis of the intrinsic firing patterns of POMC neurons
revealed a shift in the cumulative frequency distribution of
coefficient of variation of interspike intervals to the left and an
increase in the firing regularity (Fig. 3e). The intrinsic firing rates
correlated negatively with coefficients of variation of interspike
intervals under both control and CUS conditions, with a
shallower slope in CUS mice (Fig. 3e). Next, we assessed the
effects of CUS on action potential waveform parameters (Fig. 3f).
CUS had no effect on the threshold (Fig. 3f2) but decreased the
amplitude of action potentials (Fig. 3f3). Moreover, POMC
neurons from CUS mice exhibited increased action potential
rise time (Fig. 3f4) and half-width (Fig. 3f5) and exhibited trends
toward greater duration (Fig. 3f6) and decay time (Fig. 3f7).
Furthermore, afterhyperpolarization, or AHP, the hyperpolarizing
phase of a POMC neuron’s action potential was measured. The
amplitude of AHP in POMC neurons was not consistently
affected by CUS (Fig. 3f8). These data suggest that chronic
exposure to unpredictable stress induces adaptations in the
kinetics of action potentials of POMC neurons that may be
partially related to changes in intrinsic firing properties.

Chemogenetic activation of POMC neurons induces
anhedonia and behavioral despair

Next, we asked whether acute and chronic activation of POMC
neurons can mimic stress-induced behavioral changes. Activation
of POMC neurons was achieved by using Cre-dependent, AAV-
mediated stimulatory DREADD-hM3Dq to depolarize Cre-
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expressing POMC neurons in Pomc-Cre transgenic mice. This
method has been widely used to manipulate POMC neuron
activity [21, 24]. AAV vectors expressing Cre-dependent hM3Dg, or
AAV-DIO-hM3Dg-mCherry, were injected into the ARC of Pomc-Cre
mice (Fig. 4a). Whole-cell patch clamp electrophysiological
recordings confirmed that application of 5puM CNO to
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hypothalamic slices increased the firing rates of POMC neurons
expressing hM3Dg-mCherrry and depolarized their membrane
potential (Fig. 4b). To test whether acute activation of POMC
neurons can induce behavioral changes, male Pomc-Cre mice
received bilateral injections of AAV-DIO-hM3Dg-mCherry or AAV-
DIO-mCherry and were injected with a single dose of CNO
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Fig. 2 Chronic unpredictable stress affects spontaneous synaptic neurotransmission in POMC neurons. a-c Results from Pomc-
Cre;tdTomato mice. a Experimental timeline. b Spontaneous EPSCs (sEPSCs) from Pomc-Cre;tdTomato mice. b1 Representative traces depicting
SEPSCs. b2 sEPSCs from male and female Pomc-Cre;tdTomato mice combined. Left, cumulative probability plot for the interevent interval. Left
insert, average frequency of sEPSCs, individual neurons (Mann Whitney test, P = 0.5796). Middle-left, average frequency of sEPSCs, group
neurons per mouse (Mann Whitney test, P= 0.5887). Middle-right, cumulative probability plot for the amplitude. Middle-right insert, average
amplitude of sEPSCs, individual neurons (Mann Whitney test, P = 0.6830). Right, average amplitude of sEPSCs, group neurons per mouse
(t0)=0.2574, P=0.8021). b3 sEPSC from male Pomc-Cre;tdTomato mice. Left, cumulative probability plot for the interevent interval. Left
insert, average frequency of sEPSCs, individual neurons (Mann Whitney test, P = 0.3963). Right, cumulative probability plot for the amplitude.
Right insert, average amplitude of sEPSCs, individual neurons (Mann Whitney test, P = 0.6875). b4 sEPSC from female Pomc-Cre;tdTomato mice.
Left, cumulative probability plot for the interevent interval. Left insert, average frequency of sEPSCs, individual neurons (Mann Whitney test,
P =0.1576). Right, cumulative probability plot for the amplitude. Right insert, average amplitude of sEPSCs, individual neurons (Mann Whitney
test, P = 0.8833). Ctrl: n = 55 neurons from three male (24 neurons) and three female (31 neurons) mice. CUS: n = 56 neurons from three male
(27 neurons) and three female (29 neurons) mice. ¢ Spontaneous IPSCs (sIPSCs) from Pomc-Cre;tdTomato mice. c¢1 Representative traces
depicting sIPSCs. 2 sIPSC from male and female Pomc-Cre;tdTomato mice combined. Left, cumulative probability plot for the interevent
interval. Left insert, average frequency of sIPSCs, individual neurons (Mann Whitney test, P = 0.0016). Middle-left, average frequency of sIPSCs,
group neurons per mouse (t) = 2.190, *P = 0.0534). Middle-right, cumulative probability plot for the amplitude. Middle-right insert, average
amplitude of sIPSCs, individual neurons (Mann Whitney test, P = 0.0069). Right, average amplitude of sIPSCs, group neurons per mouse (t() =
1.390, P = 0.1948). 3 sIPSC from male Pomc-Cre;tdTomato mice. Left, cumulative probability plot for the interevent interval. Left insert, average
frequency of sIPSCs, individual neurons (Mann Whitney test, P = 0.0588). Right, cumulative probability plot for the amplitude. Right insert,
average amplitude of sIPSCs, individual neurons (Mann Whitney test, P=0.0466). ¢4 sIPSC from female Pomc-Cre;tdTomato mice.
Left, cumulative probability plot for the interevent interval. Left insert, average frequency of sIPSCs, individual neurons (Mann Whitney test,
P =0.0163). Right, cumulative probability plot for the amplitude (Mann Whitney test, P =0.1321). Right insert, average amplitude of sIPSCs,
individual neurons. Ctrl: n = 57 neurons from three male (28 neurons) and three female (29 neurons) mice. CUS: n = 53 neurons from three
male (22 neurons) and three female (31 neurons) mice. d-h Results from Pomc-GFP mice. d Experimental timeline. e SEPSCs from Pomc-GFP
mice (e1-representative traces of SEPSCs in POMC neurons; e2-male and female combined: frequency-individual neurons, Mann Whitney test,
P=0.7626; frequency-group neurons per mouse, Mann Whitney test, P=0.7294; amplitude-individual neurons: Mann Whitney
test, P=0.7265; amplitude-group neurons per mouse: t;q = 0.05081, P=0.9605; e3-male only: frequency-individual neurons, Mann
Whitney test, P = 0.7561; amplitude-individual neurons, t,o = 1.293, P = 0.2106; e4-female only: frequency-individual neurons, t;3) = 0.03616,
P = 0.9715; amplitude-individual neurons, t3, = 0.3747, P=0.7113). Ctrl: n = 21 neurons from three male (9 neurons) and three female (12
neurons) mice. CUS: n = 26 neurons from three male (13 neurons) and three female (13 neurons) mice. f sIPSCs from Pomc-GFP mice (f1-
representative traces of sIPSCs in POMC neurons; f2-male and female combined: frequency-individual neurons, Mann Whitney test,
P =0.0065; frequency-group neurons per mouse, Mann Whitney test, P = 0.0169; amplitude-individual neurons: ty3 = 0.9380, P=0.3535;
amplitude-group neurons per mouse: Mann Whitney test, P = 0.6200; f3-male only: frequency-individual neurons, Unpaired t test with Welch’s
correction, P = 0.0402; amplitude-individual neurons t;;5) = 0.6136, P = 0.5487; f4-female only: frequency-individual neurons, Mann Whitney
test, P = 0.0401; amplitude-individual neurons, ¢ = 0.8378, P = 0.4098). Ctrl: n = 25 neurons from three male (10 neurons) and four female
(15 neurons) mice. CUS: n = 20 neurons from three male (7 neurons) and four female (13 neurons) mice. g Miniature EPSCs (mEPSCs) from
Pomc-GFP mice (g1-representative traces of mEPSCs in POMC neurons; g2-male and female combined: frequency-individual neurons, Mann
Whitney test, P = 0.9308; frequency-group neurons per mouse, tqg = 1.181, P=0.2651; amplitude-individual neurons: Mann Whitney test,
P =0.4993; amplitude-group neurons per mouse: t;q) = 0.9731, P=0.3535; g3-male only: frequency-individual neurons, ts5 = 0.07453,
P =0.9412; amplitude-individual neurons ts, = 0.3181, P=0.7530; g4-female only: frequency-individual neurons, Mann Whitney test,
P =0.5930; amplitude-individual neurons, t9) = 1.484, P=0.1543). Ctrl: n = 23 neurons from three male (13 neurons) and three female (10
neurons) mice. CUS: n = 25 neurons from three male (14 neurons) and three female (11 neurons) mice. h Miniature IPSCs (mIPSCs) from Pomc-
GFP mice (h1-representative traces of mIPSCs in POMC neurons; h2-male and female combined: frequency-individual neurons, Mann Whitney
test, P=0.1668; frequency-group neurons per mouse, Mann Whitney test, P=0.1200; amplitude-individual neurons: Mann Whitney test,
P =0.7338; amplitude-group neurons per mouse: Mann Whitney test, P = 0.7104; h3-male only: frequency-individual neurons, Mann Whitney
test, P = 0.9046; amplitude-individual neurons, Mann Whitney test, P = 0.4369; h4-female only: frequency-individual neurons, Mann Whitney
test, P = 0.0943; amplitude-individual neurons, tzo) = 0.05230, P = 0.9586). Ctrl: n = 47 neurons from three male (23 neurons) and four female
(24 neurons) mice. CUS: n = 33 neurons from three male (16 neurons) and three female (17 neurons) mice. *P < 0.05, **P < 0.01, ***P < 0.001 vs
control group.

(0.3 mg/kg, i.p.) 30min prior to each behavioral test. Sucrose
preference was measured within the first 2 h in the dark cycle and
showed no difference between the two treatment groups
(Fig. 4c1). Sniffing of estrus female urine by male mice is a sex-
related reward-seeking behavior [41]. Acute CNO injection failed
to produce an effect in the female urine sniffing test in male Pomc-
Cre mice treated with hM3Dq (Fig. 4c1). These data indicate that
acute stimulation of POMC neurons did not affect hedonic
responses in male mice. Mice were also tested in the forced swim
and locomotor activity tests after an acute CNO injection. Neither
behavioral test showed significant differences between hM3Dg-
and mCherry-treated male mice (Fig. 4c1). It has been reported
that the effects of a single dose of CNO injection can persist more
than 9h [42]. Next, we extended the CNO treatment to 3 days
(0.3 mg/kg, once daily) in a separate cohort of male Pomc-Cre mice
expressing hM3Dqg and mCherry. Sucrose preference was sig-
nificantly decreased by 3 days of activation of POMC neurons;
however, immobility in the forced swim test and locomotor
activity were unaffected (Fig. 4c2). Next, we asked whether chronic
activation of POMC neurons in male mice for 10 days could mimic

SPRINGER NATURE

behavioral deficits induced by CUS. To test this possibility, another
cohort of male Pomc-Cre mice expressing hM3Dq and
mCherry were treated with CNO (0.3 mg/kg, i.p. once daily) for
10 consecutive days. As shown in Fig. 4c3, 10 days of CNO
treatment decreased sucrose preference, increased despair
behavior in the forced swim test and induced a trend toward
lower locomotor activity in male mice. To test whether chronic
stimulation of POMC neurons impacts female urine sniffing time, a
separate cohort of male mice were subjected 10 days of CNO
injection (0.3 mg/kg daily). Time spent in sniffing female urine was
reduced in mice treated with hM3Dq in comparison with those
injected with mCherry (Fig. 4c3), suggesting that chronic
stimulation of POMC neurons can induce different types of
anhedonia in male mice. In contrast to male mice, female mice
showed no significant changes in hedonic or despair behaviors
following acute (single CNO injection), subacute (3-day CNO
injection) or chronic activation (10-day CNO injection) of POMC
neurons, as assessed in the sucrose preference test, the forced
swim test or the open field test (Fig. 4d). The reason for this
difference is unclear, but estrogens in intact, cycling female mice
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Fig. 3 Chronic unpredictable stress increases intrinsic activity of POMC neurons. a Timeline of the CUS procedure and patch-clamp recordings
of POMC neurons from Pomc-GFP mice in the presence of synaptic blockers. b Representative traces showing intrinsic action potentials of POMC
neurons. Intrinsic firing rate (c) and membrane potential (d). Left, male and female mice combined, individual neurons (firing rate: Mann Whitney test,
P < 0.001; membrane potential: tgs = 2.307, P = 0.0243); middle-left, male and female mice combined, group neurons per mouse (firing rate: unpaired t
test with Welch’s correction, P = 0.0106; membrane potential: t;o) = 0.7205, P = 0.4877); middle-right, male mice-individual neurons (firing rate: Mann
Whitney test P <0.001; membrane potential: tu;) = 1.630, P =0.1108); right, female mice-individual neurons (firing rate: unpaired t test with Welch's
correction, *P = 0.0685; membrane potential: t;) = 0.9288, P = 0.3636). e Intrinsic firing pattern. Upper panel: male and female mice combined. Left,
cumulative probability distributions of coefficients of variation; middle-left, average coefficients of variation, individual neurons (Mann Whitney test,
P <0.001); middle-right, average coefficients of variation, group neurons per mouse (tqq = 2.669, P=0.0235); right, correlation analysis between
spontaneous firing rates and coefficients of variation. Middle panel: male mice (Mann Whitney test, P < 0.001). Lower panel: female mice (Mann Whitney
test, P=0.0076). f Action potential (AP) waveform. f1 Representative AP waveforms recorded in POMC neurons from control (brown line) and CUS (green
line) mice. f2 AP threshold (male and female combined-individual neurons: tes = 1.467, P=0.1471; male and female combined-group neurons per
mouse: t1) = 0.9658, P = 0.3569; male-individual neurons: t4;) = 1.456, P = 0.1529; female-individual neurons: t,q) = 1.286, P = 0.2124). f3 AP amplitude
(male and female combined-individual neurons: te4 = 2.376, P = 0.0205; male and female combined-group neurons per mouse: Mann Whitney test,
P =0.0152; male-individual neurons: t ;)= 2.201, P = 0.0334; female-individual neurons: Unpaired t test with Welch's correction, P = 0.0060). f4 AP rise
time (male and female combined-individual neurons: Mann Whitney test, P=0.0080; male and female combined-group neurons per mouse:
t0)= 1.900, P = 0.0866; male-individual neurons: Mann Whitney test, P = 0.0318; female-individual neurons: t;, = 1.900, P = 0.0173). f5 AP half width
(male and female combined-individual neurons: Mann Whitney test, P = 0.0314; male and female combined-group neurons per mouse: Mann Whitney
test, P = 0.1017; male-individual neurons: Mann Whitney test, P = 0.1743; female-individual neurons: t,;) = 3.186, P = 0.0044). f6 AP duration (male and
female combined-individual neurons: Mann Whitney test, P = 0.0539; male and female combined-group neurons per mouse: Mann Whitney test,
P = 0.0823; male-individual neurons: Mann Whitney test, P = 0.2714; female-individual neurons: t;)=2.901, P = 0.0085). f7 AP decay time (male and
female combined-individual neurons: Mann Whitney test, P = 0.0905; male and female combined-group neurons per mouse: t;;q) = 2.570, P = 0.0279;
male-individual neurons: Mann Whitney test, P=0.478; female-individual neurons: ty) = 2.712, P=0.0130). f8 AHP amplitude (male and female
combined-individual neurons: tes = 1.948, P = 0.0558; male and female combined-group neurons per mouse: t(q) = 0.7414, P = 0.4755; male-individual
neurons: ty;) = 1.504, P = 0.1402; female-individual neurons: Mann Whitney test, P = 0.6244). f2-f8 Left, male and female mice combined, individual
neurons; middle-left, male and female mice combined, group neurons per mouse; middle-right, male mice-individual neurons; right, female mice-
individual neurons. Ctrl: n =35 neurons from three male (19 neurons) and three female (16 neurons) mice. CUS: n =31 neurons from three male
(24 neurons) and three female (7 neurons) mice. *P < 0.05, **P < 0.01, ***P < 0.001 vs control group.
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Fig. 4 (Continued)

could increase the excitability of POMC neurons [43], which might
lead to less responsiveness to CNO-mediated activation. Another
possibility could be that female mice are more sensitive to
potential confounding effects of anesthesia with ketamine that
has sustained antidepressant properties [44].

Molecular Psychiatry (2023) 28:1365 - 1382

Water Female urine

Chemogenetic activation of POMC neurons increases
susceptibility to subthreshold levels of unpredictable stress
Our next question was whether acute activation of POMC neurons
could increase susceptibility to subthreshold levels of unpredict-
able stress. We have previously shown that mice exposed to
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Fig. 4 Repeated stimulation of POMC neurons induces behavioral deficits in male mice. a Schematic illustration showing stereotaxic
injections of AAV-DIO-hM3Dg-mCherry or AAV-DIO-mCherry in the ARC of Pomc-Cre mice and a representative image showing mCherry-
labeled POMC neurons in the ARC. b Left, representative trace of action potentials recorded in POMC neurons expressing hM3Dq in response
to bath application of CNO (5 uM); middle, firing rate; right, membrane potential, n = 3 neurons per group. ¢ Behavioral responses of male
mice to CNO injection (0.3 mg/kg, i.p.). €1 A single CNO injection. Sucrose preference test (t(14) = 0.5232, P = 0.6090): AAV-DIO-mCherry, n =7;
AAV-DIO-hM3Dg-mCherry, n = 9. Female urine sniffing test (treatment: F(;, 34y = 0.006, P = 0.9374; odor source: F;, 34y = 72.98, P <0.0001;
treatment x odor source: F(;, 34)= 0.4274, P=0.5177): AAV-DIO-mCherry, n = 9; AAV-DIO-hM3Dg-mCherry, n = 10. Forced swim test (ts) =
1.190, P = 0.2525) and locomotor activity (t(5) = 1.385, P = 0.1863): AAV-DIO-mCherry, n = 8; AAV-DIO-hM3Dg-mCherry, n = 9. 2 Three days
of CNO injections (once daily). Sucrose preference, t(0)=3.518, P=0.0056. Forced swim test, unpaired t test with Welch’s correction,
P =0.8930. Locomotor activity, t10)=0.01612, P=0.9875. AAV-DIO-mCherry, n =6; AAV-DIO-hM4Di-mCherry, n = 6. €3 Ten days of CNO
injections (once daily). Sucrose preference test (Mann Whitney test, P =0.0292), forced swim test (7 =2.211, P=0.0357) and locomotor
activity (Mann Whitney test, P=0.0868): AAV-DIO-mCherry, n = 14; AAV-DIO-hM3Dg-mCherry, n = 15. Female urine sniffing test (F,
s4) = 3.410, P = 0.0703; odor source: F(;, s4y =60.87, P < 0.0001; treatment x odor source: F(, 54y = 3.293, P=0.0751): AAV-DIO-mCherry, n = 13;
AAV-DIO-hM3Dg-mCherry, n = 16. d Behavioral responses of female mice to CNO injection (0.3 mg/kg, i.p.). d1 A single CNO injection.
Sucrose preference test (t;s5)=0.8355, P=0.4165): AAV-DIO-mCherry, n = 8; AAV-DIO-hM3Dg-mCherry, n = 9. d2 Three days of CNO
injections (once daily). Sucrose preference test (Mann Whitney test, P = 0.5403): AAV-DIO-mCherry, n = 8; AAV-DIO-hM3Dg-mCherry, n = 9.
Forced swim test (t;5 = 1.125, P = 0.2827) and locomotor activity (t(12 = 0.5193, P=0.6130): n = 7 per group. d3 Ten days of CNO injections
(once daily). Sucrose preference test, t;5) = 0.6782, P = 0.5074. Forced swim test, t(;5) = 0.6083, P = 0.5516. Locomotor activity, t;e = 1.335,
P =0.1943. AAV-DIO-mCherry, n = 9; AAV-DIO-hM3Dg-mCherry, n =9 per group. *P < 0.05, **P < 0.01vs mCherry group.
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3 days of unpredictable stress show no significant change in 1 day after exposure to unpredictable stress (first 3 days in
sucrose preference [1]. In the present study, multiple behavioral Table 1). As expected, none of these behaviors were significantly

tests, including sucrose preference, forced swimming and open altered by this short duration of unpredictable stress (Fig. 5a).
field tests, were conducted to assess behavioral consequences Thus, this stress paradigm was used as a subthreshold form of
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Fig. 5 Acute activation of POMC neurons increases susceptibility to subthreshold unpredictable stress (SUS) in both male and female
mice. a Left, Experimental timeline. Male wild-type C57BL/6J mice (sucrose preference: t7) = 4.578, P = 0.1329; forced swim: unpaired t test
with Welch’s correction, P = 0.2852; locomotor activity: t;7) = 0.0991, P =0.9222): Ctrl, n = 10; SUS, n = 9. b Recordings of POMC neurons
from Pomc-GFP mice after exposure to SUS. Left-top, experimental timeline; left-bottom, representative whole-cell recording traces of POMC
neurons; middle, firing rates (Mann Whitney test, P = 0.8874); right, membrane potential (tg;) = 1.248, P=0.2157). Ctrl: n = 36 neurons from
two male (15 neurons) and two female (21 neurons) mice. SUS: n = 47 neurons from two male (22 neurons) and two female (25 neurons)
mice. ¢ A combination of stimulation of POMC neurons and SUS exposure in Pomc-Cre mice. Upper panel, experimental timeline. ¢1 Sucrose
preference test in male mice (before SUS: Mann Whitney test, P = 0.6930; after SUS: t15) = 2.391, P=0.0304). c2 Sucrose preference test in
female mice (before SUS: Mann Whitney test: P = 0.1728; after SUS: Mann Whitney test: P = 0.0062). ¢3 Forced swim test in male (left, unpaired
t test with Welch’s correction, P = 0.5930) and female (right, t6 = 2.703, P = 0.0157) mice. ¢4 Locomotor activity of male (left, unpaired t test
with Welch'’s correction, P =0.3261) and female (right, t1sy = 0.2257, P =0.8243) mice. Male: AAV-DIO-mCherry, n = 8; AAV-DIO-hM3Dg-

mCherry, n = 9. Female: AAV-DIO-mCherry, n = 10; AAV-DIO-hM3Dg-mCherry, n = 8. *P < 0.05, **P < 0.01 vs control or mCherry group.
<

unpredictable stress (SUS) to assess the impact of selective
activation of POMC neurons on stress susceptibility. We have
previously shown that POMC neurons can be rapidly activated by
acute stress, as evidenced by c-fos induction [4]. Given the
findings described above that 10 days of CUS increased the
spontaneous firing activity of POMC neurons, we first asked
whether the SUS protocol can induce long-lasting changes in
neuronal firing activity of POMC neurons. To address this question,
mice were subjected to 3 days of SUS (Table 1) and POMC neurons
were recorded in hypothalamic slices 1 day after the last stress
exposure. We found that the firing rate and the membrane
potential of POMC neurons were not significantly affected by
SUS (Fig. 5b). To test whether acute activation of POMC neurons
increases susceptibility to stress, mice expressing hM3Dq and
mCherry in Pomc-Cre neurons were tested for sucrose preference
after acute CNO injection, then subjected to 3 days of SUS
followed by behavioral tests after acute CNO injection (Fig. 5¢). As
shown in Fig. 4c1, d1, acute activation of POMC neurons by a CNO
injection had no effect on sucrose preference in male or female
mice prior to SUS exposure but significantly reduced sucrose
preference in both male and female mice after SUS exposure
(Fig. 5c1, c2) and increased immobility time in the forced swim
test in female but not male mice (Fig. 5c3). Neither male nor
female mice showed significant changes in locomotor activity
(Fig. 5c4), which suggests that the forced swim results were not
confounded by non-specific changes in mobility. These results
indicate that acute activation of POMC neurons increases stress
susceptibility in both male and female mice.

Chemogenetic inhibition of POMC neurons is sufficient to

reverse anhedonia and despair behavior induced by CUS

We next asked whether inhibition of POMC neurons can reverse
CUS-induced behavioral deficits. First, we confirmed the effect of
CNO on POMC neurons by whole-cell patch clamp recordings
from hM4Di-expressing POMC neurons from Pomc-Cre mice
injected with AAV-DIO-hM4Di-mCherry in the ARC (Fig. 6a). CNO
application decreased the firing rate and hyperpolarized the
membrane potential (Fig. 6b), demonstrating that CNO-
mediated activation of hM4Di inhibited the activity of POMC
neurons. To test the behavioral effects of CNO-induced
inhibition of POMC neurons, male and female Pomc-Cre mice
received intra-ARC injection with AAV-DIO-hM4Di-mCherry or
AAV-DIO-mCherry and were then divided into two groups for
10 days of CUS exposure or daily brief handling as control. The
hM4Di- and mCherry-treated mice showed no differences in
their sucrose preference prior to stress exposure and in the
absence of CNO injection (Fig. 6¢1, d1). As shown previously [1],
CUS significantly decreased sucrose preference in both male and
female mice prior to CNO injection (Fig. 6¢1, d1). This reduction
was reversed by an acute CNO injection (0.3 mg/kg, i.p.) in Pomc-
Cre mice expressing hM4Di, compared with mCherry-expressing
control Pomc-Cre mice (Fig. 6¢1, d1). In addition, CUS induced
despair behavior, as indicated by increased immobility in the
forced swim test; this effect was also reversed by acute

SPRINGER NATURE

inhibition of POMC neurons with CNO injection in hM4Di-
expressing Pomc-Cre mice (Fig. 6c2, d2), whereas locomotor
activity was not altered by either CUS or CNO treatment
(Fig. 6¢3, d3). These results suggest that acute inhibition of
POMC neurons is sufficient to reverse CUS-induced behavioral
deficits.

DISCUSSION

In the ARC of the hypothalamus, POMC and AgRP neurons are
well-positioned to relay and integrate peripheral and central
signals to elicit adaptive and maladaptive behavioral responses to
environmental challenges. In parallel with the investigations of
synaptic and intrinsic plasticity of AgRP neurons using a CUS
paradigm [1], this study assessed the impact of the same chronic
stress paradigm on POMC neuron firing and behavioral con-
sequences of DREADD-mediated control of POMC neuron activity.
We demonstrated that CUS depolarized POMC neurons and
increased their firing rates through modulating both synaptic and
intrinsic neuronal properties. Repeated activation of POMC
neurons was sufficient to induce anhedonia and behavioral
despair, mimicking repeated exposure to stress. By contrast, acute
inhibition of POMC neurons was able to reverse behavioral deficits
induced by CUS. Collectively, these data suggest that POMC
neurons are both necessary and sufficient for chronic stress-
induced behavioral phenotypes.

Anhedonia, loss of interest and pleasure, is a common
symptom in depression and other psychiatric illnesses. The
ARC has been shown to be involved in reward processing and
motivated behaviors [45, 46], but only recently dysfunction of
specific neuronal populations in the ARC was discovered to be
associated with stress-induced anhedonia [1, 9]. Using the same
CUS paradigm, we have demonstrated that chronic stress
hyperpolarizes AgRP neurons and decreases their firing rates
[1]. Furthermore, inhibition of AgRP neurons increases stress
susceptibility, whereas activation of AgRP neurons reverses
anhedonia and behavior despair in CUS mice [1]. In contrast to
the impact of CUS on AgRP neurons, we found that CUS
depolarizes POMC neurons and increases their firing frequency.
Notably, in the present study, the whole-cell patch clamp
recordings of POMC and AgRP neurons were performed 1 day
after the final stress session to eliminate acute stress effects. This
is in contrast to a recent study that recorded the activity of
POMC and AgRP neurons immediately after exposure to restraint
stress [9]. Given that POMC neurons have been shown to be
activated quickly by restraint stress, as evidenced by c-fos
induction 30 min after stress exposure [4], it is not surprising that
POMC neuron firing was increased in mice recorded after a
single exposure to restraint stress or immediately following the
last stress session of repeated restraint stress [9]. The initial
activation of neurons in response to acute stress has been
reported to be followed by a decline or depression of neuronal
activity with the termination of stress [47]. Indeed, when
recorded at 1 day following restraint stress in a subthreshold

Molecular Psychiatry (2023) 28:1365 - 1382
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observed no change in POMC neuron firing. These findings
suggest that chronicity, unpredictability and variability in stress
exposure are important factors in driving persistent hyperactiv-
ity of POMC neurons.

Molecular Psychiatry (2023) 28:1365 - 1382

POMC neurons in the ARC receive both GABAergic and
glutamatergic inputs from multiple brain regions [14, 48, 49].
The observed hyperactivity of POMC neurons following chronic
stress exposure could result from modulation of excitatory and
inhibitory synaptic transmission [50-53]. Under basal conditions,
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Fig. 6 Inhibition of POMC neurons reverses chronic unpredictable stress-induced behavioral deficits. a Schematic illustration showing
stereotaxic injection of AAV-DIO-hM4Di-mCherry or AAV-DIO-mCherry in the ARC of Pomc-Cre mice and a representative image showing
mCherry-labeled POMC neurons. b Left, representative traces of action potentials recorded in POMC neurons expressing hM4Di in response to
bath application of CNO (5 pM); middle, firing rate (paired t-test, t;) = 5.756, P = 0.0289); right, membrane potential (paired t-test, t,) = 4.488,
P =0.0462). n =3 neurons per group. ¢ Timeline of experimental procedures in male Pomc-Cre mice. ¢1 Sucrose preference test before and
after CUS without or with acute CNO injection (0.3 mg/kg, i.p.). Pre-CUS: Kruskal-Wallis test, P = 0.1529; post-CUS w/o CNO: Kruskal-Wallis test,
P <0.001; post-CUS w/ CNO: Kruskal-Wallis test, P =0.0143. c2 Forced swim test after CUS with acute CNO injection (Brown-Forsythe ANOVA
test, P=0.0015). €3 Locomotor activity after CUS with acute CNO injection (F(3,27) = 0.2077, P = 0.8138). Ctrl+mCherry, n = 9; CUS + mCherry,
n = 10; CUS + hM4Di-mCherry, n = 11. d Timeline of experimental procedures in female Pomc-Cre mice. d1 Sucrose preference test before and
after CUS without or with acute CNO injection. Pre-CUS: Kruskal-Wallis test, P = 0.6505; post-CUS w/o CNO: Kruskal-Wallis test, P = 0.0023;
post-CUS wW/CNO: F;56) = 16.77, P < 0.001. Ctrl+-mCherry, n = 9; CUS + mCherry, n = 9; CUS + hM4Di-mCherry, n = 11. d2 Forced swim test
after CUS with acute CNO injection (F(5,7 = 10.05, P <0.001). Ctrl+mCherry, n = 9; CUS + mCherry, n = 10; CUS + hM4Di-mCherry, n = 11.
d3 Locomotor activity after CUS with acute CNO injection (F;2¢ = 0.8191, P=0.4519). Ctrl+mCherry, n = 9; CUS + mCherry, n = 9;

CUS + hM4Di-mCherry, n = 11. *P < 0.05, **P < 0.01, ***P < 0.001 vs Ctrl+mCherry group or CUS + mCherry group.
<

there are more excitatory than inhibitory synapses on POMC
neurons [49]. We found that CUS had no effect on excitatory
synaptic transmission, but decreased inhibitory synaptic inputs to
POMC neurons. The frequency of spontaneous IPSCs was
decreased in POMC neurons following CUS, reflecting presynaptic
modifications. Furthermore, this decrease was eliminated by
blocking action potential formation and its propagation, suggest-
ing that CUS induces a presynaptic hyperpolarization in GABAer-
gic terminals which synapse onto POMC neurons. Given that AgRP
neurons can release GABA onto POMC neurons in the ARC [54]
and that AgRP neurons are hyperpolarized by CUS [1], it is
reasonable to assume that the decreased inhibitory synaptic
transmission in POMC neurons is caused in part by hyperpolarized
GABAergic AgRP terminals. This notion is supported by the
findings that ablation of AgRP neurons causes a dramatic
reduction in spontaneous GABAergic synaptic transmission in
POMC neurons [55], and that optogenetic stimulation of AgRP
neurons inhibits POMC neuron firing [54, 56]. However, some
studies reported that AgRP neurons may not be a primary source
of GABA onto POMC neurons, and the relevance of GABAergic
inputs from AgRP to POMC neurons is state-dependent
[48, 50, 57, 58]. The exact interplay between POMC neurons and
AgRP neurons in stress responses and adaptations requires further
investigation. Nonetheless, CUS-induced weakening of GABAergic
inputs to POMC neurons, in the absence of changes in
glutamatergic inputs, would cause the synaptic excitation/
synaptic inhibition balance to shift toward excitation. This could
contribute to hyperactivity of POMC neurons.

In POMC neurons, persistent increases in intrinsic excitability
occur in parallel with synaptic modifications following CUS. The
intrinsic neuronal excitability determines the translation of
synaptic input to the output function of a given neuron. One
possible mechanism for increased intrinsic excitability of POMC
neurons is the regulation of expression and distribution of ion
channels inserted into the membrane of POMC neurons that
contribute to the electrical properties and depolarization potential
[59, 60]. POMC neurons were reported to possess ATP-sensitive
potassium (Katp) channels and express the Karp channel subunits
Kir6.2 and SUR1 [61, 62]. Katp channel openers induce an outward
K* current in the vast majority of POMC neurons [62], leading to
membrane hyperpolarization and reduced neuronal activity
[62, 63]. Conversely, pharmacological blockade of Karp chan-
nels can activate POMC neurons [61]. These studies suggest the
importance of Karp channels for normal activity of POMC neurons.
However, it is unknown whether CUS suppresses expression and/
or function of the Kap channels, leading to closure of the
channels. Alternatively, inhibition of Ca’"-dependent K™ (SK)
currents may contribute to hyperactivity of POMC neu-
rons observed in this study. Blocking SK channels was reported
to reactivate POMC neurons [60]. Future investigations of ion
channel regulation will provide insights into the mechanisms
underlying CUS-induced hyperactivity of POMC neurons.
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Notably, POMC neurons exhibited higher degrees of firing
regularity after CUS exposure, while they fire spontaneously in an
irregular manner under control conditions. The mechanisms
driving variability in spike-timing of POMC neurons are unknown.
Dendritic morphology plays a critical role in determining neuronal
firing patterns [64-67]. Chronic stress alters dendritic morphology
in many brain regions [68, 69]. It is possible that CUS may induce
changes in dendritic morphology of POMC neurons, contributing
to firing regularity. Another determinant of neuronal firing
patterns is the composition and density of ion channels [67, 70].
It has been shown that SK channels control firing regularity by
modulating sodium channel availability [71, 72]. Voltage-gated K
channels [73-75] and HCN channels [76, 77] are also involved in
regulating the waveform and spike regularity. In addition, the
firing regularity can be influenced by the properties and variability
of synaptic inputs [78, 79]. Future studies will identify the key
mechanism that controls firing patterns of POMC neurons and
how firing regularity influences neuronal information processing.

While exposure to CUS induced similar effects on POMC neuron
excitability in male and female mice, behavioral responses to
repeated activation of POMC neurons exhibited sex differences.
Repeated activation of POMC neurons in stress-naive male mice for 3
or 10 days induced behavioral deficits, including decreased sucrose
preference, decreased sex-related reward seeking behavior and
increased behavioral despair. However, stress-naive female mice
failed to show any behavioral changes. Although acute activation of
POMC neurons was not sufficient to induce significant behavioral
effects in stress-naive mice, the susceptibility of both male and female
mice to subthreshold unpredictable stress was increased by
acute stimulating POMC neurons. On the other hand, acute inhibition
of POMC neurons was able to rescue behavioral deficits induced by
CUS in both male and female mice. These studies suggest that
hyperactivity of POMC neurons is required for the induction and
expression of CUS-induced behavioral deficits. Among behavioral
tests, sucrose preference has been widely used as a reliable measure
of anhedonia in both male and female mice [80]. It is conceivable that
the impact of altering POMC neuron activity on sucrose preference
could be consequential to changes in caloric consumption rather
than a true preference for sweet taste. In this study, however, sucrose
preference was conducted within the first 2 h in the dark cycle in
mice provided with free access to food and water. Previous studies
have shown that neither chemogenetic activation by i.p. injection or
continuous infusion of CNO, nor optogenetic activation of POMC
neurons, affects food intake within 2h [17, 21, 24, 25]. Thus, the
observed changes in sucrose preference were unlikely to reflect the
impact of POMC neuron activity on metabolism.

Collectively, our findings indicate that activation of POMC
neurons in the ARC is both necessary and sufficient to mediate
stress susceptibility and induce anhedonia and behavioral despair.
Further studies investigating the mechanisms underlying the
synaptic disinhibition and intrinsic hyperexcitability of POMC
neurons will provide insight into how POMC neurons modulate
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stress-related behaviors. Together with our previous findings that
stimulating AgRP neurons decreases stress susceptibility and
reverses CUS-induced behavioral deficits [1], these results suggest
that POMC neurons act in opposition to AgRP neurons in
behavioral and neural plasticity to chronic stress. Thus, hypotha-
lamic POMC and AgRP neurons can be viewed as Yin-Yang
partners in modulating responses and adaptations to stress.
Whether efferent projections from these neurons converge on the
same downstream targets to control behavioral susceptibility to
stress, and whether their influences require melanocortin receptor
signaling, need to be investigated.
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