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Advanced and metastatic prostate cancer is often incurable, but its dependency on certain molecular alterations may provide the
basis for targeted therapies. A growing body of research has demonstrated that peroxisome proliferator-activated receptor gamma
(PPARγ) is amplified as prostate cancer progresses. PPARγ has been shown to support prostate cancer growth through its roles in
fatty acid synthesis, mitochondrial biogenesis, and co-operating with androgen receptor signalling. Interestingly, splice variants of
PPARγ may have differing and contrasting roles. PPARγ itself is a highly druggable target, with agonists having been used for the
past two decades in treating diabetes. However, side effects associated with these compounds have currently limited clinical use of
these drugs in prostate cancer. Further understanding of PPARγ and novel techniques to target it, may provide therapies for
advanced prostate cancer.
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BACKGROUND
Prostate cancer (PC) is the most common malignancy in men and
the second leading cause of cancer death in men in the
developed world [1]. While the early stages of this disease are
curable, the advanced and metastatic forms of this disease have
no curative options and account for the vast majority of deaths
from PC.
The aetiology of PC is ill-defined and, due to the highly

heterogenous nature of this disease, identifying true drivers of PC
remains challenging. For this reason, for the vast majority of
patients, the only targeted treatment available is androgen-
deprivation therapy (ADT), which inhibits androgen receptor (AR)
activity [2]. However, response to ADT is time-limited, and with
time, resistance occurs [3]. Patients who develop resistance to ADT
are said to have castrate-resistant PC for which there is no curative
therapy. Identifying targetable mutations in advanced PC will help
these patients who have the greatest unmet need.
PC growth is intrinsically linked to fatty acid and cholesterol

biosynthesis [4]. Many key regulators of these metabolic pathways
are overexpressed in PC and are implicated as oncogenic drivers
of the disease [5].
Peroxisome proliferator-activated receptor (PPAR) are members

of the nuclear hormone receptor superfamily [6]. There are three
subtypes of PPAR that have been identified, α, β (also referred to
as δ), and γ. PPARα and PPARβ have not been well studied in
cancer and their roles in PC progression are not well understood.
This review will therefore focus on PPARγ and its known roles in
PC as it is the most well defined.

PPARs function by binding DNA elements called PPAR response
elements (PPREs) and promoting gene expression of the adjacent
genes [7]. This PPRE sequence was previously identified to be two
AGGTCA repeats with a single-nucleotide spacer [7]. However,
more recent studies identified that PPAR subtypes likely have
preferences for different sequences and variations of this
previously identified PPRE [8]. These differences allowed identifi-
cation of novel PPAR target genes and unveiled greater complex-
ity in their regulation.
PPARγ’s most well-defined role is as a master regulator of

adipogenesis, where it controls lipid metabolism and insulin
sensitivity [9, 10]. PPARγ is also essential for adipocyte differentia-
tion and maintenance [11–13]. Due to PPARγ’s role in lipogenesis,
many ligands are fatty acids, including polyunsaturated fatty acids,
branched chain fatty acids, and saturated fatty acids [6, 14, 15].
Synthetic ligands have also been generated to activate PPARγ as
agonists. This class of drugs, the thiazolidinediones (TZDs),
activate PPARγ and induce fatty acid uptake from the blood into
peripheral fat thereby improving insulin sensitivity [16]. As such,
these drugs are used clinically in treating type 2 diabetes mellitus
(T2DM) [17].
PPARγ has two well-studied splice variants in PC, PPARγ1 and

PPARγ2 (Fig. 1). The key structural difference in these variants is in
the N-terminus, where PPARγ2 has an additional 30 amino acids
[18]. Contained in the N-terminus is a ligand-independent
activation domain, and PPARγ2 was demonstrated to have a
fivefold greater ligand-independent activity likely as an impact of
these additional 30 amino acids [19]. Each of these variants also
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show differences in tissue specificity, with PPARγ1 being highly
ubiquitous in many tissues, whereas PPARγ2 was originally only
believed to be found in adipocytes [6, 20]. Later studies identified
PPARγ2 to be expressed at low levels in healthy breast, colon,
bladder, and prostate tissue [21, 22]. Other PPARγ splice variants
have been identified with a truncated sequence resulting in a non-
functional ligand-binding domain, though these variants still
retain DNA-binding capacity [23]. These truncated variants are
produced either by skipping exon 5 in the case of y1Δ5 and y1Δ5
variants or by readthrough of exon 4 in the case of y1ORF4 and
y2ORF4 [23–25]. These variants are suggested to negatively
regulate PPARγ by competing for binding sites while being
unable to activate gene expression themselves [23]. However,
these variants have not been studied in PC.

INTRACELLULAR SIGNALLING OF PPARγ IN PROSTATE CANCER
Besides regulating systemic responses such as insulin sensitivity,
PPARγ also regulates intracellular metabolism and signalling
events which have been implicated in cancer. Our group has
previously identified that an elevation of Pparγ1 expression in a
phosphatase and tensin homology (Pten) null PC murine model
led to an acceleration in prostate tumourigenesis and increased
tumour weight at clinical endpoint [26]. These mice with elevated
Pparγ1 also had a reduced survival and increased incidence of
metastasis, both locally to pelvic lymph nodes and distally to the
lungs. This elevation in Pparγ1 correlated with an increase in lipid
synthesis machinery, including fatty acid synthase (FASN) and ATP
citrate lyase (ACYL). We later identified the mechanism by which
PPARγ can drive aggressive disease through an AKT serine/
threonine kinase 3 (AKT3), PPARG coactivator 1 alpha (PGC1α),
chromosome maintenance region 1 (CRM1) axis [27]. This
culminates in PPARγ controlling mitochondrial biogenesis through

this axis, with an elevation in PPARγ leading to an increase in
mitochondrial mass capable of driving advanced disease [27].
PPARγ’s regulation of mitochondrial biogenesis has been pre-
viously observed in adipocyte, neuronal, and bladder epithelial
cell lines, though this is the first time this process has been linked
to PC [28–30]. Interestingly, overexpression of PPARγ in PC3-M did
not alter growth in 2D. However, spheroids of PC3-M were
cultured in 3D with matrigel and overexpression of PPARγ
increased an epithelial–mesenchymal transition (EMT) phenotype.
EMT markers were also increased following PPARγ overexpression.
These findings highlight how PPARγ transcriptional targets can be
hijacked by PC and used to drive aggressive disease.
However, a previous study investigating PPARγ variants

suggested that these effects are unique to certain variants. This
study utilised an in vivo knockout of PPARγ and then restoration of
either PPARγ1 or PPARγ2 to study the specific effects of each
variant [31]. This showed that PPARγ1 and PPARγ2 both reduced
lipogenesis in vivo by reducing expression of key lipogenic
regulators including FASN and acetyl-CoA carboxylase alpha
(ACACA) [31]. Furthermore, PPARγ1 was demonstrated to down-
regulate stearoyl-CoA desaturase 1 (SCD1), while PPARγ2 upregu-
lated SCD1. As SCD1 is a key regulator of fatty acid metabolism,
this suggests a variant-specific function [31]. These findings
suggest that both PPARγ variants reduce lipogenesis, whereas
our own data showed increased PPARγ1, increased FASN and
ACYL. This discrepancy may be due to Pten alterations with our
genetically engineered mouse model employing Pten loss as a
driving mutation [26].
PPARγ variants also had differential impacts on cellular

signalling, influencing prostate epithelial differentiation, with an
increase in PPARγ2 producing a basal-like phenotype, but not
PPARγ1, which remained luminal [31]. PPARγ1 was also shown to
produce an adenocarcinoma subtype, whereas PPARγ2 developed
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Fig. 1 Comparison of PPARγ splice variants. Various PPARγ splice variants can be produced by alternative splicing events including exon
skipping and readthrough. These variants each have unique structures and tissues specificity. The most well studied variants PPARγ1 and
PPARγ1 however are of the most interest in prostate cancer currently.
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acini resembling normal prostate glands. This is validated by our
own work which had demonstrated that increased Pparγ1 in vivo
elevated prostate tumourigenesis. The differences between these
variants are summarised in Table 1.
PPARγ2 was later investigated and shown once again to be an

inhibitor of PC growth [22]. PPARγ2 expression was shown to be
decreased in PC cell lines LNCaP, PC3, and DU145 compared to a
normal prostate cell line NHPrE1. Furthermore, overexpression of
PPARγ2 decreased colony forming, migration, invasion, and prolifera-
tion in PC3 and LNCaP. Mechanistically, this was shown to be caused
by PPARγ2 upregulating expression of A-kinase anchor protein 12
(AKAP12), which in turn downregulated AKT signalling.
These findings suggest a more complex context-dependent

function for PPARγ variants. These effects may be caused by
PPARγ2’s enhanced ligand-independent activity and its own
unique functionality compared to PPARγ1. Other studies have
also identified differing ligand-dependent activity with PPARγ2
having enhanced transcriptional activity compared to PPARγ1 at
low ligand concentrations [32]. This difference was attributed to
PPARγ2 interacting more strongly with the DRIP/TRAP/ARC
complex, which coactivates nuclear receptor signalling [32].
The distinctions could be further compounded in a disease

setting due to the dynamic expression of PPARγ variants
themselves [33]. During adipogenesis, PPARγ1 is ubiquitously
expressed throughout adipocyte differentiation, whereas PPARγ2
expression dynamically changes [33]. Discrepancies in the activity
of these variants, their expression, and their interacting partners
could contribute to the differences observed between these
variants in PC.

PPARγ AND ANDROGEN RECEPTOR (AR)
PPARγ has also been shown to interact with key oncogenic
signalling proteins in PC such as AR [34] (Fig. 2). This was first
discovered due to the observation that long term use of
warfarin, an anticoagulant commonly used clinically, reduces
the risk of PC [35]. By treating mice with warfarin and
performing RNA-Sequencing, PPARγ was identified to be
inhibited following warfarin treatment, which in turn inhibited
AR signalling [34]. This interaction of PPARγ and AR may also
demonstrate another distinction between PPARγ1 and PPARγ2
isoforms. An in vivo study showed that PPARγ1 reduced AR
transcriptional activity, whereas PPARγ2 increased AR transcrip-
tional activity [31]. This may suggest that warfarin acts on
PPARγ2 to inhibit its pro-AR signalling, and not on PPARγ1.
Interestingly, AR was also demonstrated to negatively regulate
PPARγ expression, indicating a potential negative feedback loop
between these two proteins and isoforms [36]. These findings
may suggest that in a castrate-setting following ADT, PPARγ
expression is elevated to support cell growth when AR is
inactive. Interestingly, castrate-sensitive LNCaP cells demon-
strate an inhibition of AR activity following PPARγ agonism by

ciglitazone and rosiglitazone, whereas castrate-resistant C4-
2 see an activation of AR activity with the same compounds
[37]. This was further demonstrated to be a PPARγ-dependent
increase in AR activity. Despite this, both C4-2 and LNCaP have
impaired growth when treated with ciglitazone and rosiglita-
zone, though this effect may not be entirely PPARγ-dependent
[38]. These data may suggest a unique role for PPARγ and its
variants in a castrate-resistant PC.

PPARγ AGONISM BY TZDS AND ITS ROLE IN PROSTATE
CANCER
TZDs are a class of drugs that bind and activate PPARγ and are
commonly used clinically in the treatment of T2DM [39, 40].
Clinical data from long-term usage of TZD drugs have informed us
about the role of PPARγ activation in the development of PC. One
study suggested that TZDs have no impact on PC incidence and
even reduced the incidence in lung cancer [41]. This was later
confirmed in a meta-analysis which found a slight trend toward
TZDs reducing PC incidence [42]. It has also been shown that
diabetic patients with PC have an improved survival when treated
with a combination of TZDs and metformin [43]. These effects may
be due to a direct impact of these drugs on PC tissue, suggesting
that PPARγ activation may reduce the risk of PC development.
Alternatively, TZDs and metformin could effect PC indirectly by
targeting liver and adipose tissue, thereby improving the overall
metabolic health of the patient.
One potential explanation for a direct effect of TZDs on PC

would be that TZDs impair PC growth. This was demonstrated
with one TZD, troglitatone, which could impede growth of PC cell
line PC3, and reduce prostate biomarker, prostate-specific antigen
(PSA), expression in LNCaP [44, 45]. However, the impact of TZDs
on PC growth has been suggested to be a PPARγ-independent
effect [38]. This is apparent since the dose used in vitro is far
higher than that required to activate PPARγ, and appears to impair
prostate cancer cell growth [46]. Thus, the reduction of PC growth
by TZDs has been attributed to a reduction in c-Myc expression,
and extracellular signal-regulated kinase (ERK) phosphorylation
though PPARγ-independent mechanisms [47, 48]. It has even been
suggested that a sub-lethal dose of TZDs, which only activates
PPARγ, can promotes cell survival. In all, this suggests that TZDs
are unlikely to have a significant impact on PC development, and
any reduction in PC growth may be in a PPARγ-dependent
manner.
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Fig. 2 PPARγ signalling that positively regulate prostate cancer
growth. PPARγ peroxisome proliferator-activated receptor gamma,
FASN fatty acid synthase, ACYL ATP citrate lyase, AR androgen
receptor, AKT3 AKT serine/threonine kinase 3, CRM1 chromosome
region maintenance 1, PCG1α PPARG coactivator 1 alpha.

Table 1. Comparison of PPARγ variants in regulating prostate cancer
signalling and development.

Prostate epithelial characteristics PPARγ1 PPARγ2

Lipogenisis (FASN, ACACA) ↓ ↓

Fatty acid metabolism (SCD1) ↓ ↑

Differentiation Luminal Basal

Histology Adenocarcinoma Benign

AR signalling ↓ ↑

PPARγ1 and PPARγ2 peroxisome proliferator-activated receptor gamma
variants 1 and 2, FASN fatty acid synthase, ACACA acetyl-CoA carboxylase
alpha, SCD1 stearoyl-CoA desaturase 1.
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PPARγ ALTERATIONS IN PROSTATE CANCER
By using a tissue microarray (TMA) and staining for PPARγ
immunohistochemically, Rogenhofer et al. found that protein
levels of PPARγ were increased in advanced PC compared to both
low-risk PC and benign prostate hyperplasia (BPH) [49]. A separate
study stained clinical samples for PPARγ by immunohistochem-
istry (IHC) and found protein levels to be increased in PC and
prostate intraepithelial neoplasia (PIN), compared to BPH and
normal prostatic tissue [50]. Finally, our own group found that
PPARγ levels correlated with Gleason grades, increasing in grades
3-5 compared to BPH [26]. We determined the correlation of
PPARγ levels and patient survival using a TMA. Interestingly,
PPARγ levels alone were not a prognostic indicator; however, high
PPARγ levels in patients with a low PTEN level (2 years vs 7 years
median survival) or high phospho-AKT cohorts (2.1 years vs 6.3
years median survival) led to a reduction in overall survival. This
suggests an interplay between PPARγ and phosphoinositide 3-
kinase–AKT signalling [26].
Using CBioPortal, we can visualise the alterations of PPARγ in

PC (Fig. 3) [51–54]. PPARγ mutations are most often missense
mutations, with equal instances of mutations being observed in
primary or metastatic clinical samples. Interestingly there is no
consistency with mutations in certain domains despite missense
mutations being likely to lead to amino acid substitutions.
However, when we look at copy number variation, this
demonstrates that metastatic PC has a higher instance of
amplification of PPARγ compared to primary PC. mRNA
dysregulation occurs at similar rates in both primary and
metastatic PC with some cases upregulating and downregulat-
ing PPARγ expression.
As PPARγ2 has an additional 30 amino acids in its N-terminal

compared to PPARγ1, it has been observed to have its own
specific polymorphisms in that region with codon 12 having a
missense mutation causing a substitution of proline to alanine.
This polymorphism has an estimated frequency of 0.12 in a
random Caucasian population [55]. This Pro12Ala substitution is
associated with an increased incidence of colorectal cancer and
breast cancer [56, 57]. However, in investigating this Pro12Ala in
PC, this polymorphism is not associated with increased PC risk or
more aggressive disease [58]. This study, however, was performed
on a Finnish population and would need to be replicated with
more diverse population to be conclusive.
These findings appear consistent in showing that total PPARγ

levels increases from BPH to PIN to PC and increase with Gleason
grade. Further investigation into the changes PPARγ variants
between these stages will improve our understanding of the
interplay of these variants in PC.

PPARγ AND DIET IN PROSTATE CANCER
Obese men (body mass index >30) with PC have a higher PC-specific
morality as well as a higher all-cause mortality when compared to
‘normal weight’ men (body mass index <25) [59, 60]. While
understanding the interplay of obesity and PC is complex, some
studies have attempted to identify the role of dietary fatty acids and
PC. As PPARγ is a receptor for fatty acids in prostate epithelial cells, it
has been implicated in the association of fatty acids and PC.
One study utilised an in vivo murine model, where mice were

fed a diet rich in saturated fatty acids, compared to a poly-
unsaturated fatty acid diet [61]. Saturated fatty acid rich diet led to
mice having an enlarged prostate, with an increase in prostate
epithelial volume and decreased lumen size of prostate glands
due of epithelial hyperplasia. RNA-Seq showed that saturated fatty
acid rich diet modulated the immune system and systemic
inflammation. This diet let to an increase in pro-inflammatory
cytokines and prostatitis, and to an inflammation of the prostate
itself. Interestingly, in comparison, polyunsaturated fatty acids had
opposing effects to saturated fatty acids. Poly-unsaturated fatty
acids have been suggested previously to have a protective role
against cancer development [62]. These effects were shown
in vitro to be PPARγ-dependent, with poly-unsaturated fatty acids
decreasing proliferation and elevating apoptosis of breast cancer
cells [63, 64]. In PC, patients are often observed to have elevated
free fatty acids in their serum [65]. Furthermore, elevated fatty
acids increased PPARγ levels and increased proliferation and
invasion of PC3 and DU145 in a PPARγ-dependent manner [65].
These studies may therefore implicate PPARγ in being effector,

by which a saturated fatty acid rich diet can elevate mortality.
However, as both saturated and poly-unsaturated fatty acids have
been identified as ligands of PPARγ this could also suggest a
differential response in a ligand-dependent manner [6, 14, 15].
Further understanding PPARγ and dietary fatty acids may allow for
a targeted therapy in obese patients with PC.

FUTURE DIRECTIONS
PPARγ was first identified in 1994 and TZDs rosiglitazone and
pioglitazone were marketed in 1999 for treatment of T2DM
[66–68]. Since then, two decades of scientific research have
improved our understanding of PPARγ, and ongoing research
continues to highlight the role of PPARγ in prostate cancer. While
previously thought to be adipocyte specific, PPARγ2 has emerged
as a unique ‘tumour suppressor’ in comparison to a more
‘oncogenic’ PPARγ1. However, the context-dependent complexities
regarding the interactions of these two variants and their roles in
the development and advancement of PC remain unclear.
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Clinical data confirms that PPARγ levels rise as PC develops, and
PC can develop a dependency on PPARγ for lipogenesis and
mitochondrial biogenesis, particularly in vivo. This may suggest
that antagonism against PPARγ may be a viable therapeutic
option for inhibiting PC development. PPARγ antagonists such as
betulinic acid have been developed and used in murine models as
potential therapies for diabetes which avoid the side-effects
associated with PPARγ antagonism [69]. Small molecular inhibitors
however may have even fewer side effects. Use of one small
molecule, T0070907, was shown to impair growth of PC cell lines
LCP and PC3 in vitro [70]. LCP cells were also used in a xenograft
and treated with T0070907 whereupon 4/7 tumours could no
longer be detected indicating a complete regression. This
inhibition of growth was shown to be through conventional
PPARγ signalling with fatty acid synthesis genes FASN and ACACA
being downregulated, as well as AR-dependent pathways,
suggesting that the PPARγ–AR interactions can be targeted [70].
This same small molecular inhibitor was shown to inhibit growth
of breast cancer cell lines through PPARγ-dependent pathways
and was also suggested to impair MAPK signalling [71].
We have also demonstrated the use of PPARγ antagonist

GW9662 as an inhibitor of PC growth [26]. Use of GW9662
impaired metastasis of a PC3 orthograft, as well impairing growth
and colony forming in in vitro. GW9662 was later also shown to
impair growth of a PC3-M xenograft [72]. However, GW9662 may
not be a suitable drug for clinical use, due to its systemic effects
on PPARγ leading to a reduction of whole-body visceral fat
indicating adipogenesis may be affected [73].
These data suggest that antagonism of PPARγ may provide a

therapeutic target for PC, particularly the advanced stages which
seem to become increasingly reliant on its activity. Due to the
apparent different roles of the PPARγ variants in PC, therapeutics
which specifically target different isoforms may also have a
profound effect on PC. This would allow the inhibition of
oncogenic PPARγ1 signalling while retaining any tumour suppres-
sing activity of PPARGγ2. Further research into PPARγ antagonism,
and the interactions of PPARγ variants will elucidate the next steps
in exploiting PC dependency on PPARγ.
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