
1

Vol.:(0123456789)

Scientific Reports |         (2023) 13:4025  | https://doi.org/10.1038/s41598-023-31205-7

www.nature.com/scientificreports

Gray level co‑occurrence matrix 
and wavelet analyses reveal 
discrete changes in proximal tubule 
cell nuclei after mild acute kidney 
injury
Igor Pantic 1,2,3, Jelena Cumic 4, Stefan Dugalic 4, Georg A. Petroianu 3 &  
Peter R. Corridon  5,6,7,8*

Acute kidney injury (AKI) relates to an abrupt reduction in renal function resulting from numerous 
conditions. Morbidity, mortality, and treatment costs related to AKI are relatively high. This condition 
is strongly associated with damage to proximal tubule cells (PTCs), generating distinct patterns 
of transcriptional and epigenetic alterations that result in structural changes in the nuclei of this 
epithelium. To this date, AKI-related nuclear chromatin redistribution in PTCs is poorly understood, 
and it is unclear whether changes in PTC chromatin patterns can be detected using conventional 
microscopy during mild AKI, which can progress to more debilitating forms of injury. In recent years, 
gray level co-occurrence matrix (GLCM) analysis and discrete wavelet transform (DWT) have emerged 
as potentially valuable methods for identifying discrete structural changes in nuclear chromatin 
architecture that are not visible during the conventional histopathological exam. Here we present 
findings indicating that GLCM and DWT methods can be successfully used in nephrology to detect 
subtle nuclear morphological alterations associated with mild tissue injury demonstrated in rodents 
by inducing a mild form of AKI through ischemia–reperfusion injury. Our results show that mild 
ischemic AKI is associated with the reduction of local textural homogeneity of PTC nuclei quantified 
by GLCM and the increase of nuclear structural heterogeneity indirectly assessed with DWT energy 
coefficients. This rodent model allowed us to show that mild ischemic AKI is associated with the 
significant reduction of textural homogeneity of PTC nuclei, indirectly assessed by GLCM indicators 
and DWT energy coefficients.

Acute kidney injury (AKI) denotes an abrupt and rapid reduction in the kidney’s ability to perform excretory 
functions and other roles that support homeostasis1. There are numerous causes of acute kidney injury, such as 
blood hypoperfusion, dehydration, sepsis, effects of various toxins, as well as urinary tract obstructions. These 
conditions can, in turn, be classified as pre-renal, intrinsic, and post-renal forms of injury. Many AKI symptoms 
and signs are nonspecific and include confusion, drowsiness, nausea, diarrhea, dehydration, and decreased urine 
output. Also, some AKIs do not present with obvious symptoms and are very difficult to diagnose. Morbidity and 
mortality due to AKI are relatively high, and so is the cost of treatment. According to some data, AKI remains 
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one of the most significant financial burdens on healthcare systems, considering the number of hospitalizations 
and the funding needed for each hospital stay2,3.

It is well known that AKI is strongly associated with damage to the proximal tubule and that the dysfunction 
or death of proximal tubule cells (PTCs) is often the main consequence of AKI4. Cells within this epithelium 
often undergo programmed cell death or necrosis depending on the severity of the injury, while in some very 
mild AKI cases, the PTC dysfunction is barely noticeable and reversible without intervention5. Distinct patterns 
of transcriptional and epigenetic alterations often follow the dysfunction of PTCs6–8. Even during the early stages 
of AKI, the expression of numerous genes is increased or decreased, which may or may not result in structural 
changes in PTC nuclei. To this date, AKI-related nuclear chromatin redistribution in PTCs is poorly under-
stood. It is unclear whether changes in PTC chromatin patterns can be detected using conventional microscopy 
approaches during mild AKI. Also, it is unknown if structural changes in PTC nuclei in mild or moderate AKI 
have any diagnostic or research value in pathology and nephrology.

In microscopy, various ways exist to evaluate and quantify structural changes in cell nuclei. In recent years, 
two contemporary and innovative computational techniques have emerged as potentially valuable methods for 
identifying discrete morphological changes in nuclear chromatin architecture that are not visible during the 
conventional histopathological exam. The first technique is based on gray level co-occurrence matrix (GLCM) 
analysis, and it is commonly used to quantify nuclear textural features such as uniformity, homogeneity, and 
entropy9,10. The second technique is based on the discrete wavelet transform (DWT), a mathematical approach 
to the texture frequently applied for two-dimensional signal analysis as an addition to GLCM. Previous research 
has shown that both methods are potentially valuable tools in pathology for differentiating damaged and intact 
cells11,12. Also, both methods can be used to train and develop artificial intelligence (AI) machine learning models, 
such as those based on decision trees, logistic regression, or artificial neural networks13–17.

The objective of our study was to investigate if it is possible to apply GLCM and DWT computational methods 
in the evaluation of pathologically altered proximal tubule cells following acute ischemia–reperfusion injury (IRI)
s. We also aimed to propose hypothetical machine learning models that would use GLCM and DWT data as 
inputs and could predict PTC damage with relatively high classification accuracy. Finally, our objective was also to 
compare the accuracy and discriminatory power of machine learning models with subjective microscopic evalu-
ation of PTCs and to provide insight into the scientific value of computational methods in this area of pathology.

In this work, we present findings indicating that GLCM and DWT methods can be successfully used in neph-
rology to detect subtle morphological alterations of PTC nuclear chromatin associated with mild tissue injury 
demonstrated in rodents. Our results show that mild ischemic AKI is associated with the reduction of textural 
homogeneity of PTC nuclei quantified by GLCM and the increase of nuclear structural heterogeneity indirectly 
assessed with DWT energy coefficients. To the best of our knowledge, this is the first study to quantify GLCM 
and DWT indicators of PTC nuclear structure after AKI and the first to show that these indicators can be used to 
separate cells from damaged and intact tissue. In this article, we also propose creating random forest and support 
vector machine algorithms that theoretically have relatively high accuracy and discriminatory power in classify-
ing PTC nuclear structural patterns associated with AKI. Such AI-based solutions might, in the future, pave the 
way for digital pathology-based platforms that support enhanced quantitative histopathologic assessments that 
allow us to explore and extract information beyond human visual perception18.

Results
Serum creatinine, blood urea nitrogen, and histological analyses.  We monitored serum creati-
nine (SCr) and blood urea nitrogen (BUN) levels in both groups of animals. The levels observed among the 
control (sham) rats showed minor and non-significant (p = 0.068) and (p = 0.058) fluctuations in SCr and BUN 
concentrations from the 0-h to the 24-h mark post-procedure. Moreover, these values remained within normal 
baseline levels (0.3 ≤ SCr ≤ 0.6 mg/dl) and (10.5 ≤ BUN ≤ 18.8 mg/dl) compared to the measurements obtained 
from animals with mild IRI. In contrast, the creatinine and blood urea nitrogen levels in the acutely injured 
animals rose abruptly and significantly (p < 0.01) and (p < 0.01) above their original ranges at the 0-h mark dur-
ing the first 24 h after injury (0.9 ≤ SCr ≤ 1.2 mg/dl and 19.4 ≤ BUN ≤ 22.3). These levels gradually returned to 
baseline within the 7-day measurement period (Fig.  1C,D). both serum creatinine and blood urea nitrogen 
measurements differed significantly across the 7 days (p < 0.05) and (p < 0.05) respectively from the levels meas-
ured in sham animals. Likewise, brightfield images collected from cortical sections in the sham group revealed 
subtle alterations to the renal microarchitecture (Fig. 1A), and more pronounced disruptions were observed 
after inducing the mild form of IRI (Fig. 1B). Altogether, these changes to normal creatinine levels and the renal 
ultrastructure correlate with standard biochemical and histological findings19–25.

GLCM analysis.  The average values of the angular second moment and inverse difference moment in the 
controls were 0.036 ± 0.003 and 0.53 ± 0.01, respectively. In contrast, in the AKI group, the values were decreased 
and equaled 0.018 ± 0.001 and 0.41 ± 0.01, respectively (Fig.  2). Differences between AKI and controls were 
statistically highly significant for both GLCM indicators (p < 0.01). This result implied that both local textural 
homogeneity and uniformity of PTC nuclei decrease due to AKI. Conversely, the mean values of textural con-
trast increased after AKI from 5.02 ± 0.52 (controls) to 8.73 ± 0.66 (p < 0.01), and a similar, although less pro-
nounced increase was observed in the GLCM correlation feature (0.806 ± 0.013 to 0.841 ± 0.006, p < 0.01). The 
mean values of textural Sum Average and textural Sum Variance indicators also increased, and the change was 
highly significant (p < 0.01). In the control group, these values equaled 44.21 ± 0.53 and 68.36 ± 11.98, respec-
tively, while in the AKI group, they equaled 51.21 ± 0.86 and 149.47 ± 8.36, respectively.

The mean values of discrete wavelet transform coefficient energies increased in AKI, correlating with the 
previous GLCM results showing the reduction of textural homogeneity and uniformity. The wavelet coefficient 
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energy, EnLH, obtained with the use of a combination of low-pass and high-pass filleters showed an increase 
from 16.38 ± 1.80 in the controls to 30.37 ± 1.75 in AKI (p < 0.01), while a similar increase was observed for its 
EnHL counterpart (16.98 ± 1.83 to 30.27 ± 2.39), (p < 0.01). The wavelet coefficient energy, EnHH, in the control 
group equaled 2.69 ± 0.23; in the AKI group, it equaled 4.39 ± 0.37 (p < 0.01). Figure 3 shows the mean values 
and standard deviations for DWT indicators.

In this work, we propose creating three hypothetical machine learning models based on logistic regression26, 
support vector machine (SVM), and random forest (RF). Of the three trained and tested models, the highest 
accuracy, equalling 0.79 was determined for the random forest algorithm. The model had excellent discrimina-
tory power in terms of potential ROI classification, and the area under the receiver operating characteristics 
curve equaled 0.86. The ROC curves for each model are presented in Fig. 4. The ssupport vector machine model 
had an estimated accuracy of 0.73 and the area under the ROC curve of 0.79. The logistic regression model 
presented the lowest accuracy of 0.69 with the area under the ROC curve of 0.78. These results indicate that the 
random forest classifier has the greatest potential in future development of computer-aided sensing systems for 
the identification of acute kidney injury.

Results obtained from the subjective evaluation of PTC nuclear ROIs indicated that the classification accu-
racy of this approach was only 55.1%. In the sample of AKI nuclear ROIs, only 10.7% were correctly identified 
to belong to the AKI class (true positives). The ROC analysis showed that the area under the curve was 0.55 
indicating poor discriminatory power. These results demonstrated the inability of the conventional microscopic 
assessment to detect changes in PTC nuclei associated with AKI.

Discussion
Even though AKI is highly variable in its clinical presentation, damage to proximal tubule epithelium is a sig-
nificant hallmark of the condition that can manifest through various mechanisms that elicit pre-renal, intrinsic, 
and post-renal injuries. For instance, the degree of injury, clinical severity, and progression of AKI are associ-
ated with the duration of IRI. The current understanding of AKI has been developed through extensive research 
using animal models, particularly mouse and rat species, and the ability to rapidly and reliably induce mild, 
moderate, and severe damage in the PTCs by administering nephrotoxins in various doses27 and modulating 
the duration needed to induce IRI28. Based on these facts, in this work, we demonstrate the ability of gray level 
co-occurrence matrix and discrete wavelet transform methods to detect subtle structural changes in PTC nuclei 
after mild pre-renal AKI.

Figure 1.   Histological and serum creatinine analyses conducted on rats in the sham and mild AKI groups. 
Brightfield microscopic images highlight the mild disruptions to tubular and glomerular integrities observed 
in kidney sections obtained from rats with (A) sham and (B) mild AKI. Similarly, the plots in (C, D) reveal the 
transient and substantial elevations in serum creatinine and blood urea nitrogen levels associated with a mild 
form of IRI, compared to the sham groups, respectively.
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Serum creatinine and blood urea nitrogen are conventional functional biomarkers of AKI29–33. These peak 
serum creatinine and blood urea nitrogen elevations 24 h post-IRI and the gradual return to baseline within a 
week are hallmarks of this model19. Furthermore, we observed greater than a 1.5-fold rise in SCr (approximately 
2) but less than a 20:1 ratio (approximately 19:1) for BUN:SCr indicating an injury that is just on the border of 
progressing to a more severe condition34. Examining images collected from sham and mildly injured animals 
showed that the most critical nuclear GLCM indicators, such as angular second moment and inverse difference 
moment, significantly change as the result of mild AKI, which indicates the rise of nuclear textural. To our 
knowledge, this is the first study to combine GLCM indicators and DWT coefficient energies to reveal discrete 
AKI-related alterations in PTC nuclear architecture. We also propose hypothetical machine learning models 
based on support vector machines, random forest, and logistic regression, which might, in the future, be used 
as a part of accurate computational AI sensing systems for diagnostic purposes.

Probably the most important aspect of our study is that we demonstrated that computational methods are 
superior in detecting AKI-related discrete alterations in PTC nuclei compared to subjective microscopic evalu-
ation. In general, the histological changes after AKI are often relatively small, even when physiological and bio-
chemical indicators of kidney function indicate severe damage. Such subtitles were previously demonstrated on 
numerous occasions, and some authors even state that this is one of the reasons why many acute tubular necrosis 
cases are not appropriately diagnosed. For example, Ho and Morgan (2022) state that “renal histological changes 
in AKI are disproportionally mild compared to the corresponding reduction in glomerular filtration rate” and 
that this is a potential problem in nephropathology protocols.

The subjective assessment of nuclear chromatin patterns revealed that even an experienced professional 
in chromatin microscopy could not successfully determine if the PTC belonged to the AKI or control group. 
Phenomena associated with the nuclear injury, such as condensation and marginalization of chromatin, were 
not visible nor identifiable using conventional means. As mentioned in the results, only 10.7% of the nuclear 
ROIs were correctly identified as belonging to the AKI class (true positives), which could perform better when 

Figure 2.   GLCM indicators used to distinguish the two groups. Mean values and standard deviations of nuclear 
GLCM indicators in mild AKI and control groups.
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this subjective evaluation is regarded as a statistical model. The resulting classification accuracy, under the ROC 
curve of less than 60%, confirms poor discriminatory power in separating AKI from non-AKI PTCs. On the 
other hand, even the poorest performing machine learning model based on a relatively simple logistic regres-
sion approach presented an accuracy of 0.69 with the area under the ROC curve of 0.78, which is a considerably 
better performance.

The random forest model is the most suitable for the future development of advanced AI-based sensing 
systems for detecting damaged kidney cells. This characteristic is probably due to the specific methodological 
characteristics of this ensemble learning method, where multiple decision trees are constructed during training, 
reducing the chance of overfitting. In the future, this model would have to be trained and validated on a much 
larger sample and in a different setting where a much greater number of experimental animals is used. After that, 
one may foresee creating a simple, affordable, and user-friendly computer application that could be used as an 
addition to the conventional pathology assessment of biopsy samples.

In our previous articles, we applied similar GLCM approaches to analyze alterations to the renal vascular 
architecture35, highlighting its potential application in the characterization of whole organ scaffolds19 that can 
be generated for bioartificial kidney development36. Using this technique, we also examined cell nuclei after 
the damage induced by exposure to a sublethal toxic dose of ethanol12. We calculated angular second moment, 
inverse difference moment, textural contrast, GLCM correlation, and variance on an experimental model of 
saccharomyces cerevisiae, and we demonstrated that these features significantly change after alcohol treatment. 
This type of cell damage was also associated with reducing textural homogeneity and uniformity, leading us to 

Figure 3.   Discrete wavelet transform coefficient energies used to distinguish the two groups. Mean values of 
discrete wavelet transform coefficient energies of PTC nuclei in mild AKI and control groups.
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believe that these changes in nuclear textural patterns are generally related to cell damage. Similarly, as in the 
present study, we proposed several machine learning models, such as the ones based on logistic regression, deci-
sion trees, and artificial neural networks12. Despite the apparent differences in the methodological approach and 
experimental protocol between the two works, this assumption is worthy of investigation in future research. The 
random forest model is the most suitable for the future development of advanced AI-based sensing systems for 
detecting damaged kidney cells. This characteristic is probably due to the specific methodological characteristics 
of this ensemble learning method, where multiple decision trees are constructed during training, reducing the 
chance of overfitting. In the future, this model would have to be trained and validated on a much larger sample 
and in a different setting where a much greater number of experimental animals is used. After that, one may 
foresee creating a simple, affordable, and user-friendly computer application that could be used as an addition 
to the conventional pathology assessment of biopsy samples.

One of the earliest research articles on applying GLCM in the histological evaluation of kidney tissue was 
published in 2013. Indicators such as the angular second moment and inverse difference moment were quanti-
fied to assess chromatin architecture in macula densa cells during mice postnatal development and aging37,38. 

Figure 4.   Receiver operating characteristic curves. Receiver operating characteristic curves for hypothetical 
random forest (RF), support vector machine (SVM), and binomial logistic regression26 machine learning 
models.
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Textural features were evaluated in conjunction with fractal dimension and lacunarity as indicators of complexity. 
Although no statistically significant changes were detected in ASM and IDM values, the research nevertheless 
holds some value since it was the first to show that GLCM analysis is not only possible in kidney tissue but also 
applicable for evaluating structural alteration in cell nuclei. The results showed that nuclear patterns of kidney 
cells after conventional histological staining could be used to obtain high-quality GLCM data for quantifying 
nuclear textural uniformity and homogeneity.

Our current study is also one of many to use the GLCM computational method to detect AKI. Previously, 
textural features such as GLCM contrast and GLCM correlation were quantified in the kidney medulla after 
inducing IRI in rats by clamping both renal vascular pedicles and subsequent reperfusion with saline39. It was 
shown that both CON and COR features had excellent discriminatory power in separating injured from control 
medullar tissue, with the area under the receiver operating characteristic curve in both cases higher than 85%. 
The value of the study is reflected in the fact that the high performance of the method was achieved without the 
need to train machine learning models. The results identified fractal and GLCM parameters as suitable candidates 
for developing computational biosensors in nephropathology.

Several potential explanations for the AKI-related changes in PTC nuclear textural patterns were detected 
in our current study. First, it is possible that AKI led to the redistribution of euchromatin and heterochromatin 
in PTCs, and that the redistribution resulted from either direct damage to the cell or activation of a signal-
ing pathway. AKI is associated with sometimes profound epigenetic changes, as explained in detail by other 
authors6. Some upregulated genes during AKI may influence chromatin integrity and remodeling on higher 
scales. Although these phenomena are generally not noticeable during the standard histopathological evalua-
tion, the subsequent changes in textural patterns may have been detected with GLCM and DWT. Also, it should 
be considered that, sometimes, euchromatin and heterochromatin, at least in the ultrastructural sense, have 
different levels of fractal complexity40, and these differences in complexity may have reflected on GLCM and 
DWT features in this experimental setting as well. Unfortunately, it is still unclear to which extent the fractality 
of nuclear structure influences textural GLCM and wavelet indicators of chromatin distribution.

Another possibility is that mild AKI in the renal cortex is sometimes associated with programmed cell death. 
Indeed, PTCs are highly susceptible to apoptosis, as discussed earlier41, and this type of cell death contributes 
to the loss of kidney functionality during AKI. On the other hand, some previous works have suggested that 
GLCM indicators such as angular second moment and inverse difference moment significantly decrease after 
cell treatment with proapoptotic substances42. During the early stages of programmed cell death, phenomena 
such as (initial) condensation and marginalization of chromatin may perhaps lead to increased textural hetero-
geneity, detectable using both GLCM and DWT. Changed euchromatin/heterochromatin ratio associated with 
nuclear damage,often not visible during conventional microscopic analysis, may also affect textural indicators. 
However, additional research is needed to confirm this assumption, particularly on PTCs and other cell popula-
tions in the renal cortex.

In the future, it could be possible to broaden this type of research by developing AI models based on artificial 
neural networks. This approach could include relatively simple perceptron networks, complex neural networks 
with Bayesian inference, and convolutional neural networks (CNNs). The input layer of neurons in these models 
could receive DWT and GLCM data, but also the data from a three-dimensional matrix of values based on red, 
green, and blue light intensities. Including various other image analysis quantifications, such as fractal dimen-
sion, lacunarity, and granularity, might further benefit the network’s ability to distinguish damaged from intact 
cells. Convolutional neural networks are of particular interest since they have been successfully applied for image 
classification on numerous occasions43,44. Creating a complex CNN that combines DWT and GLCM with other 
input parameters could lead to the development of a sensitive, accurate, and affordable computer-aided diagnostic 
system that might be an essential addition to current nephropathology practices.

Our study had several significant limitations that need to be discussed and considered when conducting 
future research in this scientific area. First, there needs to be more literature data on the quality assurance and 
validity of GLCM and DWT methods in nephropatology and nephrohistology research. Different software plat-
forms often produce different results, and based on our previous experience, indicators such as angular second 
moment and inverse difference moment can significantly vary depending on the software settings and parameters 
during micrograph acquisition. Second, one must stress that the AI models proposed in this research are only 
hypothetical since they were trained and tested on a minimal number of nuclear ROIs. To increase validity and 
test this approach’s diagnostic value, one would need to develop the machine learning models on an extensive 
sample of micrographs with one ROI corresponding to one individual micrograph or even one individual animal., 
Also, from our previous experience, values obtained through GLCM and DWT analyses greatly depend on the 
histological staining applied to the tissue. In the future, one might consider repeating the experiments and using 
other techniques such as periodic acid–Schiff, Sirius Red, Feulgen, or Toluidine Blue. Only then would we have 
complete insight into the actual scientific value of GLCM and DWT computational methods.

Finally, a significant limitation of the study is related to the difficulty of connecting the observed changes 
in nuclear GLCM and DWT indicators to any physiological or pathological phenomenon. This difficulty arises 
from the fact that GLCM and DWT methods are relatively new in terms of their applications in cell biology, 
so it is still being determined how exactly processes such as apoptosis and necrosis reflect on nuclear features. 
As previously mentioned, it is believed that nuclear injury leads to increased textural heterogeneity, manifest-
ing through the reduction of GLCM features such as angular second moment and inverse difference moment. 
However, the biological mechanisms behind these changes remain unexplored.

In conclusion, we present evidence that GLCM and DWT computational methods can detect subtle struc-
tural alterations in PTC nuclei associated with AKI. After quantifying textural features such as the angular 
second moment and inverse difference moment of nuclear architecture, we conclude that this form of injury 
leads to the rise of nuclear textural heterogeneity. This change needs to be clearly visible during a conventional 
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histopathological evaluation. Since this syndrome rarely has a sole and distinct and is frequent among patients 
without critical illness, it is essential that healthcare professionals, especially those without specialization in 
renal disorders, detect it easily45. Thus, we propose creating AI models that use GLCM and DWT indicators as 
input data, capable of AKI identification and PTC classification with accuracy and discriminatory power much 
more remarkable when compared to the subjective evaluation of nuclear patterns. The obtained results present 
a valuable foundation for future research in AI applications in pathology, nephrology, and related disciplines 
and support current regimens used to address AKI.

Materials and methods
Mild acute kidney injury.  The study was conducted in accordance with the Indiana University School of 
Medicine Institutional Animal Care and Use Committee, the Animal Research Oversight Committee at Khal-
ifa University of Science and Technology, and the ARRIVE guidelines. All procedures were approved by these 
organizations and carried out using these relevant regulations and guidelines on 200 to 400 gm male Sprague 
Dawley rats (Harlan Laboratories, Indianapolis, IN, USA) to ensure that animals were treated ethically and 
humanely. The animals were anesthetized using 5% isoflurane delivered in oxygen (Webster Veterinary Supply, 
Devens, MA, USA) and then given intraperitoneal injections of 50 mg/kg of pentobarbital (Hospira, Inc., Lake 
Forest, IL, USA). Each rat was then placed on a heating pad to maintain normal physiological temperature, and 
intraperitoneal incisions were made to expose both renal pedicles for the injured and sham groups. Bilateral 
micro-serrefine clamps with delicate, atraumatic serrations (Fine Science Tools, Foster City, CA, USA) were 
applied to occlude blood flow for 15–20  min (animals in the sham group was not subjected to the bilateral 
clamps). After this period, the clamps were removed to reinstate renal blood flow, and the animals were allowed 
to recover fully post ischemia–reperfusion and sham injuries. It should also be noted that, throughout our stud-
ies, the rats were given free access to standard rat chow and water.

Serum creatinine and blood urea nitrogen measurements.  Blood samples were collected from the 
injured and sham rats daily across a week in 1 mL Eppendorf heparin-treated tubes after making small incisions 
on their tails. These samples were centrifuged at 100,000–130,000 rpm for 10 min. The supernatants were then 
stored at 4 °C. A quantitative determination of creatine kinase activity in serum was then estimated with Pointe 
Scientific CK (Liquid) Reagents (Point Scientific, Inc., Canton, MI, USA). Measurements were performed with a 
Beckman Creatinine Analyzer 2 (Beckman Instruments, Brea, CA, USA) according to the manufacturer’s speci-
fications and reported values in milligrams per deciliter (mg/dL). Approximately 10 μL of each serum sample 
was added to the working reagent (1000 μL), and the absorbance was immediately measured using a microplate 
reader. Likewise, blood urea nitrogen levels were investigated with the Liquid Urea Nitrogen (BUN) Reagent Set 
(Pointe Scientific, Canton, MI, USA) according to the manufacturer’s specifications. Briefly, a 1000 μL working 
reagent was prepared by 1 part of the coenzyme combined with 5 parts of the enzyme reagent, to which 10 μL of 
each serum sample was added, and absorbance was immediately measured using a microplate reader.

Histology.  Euthanasia was performed on day 7 to obtain whole kidneys from the two groups of animals. For 
this process, the animals were again anesthetized with pentobarbital, and once fully sedated, whole kidneys were 
acquired after each renal pedicle was clamped. Once removed, the kidneys were fixed with 4% paraformaldehyde 
for 24 h at 4 °C. The samples were then immersed in 10% neutral buffered formalin or 4% phosphate-buffered 
formalin, again for a minimum of 24 h at room temperature. The specimens were then rinsed in distilled H2O 
and stored in 70% ethanol. For infiltration, the specimens were dehydrated through a graded series of ethanol 
(70%; 80%, 95%, and 100%; two changes each under vacuum for 45 min at room temperature). The specimens 
were cleared in two changes of xylene (under vacuum at room temperature for 45 min each), infiltrated with 4 
changes of paraffin (under vacuum at 59 °C; 45 min each), and embedded in fresh paraffin. After which, 4–5 μm 
thick sections were cut using a Reichert-Jung 820 microtome (Depew, NY, USA). The sections were flattened 
on a warm water bath and mounted on coated and charged glass slides. After drying, the sections were depar-
affinized, rehydrated, and stained with hematoxylin and eosin (H&E). Images were then acquired with a Nikon 
Microphot SA Upright Microscope equipped with a sensitive Diagnostic Instruments SPOT RT Slider color 
camera (Nikon, Tokyo, Japan) and a 20 × objective.

Computational analysis.  We created digital micrographs of the renal cortex with dimensions of 1600 
(width) × 1200 (height) resolution units in uncompressed TIF format and RGB photometric interpretation. 
The micrographs had both horizontal and vertical resolution of 96 dpi and a bit depth of 48. They were later 
converted to BMP format with the same dimensions and a bit depth of 24 and analysed in a grayscale setup 
(Fig. 5). For GLCM and DWT analyses we used Mazda software previously developed for the needs of COST 
B11 European project "Quantitative Analysis of Magnetic Resonance Image Texture" (1998–2002) and COST 
B21 European project "Physiological modelling of MR Image formation"46–49. A similar micrograph analysis 
protocol was used in the previous publications11. Briefly, a total of 1400 regions of interest of PTC nuclei were 
analyzed: 700 from animals with mild AKI (100 per animal) and another 700 from control animals. For each 
ROI, 6 GLCM indicators were quantified: angular second moment50, inverse difference moment (IDM), GLCM 
contrast (CON), GLCM correlation (COR), GLCM sum average (SA), and textural sum of variance (SVAR).

The angular second moment is a textural feature that quantifies the uniformity of the two-dimensional signal 
and can be calculated from the probability (p) values for changes between gray levels i and j:
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Here, the resolution units are assigned values taking into account their gray level intensities. Another similar 
feature that quantifies textural local homogeneity of the signal is inverse difference moment, which is determined 
as:

In this work, we also quantified textural correlation (gray-level linear dependency) and textural contrast 
(local intensity variation) as additional features which supplement angular second moment and inverse differ-
ence moment:

where in the normalized GLCM, μ is the mean of rows x and y, and σ the standard deviation51–53.
Sum average of the GLCM as the mean of the gray level sum distribution of the image and Sum variance as 

the indicator of gray level textural dispersion around the mean51 were quantified as:
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Figure 5.   Example of Mazda user interface with a digital micrograph of kidney cortex with AKI. The 
micrographs were converted to grayscale BMP format for ROI creation and subsequent GLCM and DWT 
analyses.
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In addition to the quantification of GLCM textural features, we also applied discrete wavelet transform 
analysis46 by performing linear transformation of data vectors with the vectors having a length of an integer 
power of two. The vectors were transformed into numerical vectors that had the same length. A special filtering 
cascade was applied after the separations of rows and columns of data which included the use of high (H) and 
low-pass (L) filters. We quantified 3 DWT wavelet coefficients (d) energies for the specific combination of filters 
for the first subband at successive scales: EnLH, EnHL, and EnHH. Considering the subband location (x, y), the 
scale, and the ROI number of resolution units (n), the energies can be determined as:

In this study, we also proposed the creation of 3 hypothetical AI machine learning models: support vector 
machine (SVM), random forest (RF), and a model based on the binomial logistic regression26. The models were 
created in scikit-learn open source, commercially usable machine learning library for the Python programming 
language54. The models were trained using the GLCM and wavelet indicators as inputs on 80% of the ROIs 
while the remaining data were used for testing. We determined the average accuracy and discriminatory power 
(area under the receiver operating curve) in terms of the ability of the model to assign the ROI to the AKI or 
the control kidney tissue. The data were analyzed using Pandas, an open source data analysis and manipulation 
Python library, as well as IBM SPSS 25.0 statistical analysis software. The Mann–Whitney U test was used to 
determine whether the increases in serum creatinine observed across the first 24 h after injury was significant. 
All variables are expressed as mean ± standard deviation, and for all evaluations, a p value of less than 0.05 was 
considered statistically significant.

Subjective evaluation and classification of the PTC nuclei.  As an addition to this study, we per-
formed subjective evaluation and classification of PTC nuclei. The aim of the evaluation was to assess the clas-
sification accuracy and the related area under the ROC curve of a subjective observer in terms of the ability 
to blindly assign an AKI or non-AKI class to a nucleus based on its morphological appearance. The aim was 
also to compare this classification accuracy with the accuracy of SVM and RF machine learning models. The 
analysis was done blindly by a microscopy expert (IP) with previous experience in morphological evaluation 
of altered chromatin architecture in physiological and pathological conditions. The observer was presented 
with a total of 1400 PTC nuclear ROIs (700 belonging to AKI and 700 belonging to the control group) from 
the micrographs described above. The ROIs were selected in ImageJ software (National Institutes of Health, 
Bethesda, MD) and the surrounding area of the micrograph was cleared by selecting the “Clear Outside” option 
(ImageJ > Edit > Clear Outside). The observer was then asked to assign each ROI with the value “1” for AKI class 
or “0” for the non-AKI (control) class based on his subjective opinion on the morphological characteristics of a 
nucleus. Particular attention was given to the structural patterns indicating chromatin condensation, chromatin 
marginalization, early karyolysis or karyorrhexis, or any alterations of nuclear size or shape. After the subjective 
evaluation was finished, the “true” class for each nuclear ROI were revealed. Finally, based on these subjective 
and “true” classes, classification accuracy of the observer was estimated ROC and analysis was performed to 
determine the discriminatory power.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable requests.
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