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The genomic, epigenetic and metabolic determinants of prostate cancer pathobiology have been extensively studied in epithelial
cancer cells. However, malignant cells constantly interact with the surrounding environment—the so-called tumour
microenvironment (TME)—which may influence tumour cells to proliferate and invade or to starve and die. In that regard, stromal
cells—including fibroblasts, smooth muscle cells and vasculature-associated cells—constitute an essential fraction of the prostate
cancer TME. However, they have been largely overlooked compared to other cell types (i.e. immune cells). Indeed, their importance
in prostate physiology starts at organogenesis, as the soon-to-be prostate stroma determines embryonal epithelial cells to commit
toward prostatic differentiation. Later in life, the appearance of a reactive stroma is linked to the malignant transformation of
epithelial cells and cancer progression. In this Review, we discuss the main mesenchymal cell populations of the prostate stroma,
highlighting their dynamic role in the transition of the healthy prostate epithelium to cancer. A thorough understanding of those
populations, their phenotypes and their transcriptional programs may improve our understanding of prostate cancer pathobiology
and may help to exploit prostate stroma as a biomarker of patient stratification and as a therapeutic target.
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INTRODUCTION

Prostate adenocarcinoma (PCa) arises from the malignant
transformation of the epithelial cells constituting the prostatic
acini [1, 2]. Besides all the genomic, epigenomic and metabolic
alterations occurring in neoplastic epithelial cells, a crucial role in
PCa pathobiology is played by its ecosystem—known as the
tumour microenvironment (TME). Prostate stroma is composed of
a multitude of different cell populations—including fibroblasts,
smooth muscle cells (SMCs), endothelium, immune cells and
nerves—that actively contribute to its homoeostasis in physiologic
and pathologic conditions, including PCa [2-4]. Indeed, stromal
populations of prostate TME are known to be partners in crime
with tumour cells, and they can represent a novel actionable
target in the fight against cancer [5, 6].

It is not surprising that the stroma is central in PCa pathobiology,
as it has played a pivotal role since its embryological development
[7, 8. Indeed, the prostate derives from the urogenital sinus (UGS),
which is composed of an epithelial layer derived from the
endoderm, surrounded by the embryonal prostatic mesenchyme
derived from the mesoderm. Classical experiments using tissue
recombination and grafting showed that the expression of the
androgen receptor (AR) and paracrine factors (e.g. fibroblast
growth factor (FGF) 7 and 10) in the mesenchymal UGS is
necessary for the differentiation of embryonal epithelial cells into
prostatic cells and branching ducts [9-11].

Through mechanisms similar to the ones in action during
organogenesis, the activation of the mesenchymal stroma
represents one of the first steps in prostate carcinogenesis
[12, 13]. In this Review, we summarise the current knowledge
about the stromal populations in the PCa microenvironment,
describing the molecular pathways beyond stromal activation in
PCa tumorigenesis and highlighting potential therapeutic strate-
gies targeting the stroma.

FIBROBLASTS

Fibroblasts represent the most studied and characterised cell
population of prostate mesenchyme. In physiologic conditions,
fibroblasts supervise the homoeostasis of extracellular matrix (ECM)
and connective tissue, and they are also involved in tissue repair
processes [14]. Embryologically, most prostate fibroblasts derive
from the mesodermal mesenchyme, with a smaller proportion
deriving from the neural crest [3]. Fibroblasts are generally
recognised by their morphology and localisation within the tissue,
besides the lack of epithelial, endothelial and hematopoietic
markers. Indeed, some markers may be used for their identification,
including fibroblast activation protein (FAP), platelet-derived
growth factor receptor-a (PDGFRa), a-smooth muscle actin (aSMA)
and vimentin [15, 16]. However, such markers are not exclusively
expressed by bona fide fibroblasts. At the same time, some of
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them may preferentially designate specific fibroblast subpopula-
tions (e.g. activated fibroblasts).

Fibroblasts are an active population within the stromal
microenvironment, able to respond to various physiological and
pathological stimuli by adapting their phenotype and behaviour.
For instance, during wound healing, fibroblasts generally undergo
a phenotypic differentiation towards contractile myofibroblasts
and start releasing several cytokines and chemokines in the local
microenvironment, including transforming growth factor-$ (TGFp)
and vascular endothelial growth factor A (VEGFA) [17-19].
Similarly, noxious stimuli in a developing tumour push resting
fibroblasts towards an activated status and are commonly referred
to as cancer-associated fibroblasts (CAFs).

Prostate fibroblasts in pre-malignant prostate lesions
Chronic inflammation and atrophic changes in prostatic tissue are
present to a different extent in all aging men. While generally
associated with benign prostatic hyperplasia (BPH) in the
transitional zone, such alterations in the peripheral zone may
represent the first steps toward carcinogenesis [20]. Indeed,
several inflammatory conditions—including infections, dietary
habits and hormonal changes—can modify the prostatic stroma
into a pro-carcinogenic environment characterised by high
concentrations of reactive oxygen species (ROS), inflammatory
cells and pro-inflammatory soluble mediators [4, 20]. In this
background, high-grade prostatic intraepithelial neoplasia (HG-
PIN), considered the putative precursor lesions of PCa, may arise.
Morphologically, HG-PIN is characterised by proliferating atypical
epithelial cells with prominent nucleoli confined within the
prostatic duct. Several alterations typical of chronic inflammation
can be observed in the stroma surrounding HG-PINs. These
include an increased number of vimentin 4 /a-SMA + myofibro-
blasts, signs of ECM remodelling and increased expression of
procollagen | and tenascin C [12, 21, 22]. Fibroblasts’ transfor-
mation towards an activated, potentially noxious phenotype
around HG-PIN lesions is sustained by soluble factors released
by pre-malignant epithelial cells. Kryza et al. showed that PIN
cells, like PCa cells, produce and release the serine protease
kallikrein-related peptidase 4 (KLK4), which belongs to the same
family of prostate-specific antigen (i.e. KLK3) [23]. KLK4 mediates
paracrine effects within the TME through the activation of
insulin-like growth factor (IGF) and TGF-f signalling pathways or
the direct digestion of membrane-anchored proteins like
protease-activated receptors (PARs) [23-26]. Indeed, KLK4
released by epithelial PIN cells can activate PAR1 expressed by
prostate stromal cells, leading to increased production of pro-
tumorigenic and pro-angiogenic factors, including FGF1, trans-
gelin (TAGLN) and VEGF, which are all increased in the TME
[27, 28]. Such evidence highlights the role of KLK4 in the
crosstalk between prostatic epithelium and stroma in the early
phase of PCa development.

Prostate fibroblasts in prostate cancer

Compared to the normal fibromuscular stroma, PCa-associated
reactive stroma is characterised by an increased proportion of
fibroblasts/myofibroblasts, showing increased expression of
vimentin, alpha-SMA, FAP, fibroblast-specific protein 1 (FSP-1)
and desmin [3, 12, 29, 30], counterbalanced by the loss of
differentiated SMCs and by ECM remodelling, e.g. increased
production of tenascin and collagen type | [12, 29, 31]. Similar to
normal fibroblasts, there are no universal markers for CAFs. For
instance, FSP1 is also expressed by macrophages and some cancer
cells, while desmin by pericytes [32-34]. CAFs’ immunophenotypic
heterogeneity may be partially explained by their different
precursors, including tissue-resident fibroblasts, mesenchymal
stem cells, bone marrow-derived precursors and endothelial cells
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[35-38]. Indeed, integrating spatial, morphological and functional
data is necessary to characterise the heterogeneity of CAFs in
prostate TME, possibly shedding light on their influence on
neoplastic epithelial cells.

CAFs can influence cancer cells’ fate through several mechan-
isms. The crosstalk between epithelial and stromal prostate cells is
mediated by different paracrine soluble factors, of which TGF-,
“the molecular Jekyll and Hyde of cancer” [39], is probably the
most studied and characterised [40]. Indeed, the expression of
TGF-B is increased in both PIN and prostate cancer lesions,
suggesting its key role in prostate TME since the first steps of
carcinogenesis, and is consistent with the fibrotic and wound
repair-like environment in PCa stroma [12, 41, 42]. Tuxhorn et al.
showed in vitro that adding TGF-B1 to culture media promotes the
phenotypic switch of HPS-TZ1A prostate stromal cells from normal
fibroblasts to myofibroblasts. This phenotypic switch is blocked
when TGF-B1 neutralising antibodies are added to the culture
media [12]. Moreover, TGF-1 promotes the production of
vimentin from the HPS-TZ1A-transformed myofibroblasts. Other
studies support the central role of TGF-f in modulating the ECM
composition, for instance, by increasing the production of
versican, an antiadhesive molecule that may facilitate the
spreading of cancer cells [43]. Moreover, TGF- constitutive
overexpression in transgenic mice prostate results in developing
an “aged” stroma characterised by fibroplasia and fibrogenous
micronodules rich in tenascin and collagen [44]. These structures’
precise origin and function are unknown, but they are similar to
collagenous micronodules described in human prostate cancer
specimens [45].

In addition to TGF-B-driven ECM modifications, the reactive
stroma is an active forge for the ECM'’s structural, biochemical and
biomechanical modifications around PCa foci [12, 46, 47]. CAFs
actively shape prostate ECM mainly through three strictly
interconnected mechanisms: overproduction of specific ECM
molecules, release of ECM-remodelling matrix metalloproteinases
(MMPs) and biomechanical and topographical modification of
ECM fibres [48, 49]. Lipponen et al. described an increased
deposition of hyaluronan, an anionic nonsulfated glycosamino-
glycan, in the proximity of PCa foci, with higher levels of
hyaluronan associated with aggressive features (e.g. high T stage,
high Gleason score, perineural infiltration) [50]. Analysing the
proteome of patient-matched CAFs and non-malignant fibroblasts
from 4 radical prostatectomies, Nguyen et al. observed that the
CAFs proteome was enriched in classes of proteins belonging to
ECM and cell adhesion pathways [51]. In particular, network
analyses in CAFs identified several collagen molecules (e.g. fibrillar
COL1A1/2 and COL5A1 or non-fibrillar COL6A1 and COL7A1) and
enzymes (e.g. LOXL2 and LOXL3) involved in ECM remodelling.
Moreover, patient-derived CAFs cultured in vitro produced highly
linearised ECM matrices compared to non-malignant fibroblasts, a
conformational change in ECM morphology that generally favours
tumour migration and dissemination [48]. Other biomechanical
properties of CAFs have been associated with PCa. For instance,
collagen fibre alignment was found higher in PCa than benign
prostate tissues and directly associated with PCa aggressiveness
and Gleason [52]. Among other non-collagenous ECM proteins,
Erdogan et al. showed that CAFs promote PCa migration by
remodelling the fibronectin network [46]. In vitro co-culture
systems showed that fibronectin fibrils promote the formation of
CAF/PCa cell units that migrate together. Moreover, CAFs promote
the linearization of the fibronectin network by traction force on
the ECM itself through a myosin I-PDGFRa-a531 integrin
mechanism, which seems relevant in other stroma-rich tumours
like pancreatic ductal adenocarcinoma.

Prostate TME is also characterised by an imbalance between
matrix metalloproteinases and their inhibitors (i.e. tissue inhibitors of
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MMPs (TIMPs). Within the MMP family, MMP-2 and -9 and the
inhibitory molecules TIMP-1 and -2 are well characterised in PCa
[53-55]. Pro-MMP-2 is secreted in the prostate TME by stromal and
cancer cells. It gets activated by enzymatic cleavage together with
other local MMPs, like MMP-9, mediating ECM remodelling, cell
migration and angiogenesis [55]. MMP-2 activity is regulated by
several factors of epithelial and stromal origin. For instance, Wilson
et al. showed that stromal cells, but not epithelial cells, produce pro-
MMP-2 under in vitro standard conditions. Adding TGF-$ to the
culture medium leads to increased production of MMP-2 in both
stromal and epithelial cells [54], suggesting its role in progression
and invasion. Similarly, tumour-mesenchyme crosstalk regulates the
activity of MMP-9, as shown in co-culture experiments using stromal
(i.e. fibroblasts and SMCs) and PCa (primary and metastatic) cells
[53]. Using this approach, Dong et al. showed a decreased
expression of TIMP-1 and TIMP-2 in stromal cells, with increased
production of pro-MMP-9 in PCa cells. Moreover, the regulation of
MMP-9/TIMPs expression seems to be mediated by soluble factors
rather than direct cell-to-cell interactions, with collagen | likely
responsible for the increased production of pro-MMP-9 in PCa cells.
Taken together, these data highlight the complex interplay between
stroma and PCa cells in modifying the TME to favour or hinder
tumour progression and invasion.

Prostate cancer-associated fibroblasts in advanced and
metastatic disease

In advanced stages, CAFs interactions with PCa cells mediate
metastatic dissemination and response to therapy. Ozdemir et al.
used an intraosseous xenograft model transplanting osteoinduc-
tive human PCa cell lines (i.e. VCaP and C4-2B) in mice to
investigate the different transcriptome of cancer and bone stromal
cells [56]. Thus, they generated a transcriptional signature of the
osteoblastic bone-metastasis associated stroma, whose most
enriched pathways included angiogenesis and osteogenesis,
ECM organisation and TGF-3 receptor signalling. Notably, about
10% of stromal signature genes, including ASPN, POSTN and
PDGFRB, was shared with PCa transcriptomes assessed in other
studies, suggesting the phenotypic switch of the prostate TME
towards a bone-like state in advanced PCa. Similarly, Tyekucheva
et al. observed enrichment in bone-specific genes, including
lumican, COL1A1 and biglycan, in microdissected stromal regions
around high Gleason PCa foci [57]. Together with comparable
evidence in other malignancies, these studies support the
hypothesis that the stroma at the primary tumour site “trains
and selects” for clonal tumour cells with a higher potential for site-
specific metastatic tropism, thus making the primary TME an
essential hotspot for therapeutic targeting and biomarker
discovery.

Furthermore, CAFs can influence the response to several
systemic therapies against PCa, including androgen deprivation
therapy (ADT). AR, one of the most critical transcriptional
programs in epithelial PCa cells, is a key transcription factor in
stromal cells, likely responsible for canonical and cell-specific
transcriptional activities. Indeed, Cioni et al. showed that, in CAFs,
AR binds to chromatin regions that are not shared with PCa cells,
thus influencing CAF-specific AR-driven transcriptional programs
(e.g. regulation of pro-migratory cytokines release) [58]. Therefore,
it is unsurprising that CAFs can play a role in the transition of PCa
to a castration-resistant phenotype during ADT. Another way CAFs
can influence the response to ADT is by promoting PCa cell
progression towards neuroendocrine (NEPC) differentiation. Such
transition has been described as a consequence of the expansion
of a specific subpopulation of CAFs that promote NEPC
transformation through Wnt-SFRP1 signalling [59], or an
epigenetic-induced differentiation to NEPC through a glutamine-
based metabolic rewiring [60]. Further studies are needed to
dissect better the crosstalk between CAFs and PCa cells during
systemic treatments.

Shedding light on the heterogeneity of prostate stroma
Thanks to the advent of single-cell sequencing technologies, new
efforts have been devoted to elucidating the heterogeneity of
prostate stroma and the role of different stromal populations in
PCa carcinogenesis. Oh-Joon Kwon et al. combined sequencing,
flow cytometry and immunostaining to study the composition of
the healthy adult mouse prostate stroma, identifying three major
groups of cells (R1, R2 and R3) with different transcriptional
programs and potential functions [16]. R1 subpopulation, primarily
characterised by the surface markers (S1) Sca-1%/CD90*, showed
low levels of vimentin expression and was characterised by an
increased expression of genes involved in the Wnt pathway (e.g.
Wnt2, Wif1, Sfrp2), ECM remodelling/morphogenesis (e.g. Hoxd13,
Bmp2, Bmp7, Mmp2) and androgen biosynthesis (e.g. Srd5a2).
Since R1 stromal cells are mainly located near epithelial cells, these
cells are likely to play an essential role in the paracrine androgen
signalling between stroma and epithelium. R2 subpopulation,
mainly corresponding to Sca-1"/CD907"°" (S2) cells, was char-
acterised by high expression of $700a4 and Acta2, together with
other genes involved in complement activation, ECM remodelling
and cytokine-/chemokine-mediated pathways. Altogether, these
findings suggest that the R2 subpopulation may encompass
myofibroblasts, involved in tissue repair and inflammation-
mediated events. Lastly, the R3 subpopulation, which was not
clearly distinguishable using flow cytometry panels, was asso-
ciated with SMCs and was characterised by the expression of
Acta2, Tagin, Mfap2 and Mfap4. In addition to their scaffolding role
within prostate parenchyma, R3 cells also expressed genes
associated with prostate embryological development, and control
of angiogenesis and neurogenesis, suggesting a much more
complex role of these cells in the mesenchyme. Similar investiga-
tions in murine cancer models and clinical specimens are greatly
awaited to further advance our understanding of stromal
heterogeneity in prostate TME.

This heterogeneity in fibroblast phenotypes and functions may
be partially explained by their spatial arrangement within the
prostatic tissue. Berglund et al. performed a spatial transcriptomic
analysis on different cores obtained from a radical prostatectomy
specimen (Gleason score 3+4, pT3b). The study revealed
significant spatial heterogeneity in both epithelial and stromal
cells, confirming the existence of multiple CAFs subpopulations
[61]. Normal stroma mostly expressed gene programs associated
with the regulation of cytoskeleton and cell movement, comple-
ment activation and androgen signalling. In contrast, reactive
stroma close to tumour foci was characterised by oxidative stress
and integrin-linked kinase (ILK) signalling. Interestingly, some
genes showed a gradient of expression from reactive stroma
towards normal regions, further highlighting the importance of a
proper, “pro-tumoral” environment before tumour cells can invade
and proliferate.

Translational relevance of reactive stroma in PCa therapeutic
management

Histopathologically, PCa reactive stroma encompasses several TME
alterations resulting from two opposite mechanisms: on one side,
the remodelling of the host microenvironment mediated by
cancer cells to support tumorigenesis; on the other, the
antitumoral host response against cancer cells. Thus, it is not
surprising that PCa reactive stroma has been assessed as a
biomarker of PCa recurrence or progression in several studies
(Table 1). In 2003, Ayala et al. reported that PCa reactive stroma
was a predictive biomarker of biochemical-free survival [29]. Using
Masson’s trichrome staining, they defined a 4-tier grading system
(reactive stroma grading, RSG) based on the volume of the
reactive stroma. Overall, the percentage of reactive stroma was a
significant predictor of survival, showing the highest discrimina-
tive potential in tumours with Gleason scores 6 and 7. The
histomorphologic  characteristics of reactive stroma in
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Table 1.

Author (year)
Ayala et al., (2003; ref. 29.)

Main findings

Studies evaluating the reactive stroma as a biomarker in prostate cancer.

- Development of the reactive stroma grading (RSG) system:
oRSG 0: tumours with 0-5% stroma

oRSG 1: tumours with 5-15% stroma
oRSG 2: tumours with 15-50% stroma

oRSG 3: tumours with >50% stroma

- Evaluation of TMA cores by Masson's trichrome stain from 545 patients
- Volume of reactive stroma was a significant predictor of biochemical disease-free survival
- Worst survival in patients with RSG 0 or RSG 3

Yanagisawa et al., (2007; ref. 68.)

- RSG evaluated using H&E-stained sections of prostate biopsies from 224 patients

- Patients with RSG 1 and 2 had better survival than those with RSG 0 and 3
- RSG was an independent predictor of recurrence
-RSG is independent of Gleason 7 (either 4 + 3 or 3 + 4)

Ayala et al., (2011; ref. 65.)

- Evaluation of the predictive value of the %RGS 3 in the entire tumour

- 872 whole-mount, H&E-stained prostatectomy specimens
- %RSG 3 was an independent predictor of biochemical recurrence
- Higher %RSG 3 patients had a significantly decreased biochemical recurrence-free survival than those with

lower %RSG 3
Billis et al., (2013; ref. 66.)

=266 H&E-stained needle prostatic biopsies

- Increasing RSG was associated with higher clinical stage, preoperative PSA, Gleason score, and with more
extensive tumours in radical prostatectomies
=-Only RSG 3 was associated with biochemical recurrence, but only on univariate analysis

Wu et al., (2014; ref. 67.)
trichrome

- 148 biopsies from patients with advanced PCa (cT3-cT4) before castration therapy, evaluated by Masson'’s

- RSG was inversely correlated with Gleason scores
- Significant association between RSG and development of castration-resistant PCa in patients with initial

Gleason score of 6-7
Saeter et al., (2015; ref. 64.)

- Population-based study using H&E biopsies from 318 patients

= RSG was associated with PCa-specific mortality in multivariate Cox regression analysis

McKenney et al., (2016; ref. 70.)

- TMA cores from 1275 radical prostatectomies (Canary Retrospective Cohort) evaluated by H&E

- Among the multiple architectural features assessed, cores were evaluated for presence/absence of RSG 3
- RSG 3 was associated with decreased post-surgery recurrence-free survival
- RSG 3 was associated with worse survival when Gleason score 3 + 4 = 7 carcinomas alone were considered

Saeter et al., (2016; ref. 62.)

- Population-based study using H&E biopsies from 318 patients

- Perineural invasion (PNI) was associated with high RSG
= The prognostic effect of PNI is dependent on an association with reactive stroma

Saeter et al.,, (2016; ref. 63.)

- Population-based study using H&E biopsies from 283 patients

- Patients with concomitant lymphovascular invasion (LVI) and high RSG were at high risk for PCa-

specific death.
Ruder et al., (2022; ref. 69.)

- Refinement of the original 4-tiers RSG to a binary system (qRS):

o gRS negative: tumours with <34% reactive stroma
ogRS positive: tumours with >34% reactive stroma
- Algorithm-based quantification of reactive stroma
=-TMA cores from biopies and radical prostatectomies from different cohorts evaluated by H&E; > 1000

patients in total

- qRS >34% was associated with worse outcomes (biochemical recurrence or PCa-specific death), after
correcting for Gleason score and PSA

H&E hematoxylin-eosin staining, PCa prostate cancer, PSA prostate-specific antigen, TMA tissue microarray.

hematoxylin-eosin-stained specimens and its predictive value
have been confirmed in following studies conducted worldwide
[62-70]. Given the unmet need for reliable factors for identifying
aggressive and potentially lethal PCa cases, assessing stroma-
based biomarkers and their combination with tumour-based ones
is paramount to improving patient care. The reactive stroma
around pre-neoplastic and neoplastic prostate lesions can be rigged
by tumour cells to favour their proliferation and invasion. Therefore,
it is not surprising that therapies targeting the reactive stroma have
been tested in preclinical and clinical settings, especially in stroma-
rich tumours like pancreatic cancer. Different strategies can be
envisioned for this intent: (i) interfering with the creation of a pro-
tumoral TME (e.g. stopping the recruitment of CAFs in tumour
lesions, blocking ECM remodelling, inhibiting specific pathways
involved in CAFs activation) [71, 72]; (ii) blocking the tumour-
favourable interactions between CAFs and tumour cells (e.g. TGF(,
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CXCR4 pathways) [73]; (iii) inhibiting the expression of immune
suppressor factors (e.g. PD-L1) on mesenchymal stromal cells [74];
(iv) reverting the phenotype of CAFs to quiescent and/or tumour-
restraining fibroblasts [75]; v) actively targeting CAFs through
chimeric antigen receptor T (CAR T) cells or other cell therapy
approaches [76]. Although many of these approaches are still at an
early stage of clinical or preclinical development, developing novel
agents targeting the TME may implement current therapeutic
options to manage aggressive PCa, potentially improving patients’
clinical outcomes.

TELOCYTES

Telocytes have been recently identified as a novel stromal cell
type in several human organs [77-80]. Telocytes are charac-
terised by an extensive network of thin extensions called
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telopodes, with specific phenotypic (CD34", CD31Y), transcrip-
tional and morphological characteristics. In the prostatic gland,
telocytes have been observed in the subepithelial regions,
around the prostatic acini and within the interstitial stroma, in
connection with local fibroblasts and SMCs [81-83]. Yet, their
precise functions are largely unknown. Using the Mongolian
gerbil (Meriones unguiculatus) model, Sanches et al. observed
that ex vivo telocytes express the ER-B receptor and produce
TGF-B1, respectively suggesting their potential sensitivity to
oestrogens and their possible involvement in stromal cells
differentiation around gerbil prostatic alveoli and ducts through
paracrine effects [82]. The study also reported the formation of a
structured telocyte network between birth and postnatal day 30,
aimed at providing physical support for prostate compartmen-
talisation. In another report, Sanches et al. analysed the function
of prostatic telocytes during aging, suggesting different roles for
different subpopulations of telocytes [83]. On one hand,
perialveolar telocytes maintain physical connections with SMCs
throughout the aging process, potentially playing a role in the
maintenance of stromal architecture. On the other, perivascular
telocytes seem to participate in the onset of a reactive stromal
environment, as they produce VEGF and express TNFa receptor.
From such data, it appears that telocytes may play an active role
in shaping the prostate mesenchyme, either by maintaining a
physiological phenotype or by contributing to the age-related
changes associated with BPH or PCa.

SMOOTH MUSCLES CELLS

In healthy conditions, SMCs are a constitutive component of the
fibromuscular stroma that forms the prostatic parenchyma.
Perturbations of the homoeostatic signalling network between
SMCs and epithelial prostate cells have been reported in several
prostatic diseases [84, 85]. Taboga et al. observed that bundles
of SMCs were present around the epithelial structures in non-
malignant prostate areas, while fewer and less organised SMCs
appeared around prostate cancer foci, with an inverse correla-
tion to Gleason score [86]. On an ultrastructural level, SMCs close
to noninvasive cancer cells generally had a decreased organisa-
tion of the cytoskeleton, accumulation of peripheral vacuoles
and loss of spatial intercellular connections, resulting in isolated
cells surrounded by a thicker ECM. Concordantly to these
observations, invasive cancer cells induced degenerative pro-
cesses in SMCs, leading to cell atrophy, loss of basal membrane
integrity, cytoskeletal instability and expansion of the peri-
nuclear space. Moreover, along with PCa progression, well-
differentiated SMCs are gradually substituted by activated
fibroblasts and myofibroblasts [12, 87]. Using different tumour
sublines derived from the original Dunning R3347 rat PCa cell
line, Zechmann et al. found that hormone-sensitive tumours
showed a slower growth rate when implanted orthotopically in
the prostate compared to subcutaneous implantation [88].
Tumours growing in the two locations displayed different
morphological characteristics: in the orthotopic tumours, tumour
cells generally formed glandular structures in close interaction
with surrounding SMCs; in the subcutaneous tumours, tumours
mainly formed dedifferentiated aggregates with polypoid cancer
cells. Similar findings were also confirmed by Wong et al. in a
hormone-dependent rat model of prostate cancer, showing a
spectrum of SMC dedifferentiation and structural derangements
from normal prostate tissue to prostatic dysplasia, well-
differentiated and invasive prostate cancer [89]. Such data
suggest the potential role of SMCs in preserving prostate
physiologic architecture during the early phases of carcinogen-
esis. Well-differentiated SMCs seem to contribute to restraining
tumour growth and inhibit its progression. In this setting, the
hedgehog (HH) pathway appears to play an essential role in
determining SMCs behaviour in response to carcinogenesis.

Yang et al. used three PCa murine models (PB-MYC, ERG/PTEN
and TRAMP) to study the interplay between SMCs and HH
pathway [87], observing a different pattern in each model. SMCs
were reduced in the PB-MYC and ERG/PTEN models, counter-
balanced by an accompanying increase in CAF-like cells, while
expanded to some degree in TRAMP mice. HH signalling was
intensely active in all SMCs close to PCa foci, with a low
expression of Sonic Hedgehog and a high expression of Indian
and Desert Hedgehog in epithelial PCa cells. Notably, elevated
HH stromal signalling in PB-MYC resulted in increased SMCs
around tumour foci, forming a physical barrier that prevented
tumour progression and invasion. Further studies addressing the
complexity of the tumour-stroma crosstalk are needed to
understand better the HH pathway’s function in PCa pathobiol-
ogy and its potential targeting in therapeutic strategies.

AR signalling in SMCs

AR transcriptional activity in SMCs has been investigated with
controversial observations. Using a transgenic mouse model
(PTM-ARKO) with a specific AR knockout (KO) in SMCs, Welsh
et al. found several alterations in the ventral lobes of KO mice
[90]. KO adult mice had smaller prostates than controls, and
histomorphologic abnormalities were present in the epithelial
(i.e,. elongated epithelial folding, cell hypertrophy) and stromal
(i.e., stromal hyperplasia, diffuse fibrosis) compartments. Upon
stimulation by exogenous testosterone + estradiol-17 (T + E2),
both controls and KO mice showed an increase in prostate
volume, but the percentage increase in KO mice (213%) was
significantly higher than in controls (25%). Moreover, controls
and KO mice showed stromal and epithelial hyperplasia and
hypertrophy upon hormonal stimulation. On the other hand, the
reduction of the ventral lobe upon castration was lower in KO
than in control mice, in line with previous studies suggesting a
preponderant role of stromal rather than epithelial AR in
mediating the response to castration [7]. The findings from the
study by Welsh et al., however, did not wholly recapitulate the
observations made by Yu et al. in another transgenic model (SM-
ARKO), where they mostly observed histomorphologic defects
due to defective epithelial proliferation through the deregula-
tion of the IGF-1 signalling pathway, rather than increased
apoptosis or dedifferentiation [91]. Recently, Liu et al. designed
an inducible, SMC-specific CreER murine model to delete AR
after prostate development (Myh11- CreER™; AR"Y; R26R-CAG-
EYFP/+) [92]. By crossing this model with Hi-Myc mice (ARR2/
probasin-Myc) and inducing AR deletion, they observed an
increased epithelial luminal cell proliferation and tumour
progression, suggesting a tumour-suppressing role of stromal
AR. Similar results were also obtained by inducing prostate
carcinogenesis by T+ E2 administration. Additionally, single-cell
RNA sequencing performed on both models showed that AR
stromal deletion favours the activity of an aggressive subpopu-
lation of secretory luminal cells characterised by high PI3K
pathway activity. The role of AR in sustaining the physiologic
phenotype of SMCs is also suggested by studies conducted after
castration. Indeed, Antonioli et al. studied the behaviour of SMCs
in the ventral lobe of castrated rats, observing a transition in
shape upon castration, from elongated to folded/spinous
appearance [93]. In the time window they assessed—up to
21 days from castration—SMCs did not undergo significant
phenotypic transformations, as suggested by the unchanged
expression of surface markers (smooth muscle myosin heavy
chain and alpha-actin). Other authors found loss of prostatic
muscle bundles and phenotypic changes after 100 days from
castration [94].

Likely, the inconsistent observations about SMCs and associated
transcriptional programs (e.g. AR) may be explained by the
different models used, different study timelines and different
timing of Cre activation (constitutional vs. early postnatally vs.
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adulthood). Nevertheless, these data may suggest an evolving role
of SMCs during PCa carcinogenesis and response to therapy in
humans, a topic that deserves further investigation.

VASCULATURE-ASSOCIATED CELL POPULATIONS

The vasculature network within the prostate, mainly composed of
endothelial cells (ECs), pericytes and vascular muscle cells, plays a
fundamental role in healthy prostate homoeostasis and tumour
evolution.

Endothelial cells

In healthy conditions, a delicate balance between pro- and anti-
angiogenic factors governs the physiological turnover of vessel
maintenance and repair [95]. The reorganisation of the vascular
network is a hallmark of cancer, and tumour-associated vessels
are phenotypically different from normal ones, showing an
inconsistent pericyte coverage, aberrant branching and
enhanced leakiness [96]. Activation of the so-called “angiogenic
switch” in the tumour microenvironment is mediated by the
increased production and release of several pro-angiogenic
factors that can strongly influence the phenotype of local ECs.
Among them, the heparin-binding protein vascular endothelial
growth factor A (VEGF-A) is considered one of the most critical
playmakers [97]. While VEGF-A is generally found at low
concentrations in healthy prostate, its level increases both in
human and murine PCa [98, 99]. Moreover, greater VEGF-A
expression in human PCa samples correlates with higher disease
stage, recurrence risk and death [99, 100]. Other players
modulating EC phenotype in PCa include: fibroblast growth
factors (FGFs), which may exert a promitotic influence on ECs;
matrix metalloproteinases (e.g. MMP-2, MMP-7 and MMP-9),
which control EC adhesion or detachment from the surrounding
stroma; cyclooxygenase enzymes and their products (i.e.
prostaglandins and thromboxanes), which can promote VEGF-A
production, EC mobilisation and sprouting; specific microRNAs
(miRNAs) like miR-296, which is generally overexpressed by PCa
cells and regulates VEGF and PDGF receptors in ECs; tumour
exosomes-derived sphingomyelin, which can promote EC
migration, invasion and tube formation [101-105]. Of note, EC
behaviour is influenced by androgens in a sex-specific manner
[106]. Androgens increase angiogenic events in vitro and in vivo
in male but not female ECs, and these sex-specific pro-
angiogenic effects are VEGF-dependent. Additionally, exposure
of male ECs to dihydrotestosterone increases the mMRNA
expression and surface levels of VEGF receptor 2 (i.e. KDR),
supporting a pro-angiogenic role for androgens through KDR-
mediated VEGF signalling. Based on these data, therapeutic
strategies to target angiogenesis have been tested in PCa as
monotherapies and combined regimens with different che-
motherapeutic agents [107]. The main targets of anti-
angiogenesis therapies have been VEGF-A and its receptors, as
their expression was associated with poorer prognosis
[99, 100, 108, 109]. However, results from clinical trials were
not particularly successful in hormone-sensitive and castration-
resistant PCa, highlighting the need for further clinical and
preclinical studies.

ECs may also regulate the response to radiation therapy.
Indeed, high expression of caveolin-1 in ECs decreased the
efficacy of radiotherapy in a xenograft model of PCa, likely
through hyperactivation of resistance mechanisms to radiation-
induced apoptosis and stabilisation of the tumour-associated
microvasculature [110]. Notably, caveolin-1 overexpression has
been associated with radio-resistance in other tumours, like
pancreatic cancer [111], suggesting the potential utility of
strategies based on caveolin-1 inhibition to enhance radio-
therapy efficacy.
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Pericytes

Pericytes are mainly considered vascular wall-associated cells,
whose principal functions include stabilising neo-vessels into
mature vasculature, preventing vascular leakiness and avoiding
excessive sprouting [32, 112]. Despite being largely ignored
compared to other cell types in the TME, pericytes share several
properties with the progenitor cells, and in pathological
conditions they can differentiate into muscle cells, myofibro-
blasts, chondrocytes and osteoblasts [113-115]. The PDGF-BB-
PDGFRB signalling pathway is pivotal in physiologic and
pathologic conditions of pericytes biology. PDGF-BB can be
released by several cells, including ECs, which use it to recruit
pericytes at the sites of neoangiogenesis, and tumour cells,
which release it to promote the detachment of pericytes from
the vasculature, thus making tumour neo-vessels more
disorganised and prone to tumour cell intravasation and
metastatic spreading [116, 117]. Moreover, tumour-released
PDGF-BB seems to build a chemoattractant gradient that
induces pericytes to move towards tumour cells. Once
detached from ECs and close to tumour cells, pericytes appear
to differentiate into CAFs through a PDGF-BB-promoted
pericyte—fibroblast transition [118]. To this end, high PDGFB
expression in human cancers has been described as a negative
prognostic marker for survival, and it positively correlates with
increasing tumour-associated stroma [116]. Future studies will
further address the role of pericytes in cancer invasion and
metastasis and their phenotypic switch within the tumour
microenvironment.

CONCLUSIONS AND FUTURE DIRECTIONS

It is now consensus that tumour pathobiology cannot be
disentangled entirely without a thorough study of the tumour-
associated microenvironment, of which stromal cells constitute
a relevant proportion. In addition to tumour-specific genetic
mutations, it is clear that the tumour-stroma interactions shape
the processes of PCa tumorigenesis, progression and resistance
to therapy (Fig. 1). Indeed, under selective pressure from
anticancer therapies, cancer cells recruit the surrounding
stroma to support their survival. There is no doubt that
stroma-targeting strategies are needed to further increase our
therapeutic armamentarium against PCa and improve patient
outcomes, but some issues still need to be addressed. Firstly,
therapies should be selective for cancer-associated stroma, thus
requiring the identification of specific markers for targeted
delivery, specific metabolic vulnerabilities for targeted inter-
ference and specific epigenetic programs for targeted modula-
tion. Secondly, it is necessary to test different strategies
combining tumour- and stroma-directed therapies, different
timing of administration (sequential vs. combined) and
different stages of disease (metastatic vs. locally advanced,
progressing under standard-of-care therapies vs. de novo
disease). Thirdly, stroma-based predictive and prognostic
biomarkers should be tested, validated and introduced in
clinical practice (e.g. the reactive stroma grading system for PCa
reactive stroma) to refine patient stratification and potentially
guide treatment decisions. Lastly, developing an ecologic and
systemic perspective to study the TME in its cellular and
acellular components would positively impact our understand-
ing of the complex interplay between all its parts, further
increasing our capabilities of targeting the TME for an overall
improvement of patients’ management.

In conclusion, there is clear evidence that the stromal
compartment of TME plays a fundamental role in cancer biology.
Its specific interactions with the other TME components remain to
be thoroughly elucidated. In the future, this field may uncover
novel therapeutic approaches that target cancer-stroma system.
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