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Over the past 15 years, there has been great interest in the potential to repurpose the diabetes drug, metformin, as a cancer
treatment. However, despite considerable efforts being made to investigate its efficacy in a number of large randomised clinical
trials in different tumour types, results have been disappointing to date. This perspective article summarises how interest initially
developed in the oncological potential of metformin and the diverse clinical programme of work to date including our contribution
to establishing the intra-tumoral pharmacodynamic effects of metformin in the clinic. We also discuss the lessons that can be learnt
from this experience and whether a further clinical investigation of metformin in cancer is warranted.
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INTRODUCTION
A drug is described as being ‘repurposed’ when it exhibits clinical
benefit for the treatment of cancer patients, despite being initially
developed for an unrelated indication. As drug development costs
rise for new entities, there is a growing attraction in looking to off-
patent medicines that have established safety and pharmacoki-
netic profiles potentially reducing the time to entry into the
oncology clinic. Indeed, a recent estimate suggested that the
median cost to develop a single cancer drug is $648 million [1],
although other analyses have suggested far higher sums [2]. This
outlay directly results in the great expense of drug therapy for
patients and health systems, often more than $100,000 per year
for new cancer drugs, and contributes to inequality of access to
cancer treatment. For rare cancers, where low commercial returns
may be prohibitive for drug development, repurposing may be of
particular value.
Metformin is the most widely prescribed medicine for type 2

diabetes worldwide and on the World Health Organisation’s list of
essential medicines. A series of epidemiological studies which
suggested that metformin may reduce cancer incidence in
diabetic populations sparked great interest in its potential as a
cancer treatment. However, there remains some debate as to its
pharmacodynamic effects in tumours and recent randomised trials
have not clearly demonstrated clinical benefit for any cancer
indication to date. In this perspective article, we present a
summary of the history of preclinical and clinical studies that
informed the repurposing of metformin, discuss how this
programme of work could have been better focused and
coordinated and lastly describe oncological indications where
there remains a strong rationale for investigation.

METFORMIN’S MECHANISM OF ACTION
As has typically been the case drug repurposing programmes, the
interest in metformin was serendipitous. Two decades ago,
researchers trying to understand the metabolic effects of
metformin in diabetic patients discovered that it inhibits Complex
1 of the mitochondrial respiratory transport chain, the conse-
quence of which was the activation of the cellular regulator of
energy homoeostasis, AMP-activated protein kinase (AMPK) [3, 4].
AMPK is known to be a tumour suppressor that regulates a
number of downstream anabolic pathways critical to tumour cell
proliferation. On this basis, a pilot epidemiological case–control
study was carried out and the analysis suggested that patients
with Type 2 Diabetes Mellitus on metformin were less likely to
develop cancer compared to patients on other diabetes drugs [5].
This finding led to a host of preclinical studies, which suggested
that under laboratory conditions and with doses substantially
greater than peak plasma level in patients, metformin possessed a
number of anti-cancer properties including synergy with cytotoxic
chemotherapy and radiotherapy.
Despite great effort and multiple published preclinical studies,

the actual mechanism of action of metformin in tumour cells
remains a topic of debate. As described above it is clear, at least
when cells are treated with high doses, that metformin inhibits
Complex-1 activity and cellular respiration. This was demonstrated
in a series of elegant experiments in which metformin-resistant
Saccharomyces cerevisiae NADH dehydrogenase NDI1 was over-
expressed. In the same study the administration of metformin to
mice inhibited the growth of control xenografts but not those
expressing NDI1 [6]. In models, the consequences of inhibiting
Complex 1 and hence the tricarboxylic acid cycle has been shown
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to check the funnelling of carbon from glucose to the anabolic
building blocks needed for cell proliferation [7]. However, in
patients, it remains unclear as to the degree to which the disruption
of carbon metabolism or induction of energy stress and subsequent
AMPK activation might be most critical to any antiproliferative
effects. The further preclinical investigation has suggested a host of
pleiotropic effects of metformin in cancer cells but it seems likely
that many if not all of these are downstream consequences of
metformin inhibiting complex 1 and subsequent AMPK activation,
rather than the drug engaging multiple targets. For example,
metformin has been shown to inhibit AKT/mTOR signalling and
suppress fatty acid synthesis in an AMPK-dependent manner [8–10].
Metformin-induced AMPK activation has also been shown to reduce
cancer cell proliferation through several other mechanisms,
including activation of cMYC, HIF-1α and DICER1 [11].
However, an alternative hypothesis focussed on metformin’s

effects on systemic ‘host’ metabolism has been proposed. Within
the liver, activation of AMPK has been shown to reduce
gluconeogenic gene expression in hepatocytes [12], increase
insulin receptor activity and enhance translocation of glucose
transporters [13]. It has also been proposed that biguanides inhibit
glucagon signalling in the liver in an AMPK-independent manner,
possibly by increasing AMP levels secondary to inhibition of
Complex 1. AMP then by binding to adenylate cyclase down-
regulates cAMP-PKA activity suppressing gluconeogenesis [14].
Activation of the insulin receptor promotes downstream PI3K-AKT-
mtor signalling and growth in tumour models [15] and increased
insulin levels are associated with higher cancer incidence and
mortality [16]. Hence, by reducing circulating insulin and glucose
levels it is postulated that metformin may reduce insulin-mediated
tumorigenesis and cancer progression, perhaps most relevant to
patients with metabolic syndrome or type 2 diabetes although
metformin has been shown to reduce insulin levels in cancer
patients without these conditions [17].

PHARMACODYNAMIC CLINICAL STUDIES
In the clinic, metformin’s anti-cancer effects were initially
evaluated in several small pharmacodynamic clinical trials. These
typically used ‘window of opportunity’ designs often prior to
surgery and compared assays using the diagnostic and surgical
tumour sample with a course of metformin in between to assess
the drug’s effects on cancer biology. The endpoints and findings
of these studies are described in Table 1 but in summary almost all
of these early studies designated the well-validated marker of
proliferation, Ki67, as the primary endpoint. Other immunohisto-
chemical markers were often assayed, in particular for immuno-
histochemical markers of apoptosis, AMPK and mTOR pathway
activation, however detailed characterisation of metformin’s
effects on tumour biology was not evaluated. To address this,
we undertook a radiogenomic ‘window-of-opportunity’ study in
40 non-diabetic patients with primary breast cancer, linking
FDG–PET tumour uptake to tumour transcriptomic and metabo-
lomic profiling. Here, we observed the upregulation of several
transcriptomic pathways linked to mitochondrial metabolism and
change in the levels of a number of mitochondrial metabolites
suggesting that metformin disrupted mitochondrial metabolism at
clinical dosing. A reactive increase in mitochondrial oxidative
phosphorylation gene transcription linked to metformin resistance
and two distinct metabolic responses in breast cancer were
observed. Furthermore, we showed that metformin increases 18-
FDG flux in primary breast cancer concomitant to the increased
expression of multiple genes regulating glycolysis, glucose
transport and glutamine metabolism. This was consistent with
breast tumours upregulating well-described mitochondrial meta-
bolic resistance pathways in response to metformin adding
weight to the potential of previously proposed strategies to
target these pathways, in combination with metformin [17, 18].

EFFICACY STUDIES
Results have now been presented from a number of randomised
trials in different settings which in most cases have not
demonstrated clinical benefit for metformin as a cancer treatment.
These studies have assessed the combination of metformin with
chemotherapy, endocrine and other targeted therapy in a number
of different tumour types as summarised in Table 2. Most notably,
the MA.32 study was a Phase III randomised trial that recruited
over 3600 patients with high-risk operable breast cancer
randomised to 850mg metformin or placebo for 5 years. The
investigators concluded that the addition of adjuvant metformin
did not lead to an improvement in disease-free survival for either
oestrogen receptor-positive or negative breast cancer [19]. An
exploratory analysis did suggest that there might be some benefit
in patients with HER2-positive disease and who genotyped for the
C allele of the rs11212617 single-nucleotide polymorphism
although the authors concluded that this would need to be
confirmed with further prospective study [19, 20]. Tumour hypoxia
is strongly linked to radiotherapy resistance and metformin has
been shown to improve tumour oxygenation and radiotherapy
response in xenograft models [21]. Hence, the combination of
metformin and chemoradiotherapy has been investigated in
patients with non-small lung cancer in two randomised trials but
again with no evidence of benefit [22, 23]. A handful of studies
have had encouraging results but with insufficient sample sizes to
be firmly conclusive [24–28].

CAN LESSONS BE LEARNT FROM THE METFORMIN
EXPERIENCE?
When the MA.32 study commenced recruitment in 2010 there was
very limited information regarding the pharmacodynamic effects
of metformin in breast cancer at therapeutic doses from the clinic.
This impacted on the ability to develop rationale clinical trial
designs that took into account markers of selection, resistance,
treatment combination and dosing. As has been frequently been
demonstrated in drug development without appropriate patient
selection clinical benefit may be masked.
Initially, there was little effort to establish the tolerability and

possible advantage of higher dose levels of metformin in the
context of treatment for cancer where a greater risk/side effect
profile might be acceptable. Efforts have now been made to
evaluate different dose levels for metformin and its biguanide
cousin phenformin in various therapeutic combinations [29–31].
However, to our knowledge, a well-designed dose escalation
study of metformin with detailed tumour pharmacodynamic
assessment is still awaited.
An example of a well-structured programme of work that could

be taken as template to repurpose an anti-mitochondrial agent for
cancer therapy is the ongoing evaluation of the anti-parasitic drug
atorvaquone as a radio-sensitiser. A decade ago, a group of
investigators carried out a high throughput screen for drugs that
reduced oxygen consumption and hence, potentially tumour
hypoxia. Atovaquone is an anti-malarial agent and ubiquinone
analogue that inhibits mitochondrial complex III and was
identified as a ‘top hit’ in this screen. In vivo, atovaquone reduced
tumour hypoxia and sensitised xenograft models to radiotherapy
[32]. To determine whether atovaquone could reduce tumour
hypoxia in patients, a pharmacodynamic clinical study compared
15 atovaquone treated versus 15 untreated non-small cell lung
cancer (NSCLC) patients, recruited sequentially. Here, [18F]-
fluoromisonidazole (FMISO) PET-CT demonstrated a significant
reduction in hypoxia in the atovaquone group and this was
corroborated using a transcriptomic hypoxia gene expression
signature [33]. An ongoing dose escalation study, the ‘ARCADIAN
trial’ is designed to ascertain the recommended phase 2 dose of
atovaquone in combination with concurrent chemoradiotherapy
in locally advanced NSCLC.
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Table 1. Window of opportunity pharmacodynamic clinical studies evaluating metformin’s effects on tumour biology.

Author/year Tumour type Design/sample size Primary tumour assays Summary

Hadad et al. [56];
Hadad et al. [57]

Breast cancer RCT
n= 55, 32 (MET) vs.
23 (CT)

IHC
Ki67
Caspase 3, pAMPK

1. Reduced proliferation
2. Reduced apoptosis
3. Activation of AMPK

Bonnani et al. [58];
Cazzaniga et al. [59]

Breast cancer RCT
n= 200, 100 (MET) vs.
100 (placebo CT)

IHC
Ki67
TUNEL

1. Reduced proliferation in subgroups with
HOMA-IR score >2.8
2. No change in apoptosis

Niraula et al. [60];
Dowling et al. [61]

Breast cancer Single arm
n= 39

IHC
Ki67
TUNEL
IR
pAMPK, pACC

1. Reduced proliferation
2. Increased apoptosis
3. Higher baseline glucose levels associated
with more overt decrease Ki67
4. Reduced IR expression
5. No activation of AMPK

Kalinsky et al. [62] Breast cancer with BMI
≥25 kg/m

Single arm (historical
controls)
n= 35

IHC
Ki67

No change in proliferation

Lord et al. [17, 18] Breast cancer Single arm
n= 40

FDG–PET-CT
RNASeq
Metabolomics

1. Increase FDG flux consistent with increased
tumour glucose uptake
2. Increased expression of multiple
mitochondrial pathways
3. Decreased levels of some mitochondrial
metabolites
4. Two metabolic response patterns linked to
the differential change in proliferation

Laskov et al. [63] Endometrial cancer Single arm (historical
controls)
n= 11

IHC
Ki67
pAMPK
pS6

1. Reduced proliferation
2. No activation of AMPK
3. Reduced mTOR signalling

Mitsuhashi et al. [64] Endometrial cancer Single arm (historical
controls)
n= 31

IHC
Ki67
pAMPK
pS6, pERK

1. Reduced proliferation
2. Activation of AMPK
3. Reduced mTOR signalling

Schuler et al. [65] Endometrial cancer Single arm
n= 20

IHC
Ki67
pAMPK
pS6, pAKT, p4EBP1
ER

1. Reduced proliferation
2. No activation of AMPK
3. Reduced mTOR signalling
4. Reduced ER expression

Sivalingam et al. [66] Endometrial cancer Not randomised
n= 40, 28 (MET) vs.
12 (CT)

IHC
Ki67
pS6, pAKT,
p4EBP1, pACC
p-ACC, p-S6, p4EBP1,
ER, PgR

1. No change in proliferation
2. Changes in expression of markers of mTOR
signalling in both MET and CT groups
3. Reduced ER and PR expression

Kitson et al. [67] Endometrial cancer RCT
n= 88, 45 (MET) vs. 43
(placebo CT)

IHC
Ki67
pS6, pAKT, p4EBP1

1. No change in proliferation
2. No change in mTOR signalling

Petchsila et al. [68] Endometrial cancer RCT
n= 49, 25 (MET) vs. 24
(placebo CT)

IHC
Ki67

Reduced proliferation

Joshua, 2014 [69] Prostate cancer Single arm
n= 22

IHC
Ki67
pAMPK
p4EBP1

1. Reduced proliferation
2. No activation of AMPK
3. Reduced mTOR signalling

Nguyen et al. [70] Prostate cancer RCT
n= 20, 10 (MET) vs. 10
(placebo CT)

Metformin
concentration
IHC
Ki67
Cyclin D1
CC3
pS6

1. Metformin distributes to prostate tissue
2. No change in proliferation
3. No change in apoptosis
4. No change in cell cycle regulation
5. No change in mTOR signalling

Brown et al. [71] Ovarian cancer Single arm
(historical controls)
n= 38

Flow cytometry Reduction in ALDH+CD133+ ovarian cancer
stem cell population

Curry et al. [72] Head and neck cancer Single arm
n= 50

Mass spectroscopy
imaging
IHC
Ki67
TUNEL
CAV1, GALB, MCT4

1. Increase in lactate levels
2. No change in proliferation
3. No change in apoptosis
4. Change in expression of markers of

glycolytic metabolism

Han et al. [42] Cervical cancer RCT
n= 13, 10 (MET) vs. 3
(CT)

FAZA PET-CT Reduction in cervical tumour hypoxia

RCT randomised controlled trial, MET metformin, CT control, IHC immunohistochemistry, ER oestrogen receptor, PgR progesterone receptor, HOMA-IR
homoeostatic model assessment for insulin resistance, PET-CT positron emission tomography-computed tomography, FDG fluorodeoxyglucose, FAZA
fluoroazomycin arabinoside.
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The contrast here with the approach to metformin is clear. The
work was led by a team of collaborators who worked together
throughout each stage of the drug development project to ensure
that each step was informed by the prior. At an early point during
clinical evaluation detailed pharmacodynamic assessment of the
drug was carried out at several dose levels. We believe this
stepwise approach to pharmacodynamic characterisation prior to
Phase II/III efficacy trials optimises the chances of success in a drug
repurposing programme.

FUTURE DIRECTIONS: IS FURTHER CLINICAL INVESTIGATION
OF METFORMIN IN CANCER WARRANTED?
Given the results of the randomised efficacy trials enthusiasm to
develop further clinical studies of metformin as a treatment for
established cancers is waning. However, preclinical and clinical
pharmacodynamic data obtained since the design of early clinical
efficacy studies has now informed new avenues of investigation.
Markers are now being established that may define response to

Complex-1 inhibitors such as mutations in the SWI-SNF complex
[34]. Mitochondrial mutations in genes encoding for Complex 1
have also been proposed as markers of sensitivity for biguanide
therapy [35] although mitochondrial heteroplasmy and the
dynamic negative and positive enrichment of mitochondrial
mutations may prevent their application as biomarkers. The
transcription factor STAT3 is frequently activated in a variety of
malignancies and emerging data points toward STAT3-mediated
upregulation of OXPHOS as a mechanism of survival in drug-
resistant tumours and a potential marker for drugs targeting
mitochondrial metabolism [36–38]. The biobanking of transla-
tional samples from the trials already carried out to date may
facilitate exploratory research to evaluate some of these emerging
markers of susceptibility to anti-mitochondrial therapy with the
opportunity for future trials with appropriate stratification. We
suggest ‘window’ studies over short time frames for selected
tumours may allow stratification of patients by evaluating
dynamic response and highlight additional drug combination
opportunities. If these had been performed a priori for metformin
it may have aided trial design and outcome.
A number of animal and human studies have shown that

metformin can alter the metabolism of gut microbiota [39, 40].
Transfer of faeces from obese mice treated with metformin into
untreated mice inhibited tumour growth independently of
changes in body mass, blood glucose or serum insulin. The study
authors proposed that metformin treatment led to a propor-
tionate increase in short-chain fatty acid-producing microbes and
faecal transfer then led to reprogramming of tumour metabolism
specifically changes in lipid homoeostasis [41]. To date, these
approaches have been unexplored in the clinic.
Metformin, by inhibiting oxidative respiration and hence

oxygen consumption has been shown to reduce hypoxia in
tumour models [6] and more recently in a clinical study of
patients with advanced cervical cancer using fluoroazomycin
arabinoside (FAZA) PET-CT [42]. Via a number of mechanisms,
hypoxia has been shown to suppress the anti-tumour immune
response and this may be a significant mechanism of resistance
to immune checkpoint immunotherapy [43]. Preclinical data
have suggested that by remodelling the hypoxic tumour
microenvironment metformin could potentiate the effect of anti
PD-1 immunotherapy [44]. Metformin may enhance tumour
immunosurveillance in ways other than reducing hypoxia in the
tumour microenvironment. AMPK activation in immune cells
leads to phosphorylation of PD-L1, subsequent PD-L1 glycosyla-
tion and its accumulation in the endoplasmic reticulum and
degradation [45]. In syngeneic in vivo cancer models metformin
enhanced the anti-tumour effect of anti-CTLA-4 therapy [45]. In
another model metformin-induced AMPK activation was shown
to inhibit PD-1 gene expression in CD8+ T lymphocytes and in

metformin-treated lung cancer patients there was an increase in
the frequency of memory stem and central memory T cells [46].
Metformin-induced AMPK activation may downregulate CD39
and CD79 gene expression thereby reducing myeloid-derived
suppressor cell-driven immunosuppression [47]. Tumour-
associated macrophages have been shown to be immunosup-
pressive through production of specific immunomodulatory
cytokines promoting tumour growth. The preclinical investiga-
tion has shown that metformin can alter macrophage polarisa-
tion from an M2 to M1-like phenotype inhibiting tumour growth
and angiogenesis and that this may be driven by activation of
AMPK/ NF-κB signalling [48, 49].
Metformin and its role in cancer prevention is an area that has

been underexplored in prospective studies. Indeed, the epide-
miological data provide a strong rationale for testing this
hypothesis in selected groups of patients, for example, obese or
insulin-resistant individuals and now early clinical trial data is
emerging in support. One clinical study investigated metformin’s
potential utility in preventing tamoxifen-induced endometrial
hyperplasia showing reduced endometrial thickness on transva-
ginal ultrasound for metformin-treated patients compared to the
placebo control group [50]. Metformin has been shown to
suppress intestinal polyp growth in a murine model of familial
adenomatous polyposis coli [51] and a subsequent randomised
clinical trial showed that metformin reduced the prevalence and
number of metachronous adenomas or polyps after polypectomy
following 12 months of treatment with metformin [52].
However, prevention studies designed to identify differences in

cancer incidence are notoriously difficult to execute given the
numbers of patients needed to properly power such a trial and the
length of time it takes to complete adequate follow-up. However,
opportunity lies in investigating the potential of metformin as
cancer preventative for patients with cancer predisposition
syndromes which will allow for smaller studies and shorter
follow-up. For example, Li-Fraumeni syndrome (LFS) is a rare
inherited cancer predisposition syndrome with a lifetime risk of
cancer close to 100% by age 60 years in women and 73% in men.
LFS is caused by germline pathogenic variants in the TP53 tumour
suppressor gene [53] and in studies of mice carrying a knock-in
missense mutation of TP53, metformin increases their cancer-free
survival [54, 55]. This has been attributed to metformin’s direct
anti-mitochondrial effect, supported by clinical evidence of
attenuated mitochondrial respiration in peripheral blood mono-
nuclear cells (PBMCs) from metformin-treated mTP53 carriers. On
this basis, randomised clinical trials are now moving forward to
evaluate whether metformin can reduce cancer incidence in this
high-risk population.
In summary, outcomes from late-phase efficacy studies testing

metformin as a repurposed cancer therapeutic have been
disappointing. In a rush to establish its potential utility, such trials
were designed prior to due diligence with regard to patient
selection, mechanism of action and appropriate combination. New
avenues of investigation in selected populations including the
assessment of combination with immunotherapy, and potential as
a cancer preventative agent still warrant well-designed clinical
investigation.
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