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Summary
Background Echocardiography (echo) based machine learning (ML) models may be useful in identifying patients at
high-risk of all-cause mortality.

Methods We developed ML models (ResNet deep learning using echo videos and CatBoost gradient boosting using
echo measurements) to predict 1-year, 3-year, and 5-year mortality. Models were trained on the Mackay dataset,
Taiwan (6083 echos, 3626 patients) and validated in the Alberta HEART dataset, Canada (997 echos, 595 patients).
We examined the performance of the models overall, and in subgroups (healthy controls, at risk of heart failure
(HF), HF with reduced ejection fraction (HFrEF) and HF with preserved ejection fraction (HFpEF)). We
compared the models’ performance to the MAGGIC risk score, and examined the correlation between the models’
predicted probability of death and baseline quality of life as measured by the Kansas City Cardiomyopathy
Questionnaire (KCCQ).

Findings Mortality rates at 1-, 3- and 5-years were 14.9%, 28.6%, and 42.5% in the Mackay cohort, and 3.0%, 10.3%,
and 18.7%, in the Alberta HEART cohort. The ResNet and CatBoost models achieved area under the receiver-
operating curve (AUROC) between 85% and 92% in internal validation. In external validation, the AUROCs for
the ResNet (82%, 82%, and 78%) were significantly better than CatBoost (78%, 73%, and 75%), for 1-, 3- and
5-year mortality prediction respectively, with better or comparable performance to the MAGGIC score. ResNet
models predicted higher probability of death in the HFpEF and HFrEF (30%-50%) subgroups than in controls
and at risk patients (5%-20%). The predicted probabilities of death correlated with KCCQ scores (all p < 0.05).

Interpretation Echo-based ML models to predict mortality had good internal and external validity, were generalizable,
correlated with patients’ quality of life, and are comparable to an established HF risk score. These models can be
leveraged for automated risk stratification at point-of-care.
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Functional status

Research in context

Evidence before this study

All English-language articles in PubMed were screened from
inception until May 2022 to identify studies that used
“artificial intelligence” and “machine learning” (ML) for
“mortality prediction” in different patient populations.
Previous studies have suggested that echo-based deep
learning models can be used to predict in-hospital and 1-year
mortality in patients with suspected cardiovascular diseases.
As an example, Ulloa Cerna et al. used convolutional neural
networks to train on 812,278 echo videos from 34,362
patients and showed superior performance of deep learning
models of echo videos in the prediction of one-year all-cause
mortality compared to established clinical risk scores,
cardiologists’ clinical gestalt, or ML models based on human-
crafted or electronic health records-driven parameters.
However, none of these studies have examined the models’
performance in specific patient groups, such as those with
heart failure (HF); modelled longer-term mortality beyond a
1-year time-period; or externally validated the models in
independent cohorts.

Added value of this study

In this study, we developed deep learning- and gradient
boosting-based models for 1-, 3- and 5-year mortality
prediction using echo videos and expert-curated echo
measurements from a cohort of patients with and without
HF. We validated the models externally in an independent
dataset captured in another country with predominantly

Introduction
The global burden of heart failure (HF) is increasing
over time due to ageing populations and it is associated
with significant morbidity, mortality and healthcare
resource utilization."” Despite advancements in treat-
ments over decades, the mortality rates remain high
with a median survival of 5-years,” with patients expe-
riencing reduced functional status and quality of life.’
There is considerable interest in developing prognostic
models to identify patients with HF who are at higher
risk of adverse outcomes and could benefit from closer
monitoring and more intense treatment.*
Echocardiography (echo) is the most common car-
diac imaging modality employed in diagnosing and
managing patients with HF.? Previous studies have
shown that deep learning models based on echo can be
used to predict in-hospital and 1-year mortality in pa-
tients with suspected cardiovascular diseases.”® How-
ever, none of these earlier studies were focussed on

distinct ethnicity, comorbidity burden, and outcomes. The
deep learning models’ performance was better than or
comparable to an established risk score [the Meta-Analysis
Global Group in Chronic Heart Failure (MAGGIC) score]
depending on HF subtype and follow-up period, as ResNet
and CatBoost performed similarly across subgroups or showed
better performance in HF with preserved ejection fraction
(HFpEF), while MAGGIC score showed better performance in
HF with reduced ejection fraction (HFrEF) compared to the
HFpEF for the 1-and 3-year time-points. ResNet models
predicted higher probability of death in HFpEF and HFrEF
patients than in controls and at-risk patients. We also
demonstrated the alignment of the deep learning-based
mortality prediction probability with patient-reported
functional status (measured by Kansas City Cardiomyopathy
Questionnaire) at baseline.

Implications of all the available evidence

Echo-based machine-learning models can provide good-to-
excellent prognostic information with respect to mortality
outcomes. The deep-learning models can facilitate a fully
automated decision support system that could be applied
directly to images, prior to expert-curated annotations. The
deep-learning models are generalizable, comparable in
performance to established risk scores, and correlated with
patient’s quality of life measures. Our study findings support
clinical implementation of point-of-care echo-based
automated risk stratification systems.

patients with HF or have modelled long-term mortality
beyond a 1-year time-period, and they have not been
externally validated in independent cohorts. Therefore,
their generalizability across ethnic, geographical loca-
tion, operator and device-related variations remains to
be tested. Furthermore, no previous study has examined
how mortality predictions generated by machine
learning (ML) algorithms align with patients-reported
symptoms and functional status.

Accordingly, the objectives of our study were to
develop echo-based deep learning models to predict
patients’ all-cause mortality at 1-, 3- and 5-years, and to
test the models’ generalizability in an external cohort of
patients from a different country with predominantly
distinct ethnicity, comorbidity burden, and outcomes.
We further tested the validity of the models by: exam-
ining the models’ predicted probability of death in
subgroups of patients across the HF class spectrum;
comparing the models’ performance against an
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established risk score (the Meta-Analysis Global Group
in Chronic Heart Failure (MAGGIC) risk score); and
examining the correlation between the models’ pre-
dicted probability of death and patient-reported mea-
sures of symptoms and functional status as measured
by the Kansas City Cardiomyopathy Questionnaire
(KCCQ).

Methods

Training and internal validation dataset

We have followed the PRIME checKklist for standardized
reporting of cardiovascular imaging-related machine
learning investigations to report our modelling methods
and results.” The models were trained and internally
tested on a part of a dataset from the Mackay Memorial
hospital in Taiwan (referred subsequently as the Mackay
dataset).® Among the various echo views, we selected the
parasternal long axis (PLAX) view for modeling based
on an earlier study which showed that the PLAX view is
the most relevant for mortality prediction.® The Mackay
data included echos of healthy participants, patients
with comorbidities without prevalent HF, and patients
with HF (both inpatients and outpatients). The echos
were performed during an annual cardiovascular health
check-up at an outpatient clinic. We included 6083
echos with PLAX views (both videos and expert-curated
echo measurements) from 3626 patients with at least 1-
year follow-up on mortality status.

External validation dataset

The models were externally tested on 997 echos with a
PLAX view from 595 patients collected as part of the
Alberta Heart Failure Etiology and Analysis Research
Team (Alberta HEART) Study.” The Alberta HEART
study was a prospective study that enrolled healthy
controls, patients with comorbidities at risk of HF, pa-
tients with HF with preserved ejection fraction
(HFpEF), and patients with HF with reduced ejection
fraction (HFrEF) in the province of Alberta, Canada. The
supplementary material provides more information on
the Alberta and Mackay datasets.

We calculated the ‘Meta-Analysis Global Group in
Chronic Heart Failure’® (MAGGIC) risk score at base-
line. The score is based on 13 predictor variables: age,
sex, body mass index, systolic blood pressure, ejection
fraction, creatinine, current smoker, diabetes, chronic
obstructive pulmonary disease, New York Heart Asso-
ciation class, HF duration >18 months, p-blocker use,
and angiotensin-converting enzyme inhibitor use.
MAGGIC scores range from 0 to 40, with higher scores
indicating higher risk status.

As part of the Alberta HEART study, patients
completed the KCCQ at baseline, which collects infor-
mation on several domains including physical function,
symptoms, self-efficacy, social limitation, and quality of
life."" Responses are transformed into a clinical
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summary score (CSS) based on symptoms and physical
function; and an overall summary score (OSS) incor-
porating all five above-mentioned domains. Both sum-
mary scores range from 0 to 100 with higher scores
indicating better functional status.

Ethics

Data from Mackay Memorial Hospital was retrospec-
tively identified. A waiver of consent was obtained from
the Mackay Memorial Hospital institutional review
board. All participants in Alberta HEART study signed
informed consent, and the study was approved by the
Health Research Ethics Boards at the University of
Alberta, Covenant Health and the University of Calgary
(Pro00117313). After consent, patients were enrolled
and had a comprehensive clinical exam, and proto-
colized echo.

Echo selection

Number of days until death was calculated for each echo
video based on the ‘death date minus the date of image
acquisition’, and was used to assign ‘dead’ and ‘alive’
classes for modeling 1-, 3-, and 5-year time points. The
Mackay dataset did not have fixed study duration or
study end date, whereas in the Alberta HEART dataset,
follow-up as of March 31, 2020 was available via linkage
to provincial insurance and vital status registry data.
Therefore, whenever the date of death was not available
in the Mackay dataset, the last confirmed date of being
alive was obtained from their last visit information. Echo
videos were then used for modeling only if the
confirmed ‘alive’ duration (last visit date minus the echo
acquisition date) was greater than the respective 1-year,
3-year, or 5-year period (Fig. 1). For modeling each time
point, only one echo video per patient was chosen
randomly among the possible candidates. We made sure
that all echo videos belonging to a particular patient
were included exclusively either in the training or in the
test set, so that none of the echo videos acquired in any
of visits of a test patient are included in the training set,
or vice versa.

Video preprocessing

Each video varied from 2 to 10 s in duration with a
frame rate of 30-80 frames per second, covering 2-3
heart cycles. To ensure consistency, all the videos were
converted to a constant frame rate of 30 frames per
second. Videos were cleaned to remove texts and other
patient information, and then down-sampled using cu-
bic interpolation, and standardized to the same frame
size of 112 x 122 (original dimensions depended on
machine used for echo acquisition—GE Medical Systems
Ultrasound: 640 x 432, Philips iE33 Ultrasound:
816 x 608). Given a large number of frames available per
video, we divided the original videos to 16 sub-clips, and
then, the first frame from each sub-clip was taken such
that input for our deep learning model was consistently
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Mackay Dataset
27726 echos | 14527 Patients
till March 31 2020.

Alberta Dataset
1111 echos | 621 Patients
till March 31 2020.

Excluded 11812 echos w/o

PLAX view and 9831 echos |« Excluded 114 echioswio

w/o 1-year Follow Up. PLAX view
A
6083 Echos | 3626 Patients 997 Echos | 595 Patients
Y Y
One random echo per patient for each time-point One random echo per patient for each time-point
Internal Validation
5 Fold CV External Validation

(ﬁ \ (ﬁ ,

Train : 2936 1-year mortality Train : 3263 1-year mortality
Tune: 327 [« Total Patients : 3626 Tune : 363 Total Patients : 595
Test : 363 Dead : 539 | Alive: 3087 Test: 595 |« Dead : 18 | Alive : 577
Train : 2378 3-years mortality »  Train : 2643 3-years mortality
Tune : 265 |« Total Patients : 2937 Tune : 294 Total Patients : 595
Test : 294 Dead : 839 | Alive: 2098 Test: 595 [« Dead : 61 | Alive : 534

Train : 1823 5-year mortality » Train : 2026 5-year mortality
Tune:203 [« Total Patients : 2252 Tune : 226 Total Patients : 588
Test : 226 Dead : 958 | Alive: 1294 Test:588 [« Dead : 111 | Alive : 477

Fig. 1: Study flow chart showing the sample sizes used for training and testing prediction models. CV: cross-validation; PLAX: parasternal long

axis; w/o: without.

16 frames. This choice of preprocessing was based on
previous studies, which also used the equally spaced
frames that provided uniform sampling along the tem-
poral dimension.'*"

Prediction models

We used supervised learning with CatBoost and ResNet-
based deep learning algorithms to train our models to
predict the probability of patients dying within 1-year, 3-
year, and 5-year following the acquisition date of the
echo. We developed six models using two algorithms for
each of the three time points. CatBoost was chosen as it
provides state-of-art performance for structured tabular
data with fast training time, supports categorical and
missing values intrinsically, and also provides explain-
ability and visualization functions.”® For deep learning,
we used ResNet architecture based on its successful
performance in previous studies with similar datasets.”
Our ResNet models use non-annotated echo PLAX
views, whereas the CatBoost models use patient char-
acteristics and manually-acquired measurements. The
models were implemented using PyTorch 1.8.1 and
CatBoost 0.26.1 in Python 3.8.6.

For deep neural networks (DNN), we used modified
3D convolution neural networks (CNN), i.e. (2 + 1)D
CNN (ResNet) with 31 million parameters, to extract the
spatial and temporal features from the echo videos.™

The model was trained using the AdamW optimizer
and Cross-Entropy as loss function.”” The learning rate
was scheduled with an initial learning rate of 0.0005, for
25 maximum of epochs, and patience of 10 epoch in-
terval. If validation loss in the tuning set continued to
increase for an interval of 10 epochs, then the learning
rate was reduced by a factor of 0.1 and the best model
weights (the weights prior to the interval) were used.
We also trained a CatBoost model using 18 patient
characteristics.”® These included two demographic fea-
tures (age and sex) and the following 16 human expert-
curated echo measurements.” Interventricular septal
(IVS) thickness, left ventricular (LV) posterior wall
thickness at end-diastole, LV internal dimension both
end-systolic and end-diastolic (LVIDs and LVIDd), LV
end-diastolic volume, LV end-systolic volume, heart rate,
deceleration time, isovolumic relaxation time, mitral
valve E wave velocity (cm/s), mitral valve A wave velocity
(cm/s), pulsed-wave Tissue Doppler imaging (PWTDI)
for lateral and septal mitral annulus €’ velocity, left atrial
max volume, tricuspid regurgitation velocity and LV
ejection fraction. The hyperparameters for CatBoost—
tree depth, and L2 regularization terms were tuned
based on grid-search within the training sets. CatBoost
models were learnt for a maximum of 600 epochs, and
the learning process was stopped if validation loss in the
tuning set did not reduce for 100 epochs. Class weights

www.thelancet.com Vol 90 April, 2023


www.thelancet.com/digital-health

Articles

were enabled to ensure that both classes are given equal
weights during gradient updates of the training process
for both models. The video dataset used for ResNet was
complete without any missingness, but echo measure-
ments used for training and testing CatBoost models
had missing values (reported in Table 1). We did not
perform any data imputations, as patterns of missing-
ness can have relevant information for prediction tasks
and can be handled inherently by CatBoost. We used
10% of training data as a model tuning set for both
ResNet and CatBoost models. The optimal cut-points for
binarizing the predicted probabilities were estimated
using the Youden index based on the training receiver
operating characteristics (ROC) curve, such that the sum
of the sensitivity and specificity is maximized.

Evaluation and visvalization

To evaluate the performance of our models, we used
5-fold cross-validation within the Mackay dataset for
internal validation, and then retrained the model on the
entire Mackay dataset and evaluated it on the Alberta
HEART dataset for external validation. We reported the
following performance metrics—area under the ROC
curve (AUROC, also known as C-index), area under the
precision-recall curve (AUPRC), F1 Score, Specificity,
Recall, Precision and Accuracy. The performance scores
were compared between models by bootstrapping
10,000 replicates of AUROC in the external validation
dataset with random replacement sampling. The mean

of pairwise differences between the model perfor-
mances was estimated based on the bootstrap point
estimate and 95% confidence intervals (CI). If the 95%
CI contained zero, then the performance differences
were considered not to be significant at the 0.05 level.
We used this method to compare the AUROC perfor-
mances of our models with that of the MAGGIC risk
score.

We calculated the observed mortality rate at 1-year,
3-year and 5-year among Alberta HEART patients across
tertiles of predicted probability of death from the ResNet
models. We examined the mean predicted probabilities
from the ResNet models as well as the AUROC per-
formances across the patient subgroups (HFpEF,
HFrEF, at risk, and controls). Lastly, we examined the
correlation (spearman) between the predicted probabil-
ities of death from the ResNet model with the baseline
functional status scores—=KCCQ CSS and KCCQ OSS.

We used GradCAM to visualize the gradient activa-
tion maps that contributed towards the model’s predic-
tion of a particular class.”” The gradients were pooled
frame-wise and channel-wise and multiplied with the
corresponding weights to get weighted activation chan-
nels. We represented these in an image superimposed
with the first frame of the echo video to indicate regions
that played a key role in the prediction. Also, we used
SHAP* (SHapley Additive exPlanations) to identify the
echo measurements that were key contributors of
average mortality prediction in the CatBoost models.

Patient Features Description Mackay dataset (n = 3626) Alberta dataset (n = 595)

Missing  Median [Q1, Q3] Mean (SD) Missing  Median [Q1, Q3] Mean (SD)
Gender Female (n%) 490 1247 (34.4) 0 252 (42.4)

Male (n%) 2379 (65.6) 343 (57.6)

Age (in years) 785 67.0 [53.0, 78.0] 65.6 (15.4) 0 67.0 [59.0, 75.0] 66.3 (11.7)
LVEF Left ventricular ejection fraction 691 62.9 [55.0, 68.1] 59.7 (12.4) 34 58.6 [46.0, 65.6] 54.6 (14.9)
IVS Interventricular septal thickness 551 9.7 [8.7, 11.0] 11.3 (12.3) 10 10.5 [9.0, 12.0] 10.6 (2.4)
LVPW Left ventricular posterior wall thickness at end-diastole (dcm) 553 9.7 [8.8, 11.0] 9.9 (1.9) 10 10.0 [8.7, 11.8] 10.2 (2.2)
LvIDd Left ventricular internal dimension end-diastolic (dcm) 552 47.1 [44.0, 50.3] 47.0 (11.3) 11 48.0 [43.0, 54.7] 49.4 (9.2)
LVIDs Left ventricular internal dimension end-systolic (dcm) 552 31.0 [28.0, 35.0] 32.7 (7.5) 20 32.0 [26.4, 40.0] 34.6 (11.4)
LVEDV Left ventricle end-diastolic volume (mL) 614 98.0 [80.3, 118.2] 102.9 (36.1) 35 105.8 [80.2, 145.9] 120.6 (58.1)
LVESV Left ventricle end-systolic volume (mL) 611 35.9 [27.9, 51.0] 46.3 (30.3) 31 42.0 [29.1, 70.2] 60.0 (48.2)
HR Heart rate 463 70.0 [62.0, 83.0] 741 (183) 3 65.0 [57.0, 73.0] 66.6 (14.1)
DT Deceleration time (ms) 613 206.0 [170.0, 240.0] 2041 (77.0) 412 250.0 [190.0, 300.0]  252.2 (105.9)
IVRT Isovolumic relaxation time (ms) 638 89.0 [70.0, 100.0] 89.5 (38.6) 360 100.0 [80.0, 120.0]  106.9 (51.5)
E Mitral valve E wave velocity (cm/s) 597 72.0 [57.6, 90.0] 75.8 (28.1) 336 77.3 [62.0, 96.2] 84.9 (59.2)
A Mitral valve A wave velocity (cm/s) 574 40.0 [31.0, 71.2] 51.8 (32.5) 369 77.5 [61.5, 92.0] 77.0 (28.8)
PWTDI lateral ¢ Pulsed-wave Tissue Doppler imaging lateral e’ velocity (cm/s) 2369 8.9 [7.0, 11.0] 9.1 (3.0) 80 8.5 [6.5, 11.0] 9.5 (6.5)
PWTDI septal e Pulsed-wave Tissue Doppler imaging septal e’ velocity (cm/s) 2694 7.51[6.2,9.1] 7.9 (5.2) 72 8.3 [5.9, 11.8] 9.7 (5.4)
LA MAX Volume  Left atrial max volume (mf3) 3119 28.0 [22.4, 35.8] 304 (11.1) 366 623 [47.2, 87.0] 69.6 (32.0)
TR Velocity Tricuspid regurgitation velocity (m/s) 3068 2119, 23] 2.1 (0.4) 302 2.1[15, 2.6] 2.0 (0.8)

A: mitral valve A wave velocity; DT: deceleration time; E: mitral valve E wave velocity; HR: heart rate; IVRT: isovolumic relaxation time; IVS: interventricular septal thickness; LA: left atrial; LV: left ventricular;
LVEDV: left ventricular end diastolic volume; LVEF: left ventricular ejection fraction; LVESV: left ventricular end systolic volume; LVIDd: left ventricular internal dimension at the end of diastole; LVIDs: left
ventricular internal dimension at the end of systole; n: number; PWTDI: pulsed-wave Tissue Doppler imaging for mitral annulus e’ velocity; Q1: first quartile; Q3: third quartile; SD: standard deviation; TR:
tricuspid regurgitation.

Table 1: Baseline characteristics of subjects in development and validation datasets.
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Role of the funders

The study was funded by general research funds avail-
able to Dr. Kaul as part of her Canadian Institutes of
Health Research (CIHR) Sex and Gender Science Chair
and a Heart & Stroke Foundation Chair in Cardiovas-
cular Research. These agencies had no input into the
study design, data collection, analysis, interpretation of
data, writing of the report, or decision regarding
publication.

Results

Table 1 shows patients” demographic and echo charac-
teristics in the Mackay and Alberta HEART cohorts. The
mean age of participants in the Mackay cohort was
65.6 £ 15.4 years, while it was 66.3 = 11.4 years in the
Alberta HEART cohort. In the Mackay dataset, 34.4%
were women, while the proportion was 42.4% in the
Alberta HEART cohort.

Internal validation

The models were trained on 3626 patients with
confirmed mortality status at 1-year in the Mackay
cohort (Fig. 1). At 1-year, 539 (14.9%) had died. The 3-
year and 5-year models were trained on 2937 and 2252
patients, respectively. Mortality rates in the 3- and 5-year
cohorts were 28.6% and 42.5%, respectively. Table 2 and
Fig. 2 show the models’ performances with 5-fold cross-
validation in the Mackay data. The AUROC ranged from
85% for l-year to 92% for 5-years Supplementary
Table S1 shows the results for each fold of 5-fold
cross-validation.

External validation

As of March 31, 2020, 1- and 3-year mortality status was
available for all 595 patients, while 5-year mortality status
was available for 588 patients, in the Alberta HEART Study
(Fig. 1). At 1-, 3-, and 5-years, 18 (3.0%), 61 (10.3%), and
111 (18.7%) of the patients had died. Supplementary
Tables S2-S4 provide baseline characteristics of subjects
who were alive versus dead in the 1-, 3-, and S5-years
mortality periods. The externally validated AUROC
scores ranged from 78% to 82% for ResNet models, and
73%—-78% for CatBoost models (Table 2). ResNet models
achieved significantly better performance than CatBoost
models at all three time-points (bootstrap significance test,
p < 0.05, Fig. 2). Also, optimal threshold cut-points
selected based on the development dataset showed a bet-
ter balance between recall and specificity (hence, better F1
scores) for the ResNet models than for CatBoost models.
Fig. 2 shows the Kaplan—Meier curves for the development
and external datasets, internal 5-fold cross-validation and
external validation AUROC for the models, ROC curves
and the percentage of observed deaths in risk groups
based on tertiles of prediction probabilities for the ResNet
models in the external validation. Supplementary Fig. S1
shows the Precision-Recall curves for ResNet mortality
prediction, number of patients and percentage of observed
deaths in predicted risk groups for CatBoost and ResNet
models in the external validation.

ResNet model performance relative to MAGGIC risk
score and in patient subgroups

AUROC performance for the MAGGIC risk score
ranged from 78% to 82% for the three time-points on

Timeline  Model AUROC AUPRC F1 Score Specificity Recall Precision Accuracy Observed
Dead  Alive
Mackay cohort (internal validation)
1-year ResNet 0.85 + 0.02 0.46 + 0.04 0.52 + 0.02 0.82 + 0.02 0.73 + 0.03 0.41 + 0.02 0.80 + 0.01 54 309
CatBoost 0.85 = 0.00 0.48 + 0.01 0.48 + 0.01 0.80 + 0.04 0.73 £ 0.02 0.34 + 0.01 0.74 + 0.01 54 309
3-years ResNet 0.89 + 0.01 0.75 + 0.03 0.72 + 0.03 0.84 + 0.02 0.80 + 0.06 0.66 + 0.03 0.83 + 0.01 84 210
CatBoost 0.88 + 0.00 0.69 + 0.01 0.70 + 0.01 0.74 + 0.22 0.79 + 0.01 0.61 + 0.01 0.80 + 0.00 84 210
5-years ResNet 0.91 + 0.01 0.86 + 0.01 0.81 + 0.02 0.82 + 0.01 0.85 + 0.04 0.79 + 0.03 0.83 £ 0.01 94 143
CatBoost 0.92 + 0.00 0.89 + 0.00 0.81 + 0.01 0.84 + 0.04 0.82 £ 0.06 0.78 + 0.05 0.83 £ 0.01 94 143
Alberta heart cohort (external validation)
1-year ResNet 0.82 0.13 0.16 0.81 0.61 0.09 0.81 18 577
CatBoost 0.78 0.24 0.14 0.17 0.96 0.12 0.94 18 577
MAGGIC 0.82 0.16 0.07 0.19 1 0.37 0.21 18 577
3-years ResNet 0.82 0.32 0.37 0.75 0.72 0.25 0.75 61 534
CatBoost  0.73 0.23 0.18 0.15 0.95 0.24 0.87 61 534
MAGGIC 0.78 0.37 0.21 0.20 0.97 0.12 0.28 61 534
5-years ResNet 0.78 0.43 0.49 0.74 0.68 0.38 0.73 111 477
CatBoost 0.75 0.42 0.27 0.18 0.96 0.51 0.81 111 477
MAGGIC 0.79 0.50 0.36 0.22 0.96 0.22 0.36 111 477
Model performance in the internal validation cohort is generated based on 5-fold cross-validation. For MAGGIC, we used the cut point score of 12 that was previously used
in literature for dichotomizing the predictions.** AUROC: area under the receiver operating characteristic curve; AUPRC: area under the precision-recall curve.
Table 2: Model performance in the internal validation cohort (Mackay dataset) and the external validation cohort (Alberta HEART dataset).
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Fig. 2: Top Left: Kaplan-Meier curve for the development and external validation datasets. Top Right: ResNet and CatBoost model performances
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the external validation cohort (Table 2, Fig. 2). The
performance of the ResNet model was statistically
comparable to the MAGGIC risk score for 1-year mor-
tality (AUROC = 82% for both, mean and 95% CI of
ResNet-MAGGIC performance difference = -0.11%
(—3.40%, 3.06%)); significantly better for 3-year mortal-
ity (ResNet AUROC 82% vs. MAGGIC
AUROC = 78%, mean and 95% CI of ResNet-MAGGIC
performance difference = 3.59% (1.13%, 6.03%)); and
comparable for 5-year mortality (ResNet AUROC = 78%
vs. MAGGIC AUROC = 79%, mean and 95% CI of
ResNet-MAGGIC performance difference = -1.29%
(—3.19%, 0.58%), Supplementary Fig. S2).

The ResNet models, while being agnostic to HF
status, predicted higher probability of death among pa-
tients with HFpEF and HFrEF (30%-50%) than among
healthy control and patients at risk of HF (5%-20%),

www.thelancet.com Vol 90 April, 2023

thus providing additional evidence for the validity of our
models (Fig. 3). The performance of the models for each
outcome in HFrEF and HFpEF subgroups are reported
in Fig. 4. MAGGIC score showed better performance in
HFrEF compared to the HFpEF for the 1- and 3-year
time-points, while ResNet and CatBoost performed
similarly across subgroups or showed better perfor-
mance in HFpEF. Models performed similarly between
HFrEF and HFpEF subgroups for the 5-year time-point.

Association with patient-reported quality of life

Overall, we observed a modest negative correlation be-
tween ResNet's predicted probability of death and
patient-reported functional status measures
(Supplementary Fig. S3). The correlation between
increasing predicted probability of mortality at 1-, 3-,
and 5-year and Dbaseline KCCQ-CSS scores
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Fig. 3: Bar plots showing mean and standard errors of mean for ResNet predicted probabilities of mortality between patient groups based on HF
risk and cardiac function in the external validation dataset. HF: heart failure; HFrEF: HF with reduced ejection fraction; HFpEF: HF with preserved

gjection fraction.

was —0.35, -0.28, and —0.33 (p < 0.05). Similarly, the
correlation between predicted probability of mortality
and baseline KCCQ-OSS scores was -0.34 for 1-
year; —0.29 for 3-year; and —0.33 for 5-year, respec-
tively (p < 0.05). When we examined average KCCQ-CSS
and KCCQ-OSS scores across groups based on tertiles
of prediction probabilities from the ResNet models, we
found that the difference in average scores in the low-
risk group compared to the medium and high risk
groups were substantially higher than the minimal
clinically  important  difference of 5  points
(Supplementary Table S5).

Visualization

Supplementary Fig. S4 shows the Grad-CAM map for
the ResNet model overlaid on the first frame of the video
for anatomical reference (for representative cases with at
least 90% prediction probability in their respective
class), with areas of highest importance around the left

" 1-year

3-year

atrium, or mitral and aortic valves of the heart. SHAP
analysis revealed that, in general, lateral mitral annulus
e’ velocity, septal mitral annulus e’ velocity, age, heart
rate, mitral valve A wave velocity and ejection fraction
were the top contributors of mortality prediction in the
CatBoost models (Fig. 5).

Discussion

Our study demonstrates that echo-based ML models can
provide good-to-excellent prognostic information with
respect to 1-, 3-, and 5-year mortality. Our deep-learning
models can facilitate a fully automated decision support
system that could be applied directly to images, prior to
expert-curated annotations. In addition to deep-learning
(ResNet) models based on echo videos, we developed
gradient boosting (CatBoost) models based on echo
measurements. We found both types of ML models
were generalizable, comparable in performance to

5-year
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06
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Fig. 4: Bar plots showing mean and 95% Cl of AUROC model performances for HFrEF and HFpEF subgroups. HF: heart failure; HFrEF: HF with
reduced ejection fraction; HFpEF: HF with preserved ejection fraction; AUROC: Area under the receiver operating curve; Cl: Confidence Interval.
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established risk scores, and correlated with patient’s
quality of life measures. Our findings suggest echo-
based automated systems could be used to facilitate
risk stratification at point-of-care.

Increasingly, ML based models are being considered
to assist with both the diagnosis and prognostication of
patients with suspected HF. Traditional clinical predic-
tion models for patient survival based on detailed de-
mographic, clinical, medication, and biomarker data
have shown performance with discrimination indices of
~80% in limited, single centre patient population.”
Several ML models using multimodal clinical or imag-
ing data have performed better than traditional regres-
sion models in predicting clinical events such as
mortality.*** Few ML studies have combined echo
measurements with demographic,” clinical data from
electronic health records” and/or other variables such as
electrocardiogram, and blood markers* for predicting
mortality. However, these models rely on operator-
crafted echo measurements which were sometimes
extracted from echo reports using text mining

approaches.
Detailed review of echo videos and providing precise
measurements can be cumbersome and time

consuming,” which presents an opportunity for unbi-
ased and automated pattern recognition using deep
learning techniques. Deep learning has the potential to
manage the complexity of tasks and assist the physicians
in arriving at efficient clinical decisions, directly using
echo videos without the need of intermediate steps for
expert-guided annotations. The performance of our
deep learning model was better than MAGGIC at 3-year
time-point and comparable to the MAGGIC risk score
for other two time-points. However, it is noteworthy that
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calculating MAGGIC score for a patient requires an
extensive set of characteristics including ejection frac-
tion, laboratory tests, comorbidities, smoking status,
activity class and medication details that may be
expensive to operationalize in terms of time, effort, re-
sources and trained personnel to be made readily
available at the point of risk assessment. Further,
MAGGIC risk score and the ML models (ResNet and
CatBoost) showed differential performances between
the HFpEF and HFrEF subgroups, particularly for 1-
and 3-year mortality, generating the hypothesis that
echo-based deep learning models might be a better fit
than MAGGIC for prognostication across HF
subgroups.

Previously, Ulloa Cerna et al. used convolutional
neural networks to train on 812,278 echo videos from
34,362 patients and showed superior performance of
deep learning models of annotation-free echo videos in
the prediction of one-year all-cause mortality compared
to established clinical risk scores, cardiologists’ clinical
gestalt, or ML models based on human-crafted or elec-
tronic health records-driven parameters.° We extend this
observation to longer time periods and also provided
further validation on an independent dataset acquired
from a completely different geographical location, and
from patients with different ethnicity, clinical charac-
teristics, and outcome rates than the development
dataset.

We observed significant correlation between our ML-
based mortality predictions and patient-reported func-
tional status as measured by the KCCQ. The KCCQ has
been shown to provide important prognostic informa-
tion with respect to clinical outcomes, and the U.S. Food
and Drug Administration has recently approved its use
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as a measure of patient-reported functional status and
quality of life outcomes in clinical trials." In general, we
found that the difference in baseline KCCQ-CSS and
KCCQ-OSS across patients grouped according to tertiles
of predicted probability of death from our ResNet
models was higher than the minimal clinically impor-
tant difference of 5 points.**#?” This observation needs to
be confirmed in future prospective studies, but has the
potential to help clinicians and researchers in identi-
fying those at risk of reduced functional status and
providing opportunities to improve quality of life.

Echo is one of several imaging modalities that are used
for diagnosing cardiovascular disease and provide useful
prognostic information. For example, cardiac magnetic
resonance (CMR) imaging provides valuable data
regarding cardiac structural and functional abnormality.
Several previous studies have shown models based on
CMR-related features to have moderate to excellent per-
formance (c-indices: 0.62-0.86) for predicting adverse
events.”** However, CMR is a costly procedure that is not
widely available. In contrast, echo is a more widely avail-
able, less costly and invasive procedure that provides
valuable information on cardiac anatomy and function.
These factors, combined with its diagnostic and prognostic
utility, suggest that echo would be a good choice for the
development of an end-to-end artificial intelligence-
augmented prognostic application.

A few limitations are noteworthy in interpreting the
results of the current study. First, some echo measure-
ment features used for CatBoost modeling were missing
for several patients. Although this situation mimics
realistic scenarios of data availability in the clinics,
missingness can pose an unseen challenge to general-
izability of models. Second, deep learning models are
generally regarded as black boxes due to their
complexity and inability to indicate human-identifiable
patterns. Even though we have attempted to identify
areas of importance using GradCAM, which pointed
towards anatomically important parts of the heart such
as the left atrium, or mitral and aortic valves, in general,
it failed to detect distinct, clinically-useful patterns. We
also have reported interpretability for CatBoost models
with the SHAP method, which has highlighted a few
echo measurement parameters as key contributors of
mortality. Third, we used uniform sampling of echo
images, and have not explored all the alternative ways of
preprocessing echo data. However, we have used sta-
tistically appropriate methods of model development
and evaluation, given our preprocessing pipeline.
Fourth, we developed prognostic models based primar-
ily on echo data/images. Our models did not account for
other factors that may be associated with mortality out-
comes, such as duration of disease, treatment strategies,
as well as sociodemographic factors such as race/
ethnicity. Furthermore, variables needed to calculate the
MAGGIC score and data on patient reported functional
status were only available in the Alberta dataset and not

in the Mackay dataset. Future studies are needed to
examine the extent to which the addition of these factors
improves models’ prognostic performance. Fifth, we did
not have data on the cause of death, and were therefore
unable to verify whether the models performed better at
predicting cardiovascular death compared to all-cause
death. Lastly, this study provides a proof of concept
that needs careful consideration including wider scale
generalizability of these models before clinical
implementation.

In conclusion, both ResNet and CatBoost models
provided good-to-excellent prognostic performance for
1-, 3- and 5-year mortality prediction tasks in the inter-
nal and external validation cohorts. ResNet models
provided higher performance than the CatBoost models
in the external validation, suggesting better generaliz-
ability of prognostication performance with the deep
learning models compared to CatBoost models.
Furthermore, our models that were agnostic to clinical
status of patients, provided clinically meaningful pre-
diction probabilities that correlated with patients’ clin-
ical severity, as measured by patients’ risk of HF,
ejection fraction, and functional status. These models
can be leveraged for echo-based automatic risk stratifi-
cation at the individual and population level, and can
potentially guide the downstream management.
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