Table 1.
AUC | ||||
---|---|---|---|---|
Model | Training | Testing | Balanced accuracy | AUPRC |
Logistic regression | 0.819 | 0.742 (0.732–0.753) | 0.673 | 0.162 |
Random forest | 0.930 | 0.678 (0.667–0.689) | 0.620 | 0.189 |
Gradient boosting (GB) | 0.874 | 0.726 (0.715–0.737) | 0.663 | 0.177 |
XGBoost | 0.925 | 0.688 (0.676–0.699) | 0.632 | 0.209 |
Naïve Bayes (NB) | 0.806 | 0.710 (0.698–0.721) | 0.655 | 0.179 |
Logistic regression – L1 and L2 penalty (elasticnet) | 0.816 | 0.745 (0.735–0.755) | 0.675 | 0.179 |
Deep neural network (DNN) | 0.800 | 0.753 (0.743–0.763) | 0.684 | 0.218 |
Ensemble (XGB, GB, NB, L1L2) | 0.887 | 0.743 (0.732–0.752) | 0.667 | 0.208 |
Ensemble (XGB, GB, NB, DNN) | 0.898 | 0.750 (0.739–0.760) | 0.671 | 0.212 |
AUC Area Under the Receiver Operating Characteristic Curve, AUPRC area under the precision-recall curve.
Bold values represent the best performing model for each metric.