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BACKGROUND: Targeted RNA sequencing (RNA-seq) from FFPE specimens is used clinically in cancer for its ability to estimate gene
expression and to detect fusions. Using a cohort of NSCLC patients, we sought to determine whether targeted RNA-seq could be
used to measure tumour mutational burden (TMB) and the expression of immune-cell-restricted genes from FFPE specimens and
whether these could predict response to immune checkpoint blockade.
METHODS: Using The Cancer Genome Atlas LUAD dataset, we developed a method for determining TMB from tumour-only RNA-
seq and showed a correlation with DNA sequencing derived TMB calculated from tumour/normal sample pairs (Spearman
correlation= 0.79, 95% CI [0.73, 0.83]. We applied this method to targeted sequencing data from our patient cohort and validated
these results against TMB estimates obtained using an orthogonal assay (Spearman correlation= 0.49, 95% CI [0.24, 0.68]).
RESULTS: We observed that the RNA measure of TMB was significantly higher in responders to immune blockade treatment
(P= 0.028) and that it was predictive of response (AUC= 0.640 with 95% CI [0.493, 0.786]). By contrast, the expression of immune-
cell-restricted genes was uncorrelated with patient outcome.
CONCLUSION: TMB calculated from targeted RNA sequencing has a similar diagnostic ability to TMB generated from targeted DNA
sequencing.
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BACKGROUND
In the past decade, non-small cell lung cancer (NSCLC) patients have
benefited from the discovery of biomarkers predicting response to
targeted tyrosine kinase inhibitors (TKI), resulting in significantly
improved outcomes in patients whose tumours harbour genomic
alterations such as activating mutations in EGFR [1, 2], and cMET
[3, 4] and in fusions involving ALK, ROS1, RET [5–7]. As the diversity of
biomarkers has increased, diagnostic laboratories have increasingly
used molecular methods with broader clinical utility and higher
diagnostic accuracy to replace traditional in situ and immunohisto-
chemical techniques for biomarker measurement. In this respect,
RNA sequencing (RNA-seq) is becoming the method of choice for
the detection of activating gene fusions and transcript variants in
NSCLC due to the relative ease with which both recurrent and novel
(but likely oncogenic) events may be detected [8–10].
In patients unsuitable for TKI therapy, immune checkpoint

blockade (ICB) given alone or in combination with chemotherapy
is approved in lung tumours expressing high levels of the negative
immune modulator PD-L1 [11]. However, due to inherent issues
of PD-L1 assays [12, 13], the measurement of biomarkers for
ICB response is also evolving towards genomic alternatives [14].

Of these, tumour mutation burden (TMB) has received the most
interest [15]. A high TMB (≥ 10 somatic mutations per megabase,
as measured by a US Food & Drug Administration (FDA)-approved
test) is now an FDA-approved companion diagnostic biomarker
for treatment with the PD-1 inhibitor pembrolizumab in patients
that have progressed following prior treatment and who have
no satisfactory alternative treatment options, regardless of solid
tumour type [16]. TMB in NSCLC might also be particularly relevant
for patients receiving the anti-PD-1 antibody nivolumab plus low-
dose ipilimumab (anti-CTLA-4) who have a better overall response
and progression-free survival (but not overall survival) with high
TMB, irrespective of PD-L1 expression [17, 18].
Formal TMB measurement requires whole-exome sequencing

(WES) or whole genome sequencing (WGS) but these remain
challenging clinical assays due to higher cost and relatively poorer
performance on formalin-fixed paraffin-embedded (FFPE) material,
and therefore TMB-capable targeted panels have been assessed
[19]. Nonetheless, questions about TMB as a predictive biomarker
remain, partly due to lack of standardisation but also with
accumulating evidence suggesting TMB may be poorly predictive
in some solid tumour histologies [20].
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Given the utility of RNA-seq for the detection of other molecular
biomarkers in NSCLC, we sought to determine whether RNA-seq
could also form the basis for measuring TMB. We reasoned that an
approach combining three important molecular biomarkers (fusions,
splice variants and TMB) into a single assay could have cost-benefit
advantages and, due to the inherent property ofmRNA deriving only
from expressed genes, might predict neoantigen burden, and
therefore ICB response, more accurately than a DNA-based TMB.
Finally, we sought to determine whether the expression of immune
modulators could also be measured, and if so, could this act as an
additional biomarker of ICB response.

METHODS
RNA-seq library design
Since the primary goal was to develop a method with practical utility
in the diagnostic setting, we evaluated RNA-seq methodologies for their
suitability for use with formalin-fixed paraffin-embedded (FFPE) speci-
mens. Our initial strategy involved the use of an rRNA-depleted, non-
stranded cDNA library (NEBNext Ultra II RNA Library Prep, New England
Biolabs Ltd.). Although this strategy theoretically maximised the
sequenced region to effectively the transcriptome, we observed a high
rate of sequence alignment to non-coding regions of the genome
and unacceptably low coverage of coding regions (data not shown).
We, therefore, evaluated a probe-based target-enrichment system, the
TruSight RNA Pan-Cancer Panel (Illumina, San Diego, CA). Although the
sequenced coding region obtainable using this product is limited to a
maximum of 1385 targeted genes, this represents up to 3.7 MB of the
coding region, over three times larger than popular targeted DNA
sequencing panels such as TruSight Oncology 500 (Illumina, San Diego,
CA) that are currently used to assess TMB.

Patient cohort
We requested archival FFPE material from the Melbourne Thoracic
Malignancies Prospective Cohort Study, a prospective collection of clinical
data from patients with lung cancer and other thoracic malignancies
consented for access to tissue specimens and treatment data (Supple-
mentary Table 2). All patients gave written informed consent to participate
in this research which was approved by the Peter MacCallum Cancer
Centre Human Research Ethics Committee 03/90. The initial cohort
included 170 patients with advanced NSCLC, treated with first or
second-line Anti PD-1-PD-L1 agents, starting between February 2013 and
December 2017 at the Peter MacCallum Cancer Centre and the Royal
Melbourne Hospital. The clinical information was collected retrospectively.

Enough tissue and data for analysis were available for 77 patients, all of
whom were treated with second-line nivolumab via a pharma-sponsored
access programme. PD-L1 expression levels were not originally measured
in these patients as this was not needed for the access programme and
unfortunately most cases cannot now be stained due to tissue exhaustion.
Responders were patients with a complete or partial response, or stable
disease, as assessed retrospectively by the independent review of the
radiologic response at the first clinical follow-up. Non-responders were
patients who had progressed. A qualified pathologist reviewed an H&E-
stained section from all received specimens, and those with at least 1 mm3

of tissue at ≥20 tumour cell nuclei per 100 nuclei and a non-small cell
adenocarcinoma or squamous carcinoma lung histology were submitted
for processing (n= 93). Ten patients were removed after a systematic
review of case notes due to incomplete clinical data. RNA-seq analysis was
successful according to standard sequencing metrics on 77 samples (83%).
The clinical features of the analysed cohort are summarised in Table 1.

NGS sequencing methods
DNA and RNA were extracted from methyl green stained formalin-fixed
paraffin-embedded (FFPE) sections with the AllPrep DNA/RNA FFPE kit
(Qiagen, Hilden, Germany) using a QIACube (Qiagen, Hilden, Germany)
according to manufacturer’s instructions. Elution volumes of 40 µl for DNA
and 30 µl of RNA were used. DNA samples were quantified using the BR
Qubit dsDNA assay (Life Technologies, Waltham, MA) and RNA samples
using the NanoDrop (Thermo Fisher, Waltham, MA).
For TruSight RNA Pan-Cancer Panel, 100 ng of RNA was synthesised into

cDNA, end-repaired and ligated to Illumina adaptors, and sequence indexes
added. Libraries were then checked and quantified using D1000 Screen-
Tapes on a 4200 TapeStation instrument (Agilent Technologies, Santa Clara,
CA) all according to the manufacturer’s instructions. Libraries were then
normalised to a consistent concentration, hybridised with the TruSight RNA
Pan-Cancer probes, and checked and quantified using High Sensitivity
D1000 ScreenTapes on a 4200 TapeStation instrument (Agilent Technologies,
Santa Clara, CA) all according to the manufacturer’s instructions. Libraries
were sequenced on a NextSeq 550DX in RUO mode using NextSeq 500/550
High Output Kit v2.5 (150 Cycles) (Illumina, San Diego, CA) according to the
manufacturer’s instructions.
For TruSight Oncology 500, 100 ng of DNA was end-repaired and ligated

to Illumina adaptors, and sequence indexes were added. Libraries were
then hybridised using Oncology Probes DNA 2 (Illumina, San Diego, CA),
and checked and quantified using High Sensitivity D1000 ScreenTapes on
a 4200 TapeStation instrument (Agilent Technologies, Santa Clara, CA) all
according to the manufacturer’s instructions. Libraries were sequenced on
a NextSeq 550DX in RUO mode using NextSeq 500/550 High Output Kit
v2.5 (300 Cycles) (Illumina, San Diego, CA) according to the manufacturer’s
instructions.

Bioinformatic methods
TCGA lung adenocarcinoma data. Due to the necessity of working with
somatic tissue, a critical issue requiring careful optimisation was the filtering
strategy employed to remove germline variants from our sequenced reads.
In order to validate this approach, we obtained The Cancer Genome Atlas
Lung Adenocarcinoma (TCGA-LUAD) dataset as raw RNA-seq reads
(fastq files) and DNA variant calls (vcf files) from the Genomic Data
Commons (GDC) Data Portal (https://portal.gdc.cancer.gov/). An in-house
bioinformatics pipeline was used to process the RNA-seq data as
follows: Raw sequencing reads were quality-checked using FastQC v0.11.6
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc), trimmed using
cutadapt v1.9.1 [21] then aligned to the GRCh37/hg19 human reference
genome using hisat2 v2.0.4 [22]. Duplicate reads were filtered using Picard
MarkDuplicates v2.17.3 (http://broadinstitute.github.io/picard). Base quality
score recalibration, indel realignment and variants calling were then
performed on the filtered reads using the Genome Analysis Toolkit (GATK)
v3.8.0 [23].

TruSight RNA pan-cancer panel. Sequencer output was processed and all
RNA variants and gene fusions were called using the BaseSpace RNA-Seq
Alignment App V2 from Illumina (https://support.illumina.com/help/
BS_App_RNASeq_Alignment_v2_OLH_1000000006112/Content/Source/
Informatics/Apps/Versions_swBS_appRNASeqA.htm).

TruSight oncology 500. Sequencer output was processed and all DNA
variants were called using the TSO500 Local App Software 2.02 from

Table 1. Clinical characteristics of the analysed cohort.

Characteristic Value

Total no. 77

Age at diagnosis (years)

Median 63

Range 30–83

Gender

Male 44

Female 33

Tumour morphology

Adenocarcinoma 51

Squamous cell carcinoma 23

Neuroendocrine carcinoma 2

NSCLC NOS 2

Agent

Nivolumab 77

Responder

Yes 33

No 44
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Illumina (https://sapac.support.illumina.com/downloads/trusight-oncology-
500-local-app-user-guide-1000000067616.html).

Variant filtering. Estimation of TMB in the absence of the availability of a
normal sample requires the removal of variants that are not of somatic
origin. These unwanted variants are due to a variety of processes and are
filtered using algorithms that take into account their corresponding
patterns of occurrence across the population and within samples [24–26].
The most common of these are germline variants which occur in the order
of 1000 variants per MB [27] compared with the relevant clinical threshold
of 10 somatic variants per MB [16]. Filtering using databases removes most
but not all germline variants and so heuristics based on variant allele
fraction (VAF) can be used to identify rare variants not in the databases
[25, 26], a technique that we also employed (Fig. 1c).
Variants due to post-transcriptional modification of RNA represent

another possible source of error. While methods using prior knowledge of
biology already exist to identify these [28, 29], we found that it was
sufficient for our purposes to remove loci with multiple variants from
consideration (Fig. 1b). This strategy has the added advantage of removing
both technical artefacts specific to the assay as well as variants at
mutational hotspots driven by selective pressure rather than by the
(presumed) random processes that operate genome-wide.
The steps used to filter detected variants of all origins are summarised in

Fig. 1a and can be described as follows:

1. Low-quality variants with less than 20 supporting reads were
discarded as were coding regions with less than an average
supporting read depth of 20.

2. Potential germline variants were removed by excluding those loci
that occurred in the gnomAD database v2.0.1 [30] at a population
frequency of more than one in 100,000.

3. Loci-containing variants in more than one sample were excluded on
the basis that these variants could be due to either post-
transcriptional modifications (in the case of RNA-seq) or technical/
bioinformatic artefacts.

4. For RNA-seq, variants with allele frequencies less than 0.05 or
greater than 0.95 were excluded in order to reject potential
germline variants. Variants with allele frequencies between 0.3
and 0.6 were also excluded for the same reason.

Tuning of bioinformatic settings. Filtering as described above results in
most unwanted variants and many wanted variants being discarded,
affecting the sensitivity and specificity of the assay. Inadequate filtering
can lead to the inclusion of unwanted variants leading to an inflated TMB
estimate and a dependence on ethnicity [31], while overly stringent
filtering removes wanted variants and inflates noise for the resulting TMB
correlate. As has been discussed elsewhere [31–33], the selection and
tuning of the various bioinformatic parameters used for filtering has a
significant impact on TMB estimates. Our own choices were determined
empirically using an optimisation procedure to maximise concordance
between RNA-derived TMB (RNA TMB) and DNA-derived TMB (DNA TMB)
across a patient cohort. In the case of the DNA TMB, somatic variants were
removed using either a matched normal (TCGA LUAD) or bioinformatically
using the Illumina-supplied TruSight Oncology 500 Local App [26]. The
assumption is that the parameters that maximise the correlation of the
RNA TMB correlate with the “true” DNA TMB will also provide optimal
filtering of RNA variants. Application of this assumption is explored in the
next section, but we note here that the parameters eventually chosen
(Supplementary Table 1) were found to be applicable to both datasets
despite the significant technical differences between them.

RNA expression profiling for targeted genes
Differential expression analysis was also performed on the 1412 targeted
regions on the panel in order to identify differentially expressed genes
between responders and non-responders. For RNA expression, counts
were taken from BaseSpace RNA-Seq Alignment App V2 from Illumina and
those regions not significantly expressed in more than five of the samples
were discarded. The remaining 1353 genes were normalised using EDASeq
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[34], and differential expression was subsequently tested using edgeR [35]
using as a significance threshold an adjusted FDR of 0.01. In addition, for
four known immune-cell lineage-restricted genes, the correlation of log
normalised expression with both response and each other was computed.

Statistical methods
Statistical analysis was performed using R4.0.2 [36] and standard packages
therein. ROC curves and their uncertainties were computed using the R
package pROC [37] while pairwise comparisons and correlations were
plotted using the packages GGally [38] and corrplot [39], respectively.

RESULTS
Establishing concordance between RNA TMB and DNA TMB
We applied the filtering strategy shown in Fig. 1a to the TCGA-LUAD
dataset in order to test whether removing recurrent variants
provided benefits over and above using the gnomAD database. This
was done by adjusting both the minimum population frequency of
the gnomAD variants used for filtering and the maximum number
of times variants could occur at a given loci across all samples, and
then examining how this affected correlation between estimates of
DNA TMB with matching germline and RNA TMB without matching
germline. Supplementary Fig. 2 shows that the optimal choice is to
use the most stringent filtering in both cases. In order to assess
whether germline variants were escaping filtering we stratified RNA
variants by allele frequency and investigated their correlation with
total DNA TMB across samples (Supplementary Fig. 3A). The
dependence of the correlation on allele frequency supports the

use of VAF-based filtering similar to Jessen et al. [25] but with
more stringent cut offs around the expected germline VAF of 0.5.
We optimised the filter settings as above (Supplementary Fig. 3B)
to produce our final RNA TMB estimate (Fig. 1d), which was
significantly correlated with DNA TMB (Spearman correlation=
0.79; with 95% CI [0.73, 0.83]).

TMB from RNA-seq and DNA-seq are correlated for the patient
cohort
Our patient cohort has significant technical differences to the
TCGA-LUAD dataset i.e., all the samples were sequenced from
FFPE tissue and the target region for the TruSight RNA Pan-Cancer
Panel produces far fewer bases with sufficient read depth for
variant calling (median of 2.2 MB with read depth >20 compared
with 27.9 MB for exome). Since these two differences act to
increase the number of “false” variants and decrease the absolute
number of “true” variants, respectively, we sought to determine if
the filtering method established for the TCGA-LUAD dataset
would be applicable to our independent patient cohort. In fact,
these settings appeared to be overly stringent (Supplementary
Fig. 4A), resulting in a correlation of 0.49 between the two TMB
estimates (Fig. 2). Some improvement was obtained by relaxation
of filtering based on allele frequencies (Supplementary Fig. 4B) to
the point where TMB estimates from DNA and RNA had a
Spearman correlation of 0.66 (Supplementary Fig. 5A). Never-
theless, although we note this observation for completeness, the
original filtering settings derived using the TCGA-LUAD dataset
were used in the following analyses.

TMB from RNA-seq predicts response to checkpoint blockade
for the patient cohort
Satisfied that our RNA-derived TMB correlate corresponded closely
to a clinically validated DNA-based measure of TMB, we sought to
test its suitability for use as a biomarker that predicts response to
checkpoint inhibitors. RNA-derived TMB was significantly higher
for responders (P= 0.028) than non-responders (Fig. 3a), although
this was not associated with prolonged survival (Fig. 3b). Further,
patient classification using a basic linear model yielded an AUC
estimate of 0.640 (with 95% CI [0.493, 0.786], Fig. 3c). The size of
the confidence intervals generated by the bootstrapping proce-
dure in Fig. 3c shows the limited power of this particular study and
suggests that a larger study is needed to further explore the
predictive ability of RNA TMB for predicting response to therapy.
As mentioned, this was done using the same settings as was used
for Fig. 2 and detailed in Supplementary Table 1. The more
permissive VAF filtering settings used in Supplementary Fig. 5A
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did not result in any greater separation of RNA TMB between
groups (Supplementary Fig. 5B) and gave an inferior result for
classification.

RNA expression profiling for targeted restricted genes
Differential expression analysis was performed in order to identify
genes that might be significantly differentially expressed between
responders and non-responders. Supplementary Table 2 contains
the top 20 hits obtained from this analysis. None of these
candidates were judged to be significant using a threshold set at
an adjusted FDR of 0.01. Log of normalised expression for four
immune-cell lineage-restricted genes was stratified according to
patient response in order to further explore if there might be any
relationship. Supplementary Fig. 6 shows that while the expres-
sion of these genes was uncorrelated with patient outcome, they
were significantly correlated with each other.

DISCUSSION
TMB is an emerging biomarker predicting benefit from ICB
therapy in NSCLC [40]. A variety of assays have been proposed to
measure TMB, with those methods using a larger (>1 MB) survey
of the genome more accurately predicting TMB derived from the
‘gold standard’ whole exome [19]. Nonetheless, apart from those
assays required to accurately report TMB, molecular profiling of
NSCLC for treatment selection is achieved today using relatively
small oncogene-targeted sequencing panels of only a few 10’s of
kilobases [41]. Additionally, RNA-seq used as a sequential adjunct
to a small targeted panel, has gained favour for fusion detection in
lung cancer [42], with both sequencing modes able to be
performed economically on a benchtop instrument. The goal of
this study was to assess whether RNA-seq for the detection of TMB
could add to established molecular biomarkers in NSCLC thereby
providing a single cost-effective clinical assay. The underlying
hypothesis of this approach is that RNA-based assays will
accurately predict neoantigen burden, and therefore ICB response.
Our results showing that a panel-derived RNA TMB is only 3–4% of
the corresponding DNA TMB suggest that RNA TMB does not
reflect the actual DNA TMB but is a strong correlate. Possible
explanations for this are (i) the corresponding DNA TMB is an over-
estimate of the actual TMB, (ii) the size of the candidate region
used to normalise for RNA TMB is an over-estimate, (iii) not all the
DNA variants are expressed or captured by RNA-seq or (iv) the
filtering used to remove germline and low-quality variants also
removes most of the actual variants. We cannot discount (i) for the
case of the TCGA LUAD but think it most unlikely since our
methodology is similar to that used by others [24, 25], while the
TMB estimates for the TruSight Oncology 500 assay have been
validated elsewhere [43]. With respect to (ii) the normalisation for
RNA TMB is computed as the total number of bases in exons with
an average coverage greater than 20 since these are the only
regions from which variants are counted. However, there is an
extra requirement of 20 supporting reads for a variant to be
counted which means that the actual number of bases at which
variants might be found is somewhat lower and hence our
estimate for the denominator used to normalise RNA TMB will be
high. In principle, failure to take into account VAF for the purposes
of normalisation may lead to aneuploidy or tumour purity
impacting on TMB estimates derived from both RNA and DNA.
In practice correcting for this is difficult to do, especially for RNA,
and so we assume that noise from this effect will be small
compared to other sources of error, and therefore ignore it. In
relation to (iii), there may well be technical or biological reasons
that cause some variants detected with DNA-seq not to show up
in RNA-seq however, to the extent that this is an unbiased process,
it should not affect the proportionality between the correspond-
ing TMB estimates. This suggests that filtering (iv) is the largest
cause of the differential between RNA TMB and DNA TMB.

We therefore argue that if we treat the RNA TMB as a correlate to
DNA TMB and use a constant of proportionality to convert
between them, we can use RNA TMB as a surrogate for DNA TMB.
A similar concession was made by Sorokin et al. who used
algorithmic filtering of ribosomal RNA-depleted, FFPE-derived,
RNA-seq data to generate RNA-seq-TMB scores with good
correlation to WES-derived DNA TMB. RNA-seq-TMB scores were
~25% of the corresponding DNA-TMB score when optimal filtering
was applied [44], When compared to commercial panels generat-
ing DNA TMB at similar per sample cost, targeted RNA TMB has
equivalent ability to discriminate ICB responders from non-
responders (AUC 0.796 for Illumina TruSight RNA Pan-Cancer
Panel v0.65 for Thermo Fisher Oncomine Tumor Mutational Load)
[45] in addition to being able to identify more actionable
mutations [46]. Nevertheless, validation against a DNA TMB assay
using a single cohort, similar to a method comparison for two
different DNA-TMB assays, would provide more substantial
support for this conclusion.
Having shown that RNA TMB is predictive of patient outcome,

we sought to confirm whether additional prognostic biomarkers
from the TruSight RNA Pan-Cancer Panel could be leveraged for
our NSCLC patient cohort. In our thoracic disease cohort, 22
patients (25.6%) receiving first-line ICB therapy harboured Tier I or
II [47] actionable variants detectable by targeted DNA or RNA
sequencing (Table 2), confirming the clinical use of these
approaches. Given the importance of tumour-infiltrating lympho-
cytes (TILs) for response to immunotherapy [48], we also explored
the expression of immune-cell-restricted genes across the patient
cohort. While the genes CD8A, IFNG and CD274 (PD-L1) were not
significantly correlated to either RNA TMB or patient outcome,
they were all significantly correlated with each other (Supple-
mentary Fig. 6). Differential expression analysis on the 1412
targeted regions on the panel also failed to identify differentially
expressed genes between responders and non-responders
(threshold set at an adjusted FDR of 0.01). These observations
are likely to be due to the presence of a non-neoplastic cell
component in the tumour and suggest that unmixing of gene
expression might be applied to remove contamination by both
TILs and stromal cells. However, unlike an exome, the small size
and the selection of genes on the TruSight RNA Pan-Cancer Panel
mean that this is not an appropriate strategy here. The small size
of the TruSight RNA Pan-Cancer Panel also makes it impractical to
derive mutational signatures from the RNA-seq data in tumours
with sufficiently high TMB [24] since there are insufficient filtered
variants per sample. We do note, however, the possibility of using
both FFPE and 'germline' signatures as an overall quality measure
for artefact removal across a sample cohort.
In summary, we have shown that an inexpensive targeted RNA-

seq assay may, in addition to revealing actionable gene fusions,
generate a TMB correlate that is predictive of IO response in a
NSCLC cohort. This finding now needs confirmation on a larger
prospective cohort of patients. The reproducibility of this RNA-seq
TMB approach across other laboratories should also be investigated.

Table 2. Tier I or II driver events discovered in the cohort.

Gene Tier No. of cases

BRAF I 3

EGFR I 2

KRAS I 4

PIK3CA II 1

RET fusion I 2

ROS1 fusion I 2

Other II 8

Total 22 (28.6%)
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Although we were unable to detect prognostic gene expression
patterns from this data, it is possible that purposeful redesign of
the targeted RNA-seq panel may allow effective quantitation of
additional independent biomarkers of IO response, such as
lymphocytic infiltration within the tumour.
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