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Single-cell RNA sequencing
identifies hippocampal microglial
dysregulation in diet-induced obesity

Rosemary E. Henn,1,2 Kai Guo,1,2 Sarah E. Elzinga,1,2 Mohamed H. Noureldein,1,2 Faye E. Mendelson,1,2

John M. Hayes,1,2 Diana M. Rigan,1,2 Masha G. Savelieff,2 Junguk Hur,3 and Eva L. Feldman1,2,4,*

SUMMARY

Obesity is a growing global concern in adults and youth with a parallel rise in asso-
ciated complications, including cognitive impairment. Obesity induces brain
inflammation and activates microglia, which contribute to cognitive impairment
by aberrantly phagocytosing synaptic spines. Local and systemic signals, such
as inflammatory cytokines and metabolites likely participate in obesity-induced
microglial activation. However, the precise mechanisms mediating microglial
activation during obesity remain incompletely understood. Herein, we leveraged
our mouse model of high-fat diet (HFD)-induced obesity, which mirrors human
obesity, and develops hippocampal-dependent cognitive impairment. We
assessed hippocampal microglial activation by morphological and single-cell tran-
scriptomic analysis to evaluate this heterogeneous, functionally diverse, and dy-
namic class of cells over time after 1 and 3months of HFD. HFD altered cell-to-cell
communication, particularly immune modulation and cellular adhesion signaling,
and induced a differential gene expression signature of protein processing in the
endoplasmic reticulum in a time-dependent manner.

INTRODUCTION

The global prevalence of obesity continues to rise. The World Health Organization estimates that global

obesity rates tripled from 1975 to 2016, including an increase from 4% to 16% of overweight or obese chil-

dren and teens.1 This steep rise is concerning as the complications of obesity place an immense strain on

patients and healthcare systems. Obesity is associated with cognitive impairment and structural brain

changes in adults2,3 and children and adolescents.4–6 Midlife obesity also raises the risk of future demen-

tia.7,8 Currently, dementia management is limited to pharmacological and lifestyle interventions, which

address only symptoms, not disease pathology. There is a critical need to understand the mechanisms

underlying obesity-associated cognitive impairment across the lifespan.

Obesity activates microglia, the resident macrophage-like central nervous system (CNS) immune cells, which

constitute a potential target for intervention.Most research has focused on hypothalamicmicroglial inflamma-

tion leading to the loss of regulatory mechanisms controlling satiety.9–12 However, studies of obese mice

demonstrate thatmicroglia are also activated in the hippocampus, a limbic brain structure involved inmemory

and learning. Murine models of diet-induced obesity exhibit hippocampal inflammation after both acute13,14

and chronic periods of high-fat diet (HFD).15–17 Obese mice suffer from hippocampal-dependent cognitive

deficits,15,16,18 with hippocampal microglial morphology changes characteristic of pro-inflammatory activation

after chronic HFD,15,16 implicating microglia in cognitive impairment secondary to obesity.

In addition to potential morphological changes, obesity increases hippocampal levels of pro-inflammatory

cytokines,19e.g. interleukin 1 beta (IL-1b) and tumor necrosis factor alpha (TNFa).20 Inflammatory cytokines

may activate microglia,21 with a variety of other local or systemic signals such as dysregulated metabolite-

s,22e.g. saturated fatty acids from HFD. Moreover, obesity increases peripheral immune cell recruitment,23

and impairs blood-brain barrier function, facilitating entry of systemic inflammatory mediators.24

The mechanism of hypothalamic microglial activation and polarization during obesity has been well

defined.10,11,25 However, the hypothalamus is in direct contact with the circulation, and thus hypothalamic
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microglia are more directly exposed to saturated fatty acids. In contrast, hippocampal microglia are more

protected from circulation, and therefore, their response to dietary saturated fatty acids and obesity over

time may be less pronounced or exhibit a different time response versus hypothalamic microglia. In addi-

tion, most studies to date have examined single time points. Thus, there is a need to clarify the evolution of

hippocampal microglial activation over time to determine the appropriate temporal window for interven-

tion. There is also a need to address microglial heterogeneity, as a class of functionally diverse cells.

Existing studies in the obesity field, such as those examining endoplasmic reticulum (ER) stress,26 are

limited by bulk hippocampal tissue analysis, which likely masks microglial-specific findings.

To address microglial heterogeneity, evolution of responses over time, and shortcomings from bulk

analysis, we harnessed the power of single-cell RNA sequencing (scRNA-seq). We characterized, for the

first time, the hippocampal microglial transcriptomic landscape at fine-grained single-cell resolution in

the context of diet-induced obesity after 1 and 3 months (mo) of HFD. scRNA-seq identified obesity-asso-

ciated dysregulated inflammatory pathways in microglia after 1 month or 3 months of HFD in wild-type

C57B/L6J mice as they transitioned from adolescence to adulthood. In addition, we leveraged our sin-

gle-cell dataset to investigate the dynamic immune cell-to-cell interplay, which is crucial for understanding

subtle differences in microglial behavior in obesity. Our characterization of microglial activation states pro-

vides the foundation necessary to elucidate the role of microglia in hippocampal pathology in obesity.

RESULTS

HFD induces obesity but not early hippocampal microglial morphological activation

To determine the effect of obesity on hippocampal microglial activation, we utilized an established and

deeply phenotyped mouse model of diet-induced obesity,27,28 which we have previously used in our

studies.29 We fed 5-week-old male C57BL/6J mice (n = 10 per group) either a 60% HFD enriched with satu-

rated fatty acids or a control diet containing 10% fat (Figure 1A). To determine time-dependent changes in

microglia in response to HFD, mice were divided into two cohorts and fed for 1 month or 3 months. At the

study endpoints, we isolated hippocampal microglia and performed scRNA-seq. HFD fed mice were heav-

ier than control fed mice as early as after 2 weeks of diet (Figure 1B). After 1 month and 3 months, HFDmice

had deficits in glucose homeostasis versus control mice, characterized by elevated peak blood glucose

levels on glucose challenge, alongside a delayed return to baseline (Figure 1C). Baseline, i.e., at 5 weeks

of age, GTTs were indistinguishable between HFD and control groups (Figure S1A). Although glucose

homeostasis was disrupted after 1 month of HFD, fasting plasma insulin did not increase in HFD mice rela-

tive to controls until 3 months (Figure 1D; p = 0.0003), recapitulating hyperinsulinemia in humans with

chronic obesity.

We also examined basic plasma lipid profiles for cholesterol, triglycerides, phospholipids, and non-ester-

ified fatty acids (NEFAs). Total plasma cholesterol was elevated in HFD mice after 1 month and 3 months

diet (Figure 1E; p = 0.0474, p = 0.0021, respectively) and phospholipids after 3 months (Figure 1F; p =

0.0096). Diet did not affect triglyceride (Figure S1B) or NEFA (Figure S1C) levels. Collectively, these

metabolic data demonstrate that HFD mice are obese and develop systemic metabolic dysfunction after

just 1 month (e.g., glucose intolerance, elevated cholesterol), which becomes more severe after 3 months

(i.e., hyperinsulinemia, elevated phospholipids).

We previously reported hippocampal dependent cognitive deficits in short-term memory in a mouse

model after 2 weeks, 6 weeks, and 24 weeks of HFD using a novel object recognition task.18 Obesity is

Figure 1. HFD induces obesity and dyslipidemia in mice

(A) Study design. Wild-type C57BL/6Jmice aged 5 weeks were randomized to a high-fat diet (HFD) or control standard diet (ctrl). After 1 month (mo) or 3 (mo)

of diet, HFD and control mice were sacrificed for microglial isolation and metabolic phenotyping (n = 10 per diet per time point).

(B) Longitudinal bodymass; from 0 to 4 weeks (i.e., 1 month time point) n = 20 per diet per time point (HFD, green; ctrl, blue); from 5 weeks onward, n = 10 per

diet (HFD, green; ctrl, blue). $p <0.05, $$p <0.01, $$$p <0.001, for HFD versus ctrl 1 month cohort; *p <0.05, ***p <0.001, ****p <0.0001 for HFD versus ctrl

3 months cohort; repeated measures two-way ANOVA with Sidak’s multiple comparisons test; data represented as mean G SD.

(C) Glucose tolerance test (GTT); left panel for HFD (n = 20; light green) versus control (n = 20; light blue) at 1 month (triangles); right panel for HFD (n = 10;

dark green) versus control (n = 10; dark blue) at 3 months (circles). Measures above the glucometer’s upper threshold were set to the threshold, 750 mg/dL.

Plasma (D) insulin, (E) cholesterol, and (F) phospholipids; top panels for HFD (n = 10; light green) versus control (n = 7; light blue) at 1 month (triangles);

bottom panels for HFD (n = 10; dark green) versus control (n = 9; dark blue) at 3 months (circles). C to F, *p <0.05, **p <0.01, ***p <0.001, ****p <0.0001 for

HFD versus control, by repeated measures two-way ANOVA and Sidak’s multiple comparisons test for GTTs, by Welch’s t-test for insulin, cholesterol, and

phospholipids, and by Mann-Whitney test for insulin 3 months because data were not normally distributed; data represented as mean G SD.
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associatedwith activated hippocampalmicroglia, assessed bymorphological activation,15,16 after 3months

of chronic HFD feeding. To address if hippocampal microglial changes occur earlier, like cognitive deficits,

we quantified 3-dimensional (3D) microglial morphology after 1 month. Homeostatic microglia display

complex branching patterns to surveil their environment, but environmental challenges trigger

morphology shifts, characterized by smaller territorial volume and simpler branching patterns.

We performed 3D analyses on tissue sections stained by immunohistochemistry for the microglial marker

ionized calcium binding adaptor molecule 1 (Iba1) using a modified 3D-Morph protocol.30 3D z-stack im-

ages of hippocampal tissue sections were acquired by confocal microscopy. After pre-processing in Imaris,

images were run through 3D-Morph in MATLAB to measure territorial volume, cell volume, and branching

parameters based on convex hull analyses and skeletonization30 (representative cells, Figures 2A and 2B).

After a 1-month diet, microglia in the CA1 region of the hippocampus from HFD-fed mice were not

morphologically distinct from control microglia. Territorial volume (p = 0.16), the 3D space taken up by

the cell body and all its branches, cell volume (p = 0.26), defined as the volume of the soma and branches

themselves, and ramification index (p = 0.52), defined as the territorial volume divided by the cell volume,

did not differ by diet (Figures 2C–2E). There was also no difference in the number of endpoints (p = 0.42)

and branchpoints (p = 0.08) (Figures 2F and 2G); however, there was a trend toward fewer branchpoints per

cell in HFD microglia.

Microglial heterogeneity remains constant in HFD and control mice

Next, we investigated the microglial single-cell transcriptome to understand how hippocampal microglia

are activated to contribute to obesity associated cognitive impairment. To characterize transcriptomic het-

erogeneity of the microglial landscape, we performed scRNA-seq on microglia isolated from the hippo-

campi of HFD and control mice (n = 6 per group) after 1 month and 3 months (Figure 3A). We performed

a papain enzymatic digestion followed by serial trituration to prepare a single cell suspension from the hip-

pocampus. We enriched for microglia by applying a 40% Percoll centrifugation to our cells and collecting

the cell pellet, and further purified by fluorescence-activated cell sorting (FACS). We sorted CD11b+/

CD45low double-positive cells, representing microglia, rather than CD11b+/CD45high cell surface markers,

which represent macrophages. Sorted cells were sequenced on the 10X Chromium platform and RNA

reads were quality filtered before mapping to the mouse reference genome. We used CellRanger Count

to prepare sample files, which were read into Seurat. Cells were excluded from downstream analysis based

on criteria outlined in the STAR Methods section. In total, 4,555 HFD and 4,945 control cells were included

in the analysis at 1 month, and 1,292 HFD and 1,255 control cells at 3 months. Data were normalized to

reduce the effects of differing cell numbers on expression levels in downstream analyses and ratios were

reported for changes in cell type rather than changes in absolute number. To determine the success of

FACS, we examined expression of the CD11b gene, Itgam, and the CD45 gene, Ptprc, which were ex-

pressed by most cells, suggesting a successful cell sort (Figure S2A).

Next, we performed principal component analysis to reduce data dimensionality and then analyzed and

visualized clusters using Uniform Manifold Approximation and Projection (UMAP). We identified eleven

cell clusters (Figures 3B andS3 for UMAP plots per mouse), which were characterized by cell-specific

markers found using the FindAllMarkers function in Seurat (Figure 3C). We reviewed previously published

datasets and leveraged the CellMarker and PanglaoDB databases to assign cell type identities to each

cluster. As anticipated, most clusters, seven out of eleven, were microglial subtypes, of which three were

homeostatic microglia (HMG), HMG1, 2, 3. The remaining microglial subtypes were inflammatory microglia

(InflamMG, expressing C-C motif chemokine ligand 4 [Ccl4] and Ccl3, Figure 3D), interferon-related

microglia (IfnMG, expressing interferon induced protein with tetratricopeptide repeats 2 [Ifit2] and Ifit3,

Figure 3D), proliferating microglia (ProlifMG, expressing DNA topoisomerase II alpha [Top2a], Figure 3D,

Figure 2. Obesity does not alter hippocampal microglial morphology at 1 month

(A) Representative 3D Morph30 analysis for a control microglia from the hippocampal CA1 region, confocal microscopy (left), skeletonization (center), and

branchpoints (right). Scale bar is 30 mm

(B) Representative 3DMorph analysis for an HFDmicroglia from the hippocampal CA1 region. Sections were stained for microglial Iba1 (594 nm, red channel)

and with Hoechst nuclear staining (blue channel). Scale bar is 30 mm.

(C–G) Microglial (C) territorial volume, (D) cell volume, (E) ramification index (F) endpoints per cell, and (G) branchpoints per cell, all at 1 mo; left panels

for control (ctrl; n = 3 animals, 3 images/animal; blue) versus HFD (n = 4 animals, 3 images/animal; green), each circle represents an individual cell. There

were no significant differences in HFD versus control by linear mixed effects models with random animal-specific intercepts with t-test; data represented as

mean G SD.
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Figure 3. Isolated cells cluster into eleven distinct populations

(A) Diagram of microglial isolation protocol; cells were isolated from 6 mice per group. Created with BioRender.com.

(B) Uniform Manifold Approximation and Projection (UMAP) shows 11 clusters, which represent homeostatic microglia 1 (HMG1), HMG2, HMG3,

macrophages (Mac), uMG (unknown, functionally undescribed), inflammatory microglia (InflamMG), proliferating microglia (ProlifMG), neurons (Neuro),

interferon-related microglia (IfnMG), neutrophils (Neu), and monocytes (Mono). UMAP plot represents 4,555 HFD and 4,945 control cells at 1 month, and

1,292 HFD and 1,255 control cells at 3 months.
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and marker of proliferation Ki-67 [Mki67]), and a functionally undescribed subtype labeled ‘‘uMG’’ for ‘un-

described microglia’ (Table S1).

In addition to the microglia subtypes, we also identified macrophages (Mac, expressing mannose receptor

C-type 1 [Mrc1], Figure 3D), monocytes (Mono, expressing C-C motif chemokine receptor 2 [Ccr2] and

lymphocyte antigen 6 complex, locus C2 [Ly6c2], UMAP in Figure S4, features in Figure 3C), neutrophils

(Neu, expressing S100 calcium binding protein A8 [S100a8] and S100a9, UMAP in Figure S4, features in Fig-

ure 3C), and neurons (Neuro, expressing calcium/calmodulin dependent protein kinase II alpha [Camk2a]

and microtubule-associated protein 2 [Map2], UMAP in Figure S4, features in Figure 3C). Most sequenced

cells expressed microglial markers Cx3cr1, P2ry12 (Figures 3E andS5 for Cx3cr1 UMAP plots per mouse),

and Aif1 (gene coding for Iba1; Figure S2B) and the microglial-specific gene Tmem119 (Figure 3E), as ex-

pected, because we enriched for microglia. Furthermore, the analyzed cells showed almost no expression

of the astrocyte specific gene Gfap (Figure 3E) or oligodendrocyte specific gene Olig2 (Figure S2C),

indicating the absence of astrocytes and oligodendrocytes among isolated cells, as anticipated following

a microglial sort. Cells expressed very low levels of the neuronal specific gene Rbfox3 (Figure S2C), sugges-

tive of a very small neuronal population.

All sevenmicroglial and four additional cell type clusters were present in both HFD and control groups (Fig-

ure 4A), and at both 1 month and 3 months. Although all cell clusters were represented in all experimental

groups, we assessed the proportion of each cell cluster by diet or age. Cluster proportions were similar be-

tween HFD and control groups at 1 month and 3 months (Figure 4B). In all experimental groups, the largest

proportion of cells comprised homeostatic microglia, HMG1, 2, and 3 at both 1 month (HFD 77.8% versus

control 76.9%) and 3 months (HFD 69.4% versus control 65.3%). Macrophages were the second most abun-

dant cell type after HMGs at 1 month (HFD 7.1% versus control 7.5%) and 3 months (HFD 12.2% versus con-

trol 12.4%). Other microglial subtypes (uMG, InflamMG, ProlifMG, and IfnMG) ranged from 0.8% to 8.6% of

all cells in HFD and control conditions at 1 month and 3 months.

Obesity dysregulates microglial inflammatory cell-to-cell signaling

Microglia are immune cells that constantly survey the CNS environment and respond to external sig-

nals.31–33 Thus, we examined the effect of diet-induced obesity on cell-to-cell communication within our

single-cell dataset. To do so, we utilized CellChat,34 a tool that leverages a database of over 2,000 ligand

and receptor pairs and scRNA-seq data to infer intercellular communication. We first looked at information

flow of intercellular signaling pathways in HFD and control conditions at 1 month and 3 months (Figures 5A

and 5D), which is based on a summation of probabilities of pathway communication for all cell type pairs.

For each pathway, CellChat also identifies the ligand-receptor gene pairs contributing to pathway

signaling, which is visualized in circle plots of cell types that send and receive signals for the given pathway

(Figures 5B, 5C, 5E, 5F, andS6 for ligand-receptor expression).

Information flow at the 1 month time point was higher in 23 pathways in HFD versus control cells and 12

pathways in control versus HFD cells (Figure 5A). In some instances, signaling pathways were only detected

in cells of one diet group, e.g., type-1 interferon (IFN-I) signaling at 1 month in HFD cells. The pathways with

microglia-to-microglia signaling that were elevated in HFD at 1 month fell into a few broad categories.

‘CDH’, ‘ICAM1,’ ‘PECAM1’, ‘HSPG, and ‘CD200’ ligands are cell surface glycoproteins with various immune

regulatory roles, including T cell co-stimulation,35 cellular adhesion,36 microglial pro-inflammatory activa-

tion,37–39 as well as inhibition of microglial activation in the case of CD200.40 The ‘IFN-I’ ligand is a cytokine

involved in canonical pro-inflammatory signaling. ‘EGF’, ‘GRN’, and ‘TGFb’ ligands are growth factors, and

loss of microglial progranulin and granulin signaling has been extensively studied in frontotemporal

Figure 3. Continued

(C) Dot plot of markers used to assign cluster identity. Dot size represents the percentage of cells from a given cluster expressing the marker, dot color

represents average expression relative to all other clusters.

(D) UMAP plots by markers that differentiated various clusters, InflamMG by chemokine Ccl4 (C-C motif chemokine ligand 4), IfnMG by interferon-induced

Ifit2 (interferon induced protein with tetratricopeptide repeats 2), ProlifMG by DNA topoisomerase Top2a (DNA topoisomerase II alpha), and macrophages

by immunomodulating Mrc1 (mannose receptor C-type 1).

(E) UMAP plots with expression of microglial (Cx3cr1, CX3C chemokine receptor 1; P2ry12, purinergic receptor P2Y12; Tmem119, transmembrane protein

119) versus astrocytic (Gfap, glial fibrillary acidic protein) markers shows a relatively pure microglia isolation. UMAP plot for another microglial marker, Aif1

(allograft inflammatory factor 1), the gene encoding Iba1 protein, is shown in Figure S2.
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dementia41 and neurodegeneration.42 Finally, the ‘SEMA6’ ligand is a transmembrane protein with a known

role in axon guidance.43

‘HSPG’ and ‘IFN-I’ were the sole pathways driven by microglia-to-microglia signaling with information flow

turned on in HFD cells at 1 month (Figures 5B and 5C). For ‘HSPG’ signaling, InflamMG signaled to HMG3,

HMG2, and ProlifMG, with autocrine signaling to itself, and IfnMG cells signaled to InflamMG and ProlifMG

(Figure 5B; top). Signaling was mediated between the ligand heparan sulfate proteoglycan 2 (Hspg2) and

its receptor, dystroglycan 1 (Dag1) (Figure 5B; bottom). The interferon (‘IFN-I’) signaling pathway network

in HFD cells at 1 month was more complex and involved connections among multiple cell types, including

non-microglia cells. ‘IFN-I’ signaling originated from ProlifMG, Mac, Mono, IfnMG, InflamMG, HMG3,

HMG2, and HMG1) (Figure 5C). Because we enriched for microglia using CD11b+/CD45low FACS, the

non-microglial immune cells we isolated may comprise a biased sampling of the true populations. Owing

to this potential bias and the likelihood that they do not represent the full diversity of monocytes, neutro-

phils, macrophages, and neurons, it is difficult to draw firm conclusions regarding signaling networks

involving these cell types as the senders and/or receivers. However, we can determine that IFN-I signaling

involves a dynamic interplay between multiple cell types, highlighting the value of cell-to-cell communica-

tion analysis in the context of microglial mediated pathology.

Information flow at the 3 months time point was higher in 27 pathways in HFD versus control cells and 10

pathways in control versus HFD cells (Figure 5D). Again, in some cases, signaling pathways were only de-

tected in cells of one diet group, e.g., ‘IL6’ signaling at 3 months in HFD cells. At 3 months, HFD turned on

microglia-to-microglia signaling of ‘IL6’, ‘PDGF’ (Figures 5E and 5F), ‘KIT’, ‘VISTA’ (Figure S7A), ‘HSPG’,

and ‘LAMININ’ pathways. The pathways elevated in HFD cells relative to controls containing microglia-

to-microglia network signaling included ‘CD86’, ‘ICOS’, ‘CD200’, ‘SEMA6’, ‘PROS’, ‘CD48’, ‘CADM’

(Figures S7B and S7C), ‘TGFb’, and ‘GRN’. Like at 1 month, signaling pathways ligands included growth

Figure 4. Microglial heterogeneity remains constant in HFD versus control mice

(A) UMAP of HFD (5,847 total cells) versus control (ctrl; 6,200 total) at both time points isolated from n = 6 mice per group.

(B) Top panel: Circle chart of all 11 cell types by percentage at 1 month for HFD (left; 4,555 total cells) versus control (right;

4,945 total cells). Bottom panel: Circle chart of all 12 cell types by percentage at 3 months for HFD (left; 1,292 total cells)

versus control (right; 1,255 total cells).
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factors, e.g., ‘PDGF’, ‘KIT’, ‘TGFb’, and ‘GRN’, and glycoproteins with immunomodulatory functions, e.g.,

‘HSPG’ and ‘CD200’. ‘IL6’ and ‘KIT’ ligands are cytokines, and other ligands are cell surface immunomod-

ulatory antigens, e.g., ‘CD86’, ‘ICOS’, ‘CD48’, and ‘VISTA’. IL-6, a cytokine with context-dependent pro- or

anti-inflammatory effects,44 was expressed by IfnMG and its receptor by HMG2 and HMG3 (Figure 5E). We

found HFD turned on PDGF signaling at 3 months (Figure 5F). Several microglia subtypes (InflamMG,

HMG1, HMG2, HMG3, ProlifMG, IfnMG, uMG) expressed the platelet-derived growth factor (PDGF) ligand

and signaled to other microglia, as well as to macrophages, neutrophils, monocytes, and neurons. PDGF is

a mitogen with well-studied roles in development and wound healing, yet has detrimental effects in various

disease contexts, such as cancer and atherosclerosis.45,46

Obesity dysregulates microglial ER homeostasis

The results from CellChat yielded insight into the effects of obesity on microglial cell-to-cell communi-

cation. However, we were also interested in the dysregulated intracellular processes to identify potential

drivers of an activated state. To accomplish this goal, we performed differentially expressed gene (DEG)

analysis for all microglia types combined in HFD versus control using DESeq2. There were 89 DEGs after

Figure 5. Cell-to-cell communication analyses reveal HFD specific intercellular communication pathways

(A) Information flow charts at 1 month for HFD (blue) versus control (ctrl; red) generated by CellChat. Teal bars represent information flow in HFD cells (4,555

total cells), red bars represent information flow in control cells (4,945 total cells). Signaling pathways in teal text have significantly higher information flow in

HFD cells relative to control, signaling pathways in red text have significantly higher information flow in control cells, and signaling pathways in black text are

not significantly different between groups; vertical dashed lines represent information flow equal in both HFD and control.

(B and C) Circle plots of cellular signaling interactions (top) and their top contributing ligand-receptor (L-R) pairs (bottom) for pathway networks involving (B)

HSPG for HFD at 1 month and (C) IFN-I for HFD at 1 month. Dots in circle plots represent cell populations with color codes matching UMAP clusters; strokes

represent communication between distinct cell populations and loops represent signaling within cell populations. Stroke and loop colors reflect the cluster

sending the signal, and thickness reflects strength of the signaling pair.

(D) Information flow chart at 3 months for HFD (blue; 1,292 total cells) versus control (ctrl; red; 1,255 total cells).

(E and F) Circle plots (top) and top contributing L-R pairs (bottom) for pathway networks involving (E) IL6 for HFD at 3 months and (F) PDGF for HFD at

3 months.
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Figure 6. HFD dysregulates protein processing in the ER across microglial subtypes

(A) Volcano plots of differentially expressed genes (DEGs) in HFD versus control (ctrl) at 1 month (left) and 3 months (right) for all microglia subtypes

combined with top 20 annotated DEGs. Analysis included 4,450 ctrl 1 month, 1,048 ctrl 3 months, 4,121 HFD 1 month, and 1,054 HFD 3 months microglia.

Significant DEGs above the horizontal red line based on P-adjusted <0.05, blue dots represent significantly downregulated in HFD, red dots represent

significantly upregulated in HFD. FC, fold-change.

(B) KEGG pathway analysis of DEGs in HFD versus control at 1 month (top) and 3 months (bottom). Dot color represents-log10(P-value) from least significant

(light pink) to most significant (red); dot size represents gene number, the number of significant DEGs in the KEGG pathway; rich factor represents the

fraction of significant DEGs among all genes in the KEGG pathway.

(C) WGCNA modules by color, turquoise, yellow, brown, green, blue, with number of genes assigned to each module (column 1), and corresponding

heatmap of median module expression by condition. The gray module comprises genes that did not cluster into a co-expression module. Significant

differences in expression of genes in modules between experimental groups by Kruskal-Wallis, *p <0.05, **p <0.01.
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1 month HFD, and 46 DEGs after 3 months (adjusted P-value <0.05) (Figure 6A, Table S2). To identify the

biological significance of these DEGs, we performed Encyclopedia of Genes and Genomes (KEGG)

enrichment analysis (Figure 6B). Five pathways were identified at 1 month; ‘ribosome’ and ‘COVID-19’

contained the same genes, which were all ribosomal and included Rpl3, Rplp0, Rpl10, Rps16, Rpl11,

among others. ‘Protein processing in the ER contained Hspa8, Dnaja1, Hsp90b1, Pdia6, Calr, Hspa5,

and Dnajb1. ‘Mitophagy-animal’ and ‘antigen processing and presentation’ contained only three genes

each. Performing KEGG analysis for 3 months was less informative, because of few DEGs, only 46, KEGG

enrichment analysis at 3 months yielded ‘lysosome,’ ‘COVID-19,’ ‘pertussis,’ ‘alcoholic liver disease,’

‘ribosome,’ ‘arachidonic acid metabolism,’ ‘antigen processing and presentation,’‘complement and

coagulation cascades,’ and ‘Chagas disease.’ However, there were no more than five genes in each

KEGG pathway, including C1qa and C1qb complement genes, which were present in five of the nine

pathways.

Next, we identified DEGs in HFD versus control for each of the 11 cell types at both 1 month and 3 months.

Overall, few DEGs (adjusted P-value <0.05) were identified, with 0 DEGs for most comparisons (Table S3).

DEGs for HFD versus control were identified for HMG1 (18 DEGs), HMG2 (8 DEGs), HMG3 (8 DEGs), and

Mac (3 DEGs) at 1 month. At 3 months, DEGs were identified for HMG1 (1 DEGs), HMG2 (8 DEGs), and

HMG3 (1 DEG). For both the cluster specific and all microglia combined analyses, there were more

DEGs at 1 month than 3 months. The cluster specific analysis detected DEGs in HFD versus control only

in HMG populations and macrophages. Although there were too few genes to perform KEGG on cluster

specific DEGs, we found again, that protein processing in the ER genes were represented. At 1 month,

ER related DEGs included Hspa8, Hsp90b1, and Dnaja1 for HMG1, Hspa8 and Calr for HMG2, and

Hspa8, Dnaja1, and Pdia6 for HMG3. The DEGs in the macrophage group were H3f3b, Ucp2, and

Gm10076. At 3 months, Hsp90ab1 and Hsp90aa1 were DEGs in HMG2.

Owing to the similarity among UMAP clustered HMG subtypes, and because most cluster specific

DEGs were identified in HMGs, we next considered the three homeostatic microglia subtypes as a

single cluster and performed DESeq2 analysis. We identified 96 DEGs at 1 month and 12 DEGs at 3 months

in all three homeostatic microglia subtypes combined (Table S4). KEGG analysis at 1 month in this subset of

HMGs again showed enrichment in ‘ribosome,’‘COVID-19,’ and ‘protein processing in the ER’ as well as in

‘prostate cancer’ and ‘salmonella infection.’ Homeostatic microglia make up the largest proportion of all

microglia, so it is expected that HMG DEGs reflect the DEGs for the combined microglia analysis.

Because few DEGs were identified between HFD and control groups, we implemented an additional

approach to examine differences between groups and infer potential biological significance. We per-

formed weighted gene co-expression network analysis (WGCNA), an unsupervised correlation analysis,

to identify co-expressed gene modules across all samples, including genes for all cell types. WGCNA

identifies co-expression networks, aka modules, which differ significantly between HFD versus control,

rather than individual DEGs by DESeq2 analysis. Analysis of 1 month and 3 months samples yielded five

co-expression modules and 1 module of genes (gray module) that were not assigned to a co-expression

module (Figure 6C; module dendrogram, Figure S8A). Four modules, turquoise, yellow, brown, and green,

differed significantly between HFD and control groups. The turquoise module, containing 867 genes, had

reduced expression in HFD at 1 month (p = 0.0087), the yellowmodule, containing 241 genes, had elevated

expression in HFD at 1 month (p = 0.041) and 3 months (p = 0.026), the brown module, containing 331

genes, had elevated expression in HFD after 1 month (p = 0.0022), and the green module, containing

198 genes, had reduced expression in HFD at 3 months (p = 0.041) (Figures 6D and S8B). We next per-

formed KEGG enrichment analysis on each module. The yellow module was enriched for genes in a variety

of biological pathways, including ‘Alzheimer’s disease’, containing the genes Psenen, Ndufb5, Atp5o,

Gnaq, Ndufs8, Ndufa5, Mapk3, Ndufs4, Atp5g3, Ppp3r1, and Psen1 (Table S5), and ‘B cell receptor

signaling pathway’ (Figure 6E). The brown module was enriched for ‘protein processing in the ER’ which

contained 12 genes related to the ER stress response, Hspa8, Nfe2l2, Selenos, P4hb, Dnaja1, Ssr1,

Figure 6. Continued

(D) Boxplots of yellow and brown module expression. Significant differences by Kruskal-Wallis, *p <0.05, **p <0.01. Boxplot height represents the

interquartile range, horizonal line the median, and whiskers the minimum and maximum values of expression.

(E) KEGG pathway analysis of genes in HFD versus control from the yellow (left) and brown (right) modules. Bar color represents-log10(P-value) from least

significant (light pink) to most significant (red); bar length represents the number of genes in the KEGG pathway, annotated with a number; rich factor

represents the fraction of genes among all genes in the KEGG pathway.
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Edem1, Man1c1, Eif2s1, Ube2j1, Erlec1, and Dnajb1 (Table S5). Some of these genes have been identified

as relevant to microglia in obesity by other studies in bulk or functional studies, such as heat shock protein

70 (Hspa8), HSP40 (Dnaja1, Dnajb1),47 and Nrf2 (Nfe2l2).48 The turquoise module was most significantly

enriched in ‘ribosome’ and ‘oxidative phosphorylation’ genes, and the green module in ‘protein process-

ing in the ER’ genes (Figures S8C and S8D).

Obesity correlates with distinct transcriptomic signatures in various microglia types

Finally, because our focus was the impact of obesity on microglia transcriptomic signatures, we examined

the correlation of obesity, as it progress from 1 month to 3 months, to transcriptomic profiles in distinct

microglia clusters. We performed a Spearman correlation analysis of body weights at 1month and 3months

to transcript levels at 1 month and 3 months in all cell clusters (Figure S9, Table S6). We found several genes

whose expression levels correlated positively with body weight in various cell clusters, e.g., C1qc in HMG1

and 2, or negatively, e.g., Hsp90b1 in HMG1, 2, and 3, InflamMG, andMac. To infer biological meaning, we

next performed separate KEGG pathway enrichment analysis of positively (Figure 7A) and negatively (Fig-

ure 7B) correlated transcripts (Table S7). The most significant pathways that correlated positively with

obesity were ‘ribosome’ and ‘COVID-19’ in HMG1 and 2 and InflamMG. The ‘COVID-19’ pathway contains

complement and ribosome genes. Importantly, rich factors were low, so only a few genes in these KEGG

pathways were activated with obesity. The most significant pathways that associated negatively with

obesity were ‘protein processing in ER’ in HMG3 and InflamMG, ‘spliceosome’ in HMG1, and ‘Fc gamma

R�mediated phagocytosis’ in HMG2. Notably, rich factors were low, indicating that only a few genes corre-

lated with body weight of all genes present in the KEGG pathway. The genes (Figure S9) and pathways (Fig-

ure 7) that correlated with body weight overlapped with the DEGs and pathways at 1 month and 3 months

(Figures 6A and 6B), suggesting that progressive obesity particularly influences these genes.

DISCUSSION

Rates of obesity are climbing,1 alongside rises in associated complications, such as cognitive impair-

ment.2,8 Thus, there is a need to understand the pathophysiology of cognitive deficits secondary to obesity

to intervene. Through their contribution to cognitive impairment in obesity,15 microglia serve as a potential

Figure 7. Obesity correlates with distinct transcriptomic signatures in various microglia types

KEGG pathway enrichment analysis of transcripts (with Benjamini-Hochberg corrected P-value<0.05) that correlate

(A) positively and (B) negatively with body weight in various microglia types [homeostatic microglia 1 (HMG1), HMG2,

HMG3, inflammatory microglia (InflamMG), uMG (unknown, functionally undescribed)]. Dot color represents-log10(Padj)

from least significant (light pink) to most significant (red); rich factor represents the fraction of significant body weight

correlated transcripts among all genes in the KEGG pathway. Padj, adjusted P-value.
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therapeutic target, although the mechanisms of microglial activation in this context remain incompletely

understood. In this study, we used scRNA-seq to determine the effect of obesity over time on the hippo-

campal microglial transcriptome. scRNA-seq allowed us to probe the heterogeneity of microglial popula-

tions and identify unique cellular processes and inflammatory pathways that are dysregulated in

obesity. We, for the first time in the adolescent and adult C57BL/6J hippocampus, identified seven

microglial subtypes, with three other immune cell types and neurons. All cell types were present in HFD

and control groups at 1 month and 3 months diet, and diet did not affect cell type proportion. Conversely,

cell-to-cell communication analysis revealed a functionally diverse set of signaling pathways, which differed

significantly between diet groups. In particular, HFD dysregulated microglial signaling involved in immune

modulation. DEG analysis with KEGG pathway enrichment revealed a signature of dysregulated ER genes

in HFD microglia, which was independently confirmed by a separate WGNCA analysis.

We studied the effect of obesity on microglial activation in a mouse model of diet-induced obesity,29 which

displays hippocampal-dependent cognitive impairment.18 HFD mice were heavier than their control counter-

parts after only 2 weeks of diet and went on to develop progressive metabolic dysfunction, including hyper-

insulinemia and dyslipidemia, as occurs in human obesity. Because we expected that the immune response

would evolve over time, we assessed morphological activation early on at 1 month. We found that HFD did

not alter microglial morphology in the hippocampal CA1 region at 1 month. This finding is not unexpected

at 1 month, because previously published studies showed HFD-induced morphological activation of micro-

glia, quantified in part by fewer primary cell processes, occurs later at 3 months in the hippocampal dentate

gyrus and CA1.15,16 Although there was no significant difference in branchpoints per cell between groups,

there was a trend toward fewer branchpoints in HFD microglia. Further studies are required to determine

whether this trend might represent the start of ramification reduction, which then continues over time.

Although we did not observe hippocampal microglial morphological activation, scRNA-seq enabled us to

investigate early transcriptomic changes across diverse microglial subtypes. No studies, to our knowledge,

had examined hippocampal microglial heterogeneity in obesity, and nomicroglial scRNA-seq studies have

focused on the healthy hippocampus in the C57BL/6J mouse. Thus, we performed scRNA-seq onmicroglia

isolated from the hippocampi of obese and lean mice after 1 month and 3months. We sought to determine

the effect of obesity on microglial activation and its temporal evolution at the transcriptomic level. In our

sequenced CD11b+/CD45low cells, we identified seven microglial subtypes as well as small populations of

monocytes, macrophages, neutrophils, and neurons. In addition to three homeostatic populations, other

microglia subtypes included inflammatory microglia, interferon-related microglia, proliferative microglia,

and a cluster with unknown function, which we termed uMG. As far as we are aware, this uMG cluster

has not been previously described. It is characterized by upregulation of mitochondrial genes, and perhaps

represents a dying subset, as seen in other scRNA-seq data.49

We found that diet did not affect the cluster proportions. Homeostatic microglia comprised the largest cell

population in all experimental groups. In line with our results, microglial scRNA-seq studies have similarly

demonstrated that homeostatic microglia are the largest clusters in both healthy and disease contexts in

the adolescent and adult brain.50–52 The presence of the smaller clusters, InflamMG, IfnMG, ProlifMG, and

uMG, is not uniform in the literature, and differs with various factors, including age, brain region, disease state,

and study design or perhaps power. We found an InflamMG (Ccl4/3 expressing) population, which has also

been identified in small clusters in the healthy cortex at 2 months and 4 months and as a larger microglial per-

centage in amodel of infectious disease.52 This inflammatory population, as well as an interferon-related pop-

ulation like our IfnMG cluster (Ifit3 expressing), are prevalent in the whole brain with aging.50 A proliferative

microglia cluster like our ProlifMG (Top2a, Mki67 expressing) are present in the healthy adult brain,53 preva-

lent in the early developing brain50 and found in the cortex of an HIV infection model.52 The lack of activated

morphology at 1 month aligns with our transcriptomic findings; HFD did not alter the proportion of InflamMG

and IfnMG and homeostatic microglia dominated all experimental groups. The apparent trending increase in

peripheral immune cell types (monocytes, neutrophils) in HFD versus control samples at 3 months could

potentially reflect obesity-induced recruitment of immune cells to the brain.23

Our identified populations are unlikely an artifact of processing-associated ex vivo activation, because they

have been identified with transcriptional inhibition, which we employed, in the roughly 3-month-old mouse

brain.53 Marsh et al. showed that transcriptional inhibition prevented a processing-associated cluster,

which has appeared in other microglial scRNA-seq.53 Overall, we showed, for the first time, that
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hippocampal microglia in the healthy adolescent and adult hippocampus are mostly homeostatic micro-

glia, with small populations of inflammatory, proliferative, and interferon-related microglia. Future work

is needed to determine whether young age and/or the chronic, low-grade nature of obesity-induced

inflammation may have protected against changes in inflammatory microglia proportions, which are

seen in microglial scRNA-seq studies in aging50 and overt transgenic models of disease.51

Immune cells function by sensing and responding to their environment, so cell-to-cell communication is an

integral part of microglial function.54 Obesity disrupts the inflammatory milieu in the brain,23,24 so we asked

whether obesity alters intercellular microglial signaling. Thus, we next examined whether diet impacted

cell-to-cell interactions in the hippocampus by employing CellChat to infer intercellular communication

among microglia. Of the signaling that differed by diet, the pathways driving microglia-to-microglia

communication serve a diverse set of biological functions, many implicated in immune modulation of mi-

croglia or other immune cell types. These pathways contained glycoproteins with known immunomodula-

tory roles (e.g., ‘HSPG,’‘ICAM1),36–39 growth factors (e.g., ‘TGFb,’ ‘PDGF’), and immune antigens (e.g.,

‘CD86’, ‘ICOS’, ‘CD48’, and ‘VISTA’). Several pathways contained proteins with known pro-inflammatory

(e.g., ‘HSPG,’‘IFN-I,’‘IL6’) or anti-inflammatory properties (e.g., ‘VISTA,’‘CD200,’‘IL6’). Heparan sulfate pro-

teoglycans (HSPGs) are immunomodulators39 with pro-inflammatory effects on microglia. HSPGs stimulate

tumor necrosis factor alpha cytokine production38 and are involved in the microglial lipopolysaccharide-

induced toll-like receptor 4 response.55 V-domain immunoglobulin-containing suppressor of T cell activa-

tion (Vista), plays an immune checkpoint role as a negative regulator of T-cells, and is involved in other

myeloid cell functions, such as phagocytosis, but its role in microglia is not well characterized.56 Both Vista

and cell adhesion molecule 1 (Cadm1), the ligand and receptor for ‘CADM’ signaling, are differentially

expressed in Alzheimer’s disease-associated microglia.51,56

Further studies are needed to understand the role of these signaling pathways in modulating microglial

behavior in obesity. HFD upregulated more microglial immune and inflammatory signaling at 3 months

versus 1 month, which supports the hypothesis that chronic HFD enhances immune responses to obesity.

HFD pathways associated with homeostatic and protective microglia (e.g., ‘GRN,’ ‘TGFb,’ ‘CD200’)40,41,57

might reflect a failed attempt tomaintain homeostasis under conditions of stress during obesity. Regarding

the involvement of signaling pathways related to adhesion molecules, it is possible to speculate these

changes may reflect microglial migration as a component of the inflammatory response. In addition to

the interactions identified in this study, it is important to consider that microglia in obesity may interact

through ligand-receptor pairs that are not in the CellChat database or with other immune cell types. More-

over, our analysis relied on transcriptomic changes in ligand-receptor expression, which may not neces-

sarily reflect protein expression. However, overall, the changes in intercellular microglia-to-microglia

signaling revealed by CellChat suggest microglia respond early to an immune challenge, which ramps

up over time, leading to a condition of chronic inflammation.

Next, we examined the effect of HFD on intracellular processes in hippocampal microglia by DEG analyses

with KEGG enrichment. DEGs between HFD and control microglia at 1 month were enriched in ribosome

and protein processing in the ER KEGG pathways. We identified very few cell cluster specific DEGs, but

heat shock proteins related to the protein processing in the ER pathway were dysregulated in HFD homeostat-

ic microglia, particularly at 1 month. There were so few DEGs overall at 3 months that we could not infer much

biological pathway significance fromKEGGenrichment inHFD versus controlmicroglia. However, at 3months,

complement genes (C1qa, C1qb) were upregulated and among the top 20 most significant DEGs in HFD

versus control microglia. Many of the DEGs and pathways that were implicated in microglia at 1 month and

3 months overlapped with genes that correlated, either positively or negatively, with progressive body weight

gain. These findings encompassed some complement and ribosome genes (positive correlations with body

weight), with genes related to protein processing in the ER (negative correlations with body weight). Microglia

upregulate C1q in response to insult such as ischemic injury58 or in amodel of Alzheimer’s disease.59 The com-

plement cascade’s canonical role is in immune response, but complement is also involved in microglial medi-

ated synaptic pruning in brain development.60 Hippocampal microglia excessively prune synapses in

obesity,15 so it is possible that complement proteins contribute to this aberrant pruning. In support of this hy-

pothesis, microglia contribute to aberrant complement mediated synaptic pruning in Alzheimer’s disease.59

HFD at 3 months also upregulated genes such as Trem2, an Alzheimer’s disease associated microglia

gene,51,61 as well as genes encoding enzymes for processing pro-inflammatory arachidonic acid derived me-

diators, prostaglandins (Hpgd, Ptgs1) and leukotrienes (Ltc4s).
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Microglia DEG fold-changes were low, but relatively consistent with chronic challenge,62 including chronic

HFD.47 Because there were few total DEGs, we also performed WGNCA on all cells, which identified five

gene co-expression modules, four of which differed by diet. KEGG analysis of the brown module, elevated

at 1 month in HFD versus control, and the green module, reduced at 3 months in HFD, identified genes

enriched in protein processing in the ER. The turquoise module, reduced at 1 month in HFD, was enriched

in ribosome genes, and the yellow module, elevated at 1 month and 3 months in HFD versus control, iden-

tified genes enriched in Alzheimer’s disease and B cell receptor signaling pathways. Overall, DEGs expres-

sion in HFDmicroglia was characterized by an earlier ER response signature at 1 month, followed by amore

inflammatory signature at 3 months. These finds align with the correlation analysis of transcript levels with

body weight, which was negative for ER response genes, i.e., transcript levels of ER response genes went

down with progressive obesity, and positive for complement genes, i.e., transcript levels of complement

genes went up with progressive obesity.

Our DEG andWGNCA findings closely align with published bulk RNA-seq data of microglia after 8 weeks of

HFD.47 The study found only 77 DEGs that differed in HFD versus control whole brain microglia and an

upregulated WGNCA module containing heat shock protein genes, such as Hspa8, Dnaja1, Dnajb1,47

which were identified by our study. We also previously found that chronic HFD after 20 weeks induces hip-

pocampal ER stress, enhancing expression of heat shock protein 5 and a member of the canonical inositol

requiring enzyme 1 ER stress response, spliced X-box binding protein 1.63 The link between ER stress and

inflammation is a well-studied phenomenon in obesity.64,65 Saturated fatty acids66,67 activate the macro-

phage ER stress response in obesity, which contributes to a pro-inflammatory phenotype.68 The heat shock

proteins upregulated in our study at 1 month, e.g., Hspa8, Dnaja1, and Dnajb1, are protein folding chap-

erones and co-chaperones, which work to maintain ER homeostasis. Brykczynska et al. proposed that the

increase in microglial ER heat shock proteins after 8 weeks HFD might be a protective mechanism.47 By

examining DEGs, we identified an inflammatory gene expression signature later at 3 months, which aligns

with enhanced immunomodulatory intercellular microglia-to-microglia driven signaling by CellChat. This

inflammatory gene expression signature was characterized by HFD upregulated microglial genes, e.g.,

C1qa, C1qb, Trem2, Hpgd, Ptgs1, and Ltc4s. Possibly, an early microglial ER heat shock protein response

combats increased burden which, if misfolded protein aggregates accumulate, may transition to an ER

stress response capable of inducing inflammation.

Additional investigations are required to elucidate the mechanistic underpinnings in the evolving micro-

glial response in obesity, which our findings suggest may be characterized by an earlier ER response, fol-

lowed by a more chronic inflammatory state. Possibly obesity stressors trigger an adaptive ER response in

attempt to maintain homeostatic function at 1 month, which evolves to a more activated state by 3 months.

Indeed, rats pretreated with a mild ER stress inducer are protected from lipopolysaccharide-induced

cognitive impairment and microglial pro-inflammatory activation, suggesting that mild ER stress may miti-

gate hippocampal sequela of inflammatory challenge.69 Alternatively, obesity may trigger a cascade of

processes with increased demand on the ER, followed by an injurious ER stress response, which activates

inflammatory pathways, as occurs in macrophages in obesity.68 ER stress has been implicated in microglial

mediated inflammation in other disease contexts.70 Further studies that manipulate microglial ER stress are

needed to determine whether it mitigates or contributes to microglial pro-inflammatory activation in

obesity. Moreover, our findings indicate potential therapeutic targets for microglia-mediated cognitive

impairment secondary to obesity. Targeting complement59 and prostaglandin71 in microglia or macro-

phages slows synapse loss and cognitive decline in aging and Alzheimer’s disease models and may, in

addition, constitute promising approaches in obesity-induced cognitive impairment.

In summary, we used morphological and scRNA-seq analyses to determine the effects of obesity on hip-

pocampal microglial activation in mice transitioning from adolescence to adulthood. We found that

HFD did not alter hippocampal CA1 microglial morphology after just 1 month. We demonstrated, for

the first time, the microglial landscape of the healthy adolescent and adult hippocampus in the C57BL/

6J mouse. Although diet did not affect cluster proportions, HFD dysregulated intercellular inflammatory

signaling pathways, an effect which was more pronounced at 3 months. Analysis of gene expression re-

vealed a microglial signature of dysregulated ER protein processing and ribosome pathways at 1 month,

which transitioned into an inflammatory response at 3 months. Identifying these obesity-associated micro-

glial intercellular and intracellular pathways sets the foundation for further studies to elucidate mechanisms

of microglial mediated cognitive deficits in obesity.

ll
OPEN ACCESS

iScience 26, 106164, March 17, 2023 15

iScience
Article



Limitations of the study

Although our study had several strengths, such as analyzing two time points using a single-cell method to

generate granular transcriptomic information in a deeply phenotyped and well characterized model, we

also had several weaknesses. First, significant, DEGs exhibited only small fold-changes and varied by

lmicroglia cell subtype, making it difficult to validate these findings by bulk analysis of microglial isolations

using qPCR. Second, our study only examined transcriptomic changes, and did not provide information on

post-transcriptomic differences related to protein expression. Third, the CellChat analysis was limited to

microglia interactions that occur through ligand-receptor pairs present in the database. Lastly, our study

only includedmale mice; however, differences in immune system by sex warrant investigation of hippocam-

pal microglia in female HFD versus control mice.72,73 Future functional studies of an early ER response

mediated by hippocampal microglia in HFD mice will be needed to validate these study findings.
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S.J., Dror, E., Böni-Schnetzler, M., Hess, C.,
Donath, M.Y., and Paro, R. (2020). Distinct
transcriptional responses across tissue-
resident macrophages to short-term and
long-term metabolic challenge. Cell Rep. 30,
1627–1643.e7. https://doi.org/10.1016/J.
CELREP.2020.01.005.

48. Tarantini, S., Valcarcel-Ares, M.N.,
Yabluchanskiy, A., Tucsek, Z., Hertelendy, P.,
Kiss, T., Gautam, T., Zhang, X.A., Sonntag,
W.E., de Cabo, R., et al. (2018). Nrf2
deficiency exacerbates obesity-induced
oxidative stress, neurovascular dysfunction,
blood-brain barrier disruption,
neuroinflammation, amyloidogenic gene
expression, and cognitive decline in mice,
mimicking the aging phenotype. J. Gerontol.
A Biol. Sci. Med. Sci. 73, 853–863. https://doi.
org/10.1093/GERONA/GLX177.

49. Braeuer, R.R., Walker, N.M., Misumi, K.,
Mazzoni-Putman, S., Aoki, Y., Liao, R., Vittal,
R., Kleer, G.G., Wheeler, D.S., Sexton, J.Z.,
et al. (2021). Transcription factor FOXF1
identifies compartmentally distinct
mesenchymal cells with a role in lung allograft
fibrogenesis. J. Clin. Invest. 131, e147343.
https://doi.org/10.1172/JCI147343.

50. Hammond, T.R., Dufort, C., Dissing-Olesen,
L., Giera, S., Young, A., Wysoker, A., Walker,
A.J., Gergits, F., Segel, M., Nemesh, J., et al.
(2019). Single-cell RNA sequencing of
microglia throughout the mouse lifespan and
in the injured brain reveals complex cell-state
changes. Immunity 50, 253–271.e6. https://
doi.org/10.1016/j.immuni.2018.11.004.

51. Keren-Shaul, H., Spinrad, A., Weiner, A.,
Matcovitch-Natan, O., Dvir-Szternfeld, R.,
Ulland, T.K., David, E., Baruch, K., Lara-
Astaiso, D., Toth, B., et al. (2017). A unique
microglia type associated with restricting
development of Alzheimer’s disease. Cell
169, 1276–1290.e17. https://doi.org/10.1016/
j.cell.2017.05.018.

52. Zheng, J., Ru, W., Adolacion, J.R., Spurgat,
M.S., Liu, X., Yuan, S., Liang, R.X., Dong, J.,
Potter, A.S., Potter, S.S., et al. (2021). Single-
cell RNA-seq analysis reveals compartment-
specific heterogeneity and plasticity of
microglia. iScience 24, 102186. https://doi.
org/10.1016/J.ISCI.2021.102186.

53. Marsh, S.E., Walker, A.J., Kamath, T., Dissing-
Olesen, L., Hammond, T.R., de Soysa, T.Y.,
Young, A.M.H., Murphy, S., Abdulraouf, A.,
Nadaf, N., et al. (2022). Dissection of
artifactual and confounding glial signatures
by single-cell sequencing of mouse and
human brain. Nat. Neurosci. 25, 306–316.
https://doi.org/10.1038/s41593-022-01022-8.

54. Borst, K., Dumas, A.A., and Prinz, M. (2021).
Microglia: immune and non-immune
functions. Immunity 54, 2194–2208. https://
doi.org/10.1016/J.IMMUNI.2021.09.014.

55. O’Callaghan, P., Li, J.P., Lannfelt, L., Lindahl,
U., and Zhang, X. (2015). Microglial heparan
sulfate proteoglycans facilitate the cluster-of-
differentiation 14 (CD14)/Toll-like receptor 4
(TLR4)-Dependent inflammatory response.
J. Biol. Chem. 290, 14904–14914. https://doi.
org/10.1074/JBC.M114.634337.

ll
OPEN ACCESS

18 iScience 26, 106164, March 17, 2023

iScience
Article

https://doi.org/10.1016/j.celrep.2014.11.018
https://doi.org/10.1016/j.celrep.2014.11.018
https://doi.org/10.1007/s00125-012-2573-6
https://doi.org/10.1007/s00125-012-2573-6
https://doi.org/10.1242/DMM.049337
https://doi.org/10.1242/DMM.049337
https://doi.org/10.1186/S13098-021-00647-2
https://doi.org/10.1186/S13098-021-00647-2
https://doi.org/10.1242/dmm.037374
https://doi.org/10.1242/dmm.037374
https://doi.org/10.1523/ENEURO.0266-18.2018
https://doi.org/10.1523/ENEURO.0266-18.2018
https://doi.org/10.1146/ANNUREV-IMMUNOL-051116-052358
https://doi.org/10.1146/ANNUREV-IMMUNOL-051116-052358
https://doi.org/10.3389/fcell.2016.00072
https://doi.org/10.3389/fcell.2016.00072
https://doi.org/10.1126/SCIENCE.1110647
https://doi.org/10.1126/SCIENCE.1110647
https://doi.org/10.1038/s41467-021-21246-9
https://doi.org/10.1038/s41467-021-21246-9
https://doi.org/10.3389/FIMMU.2019.00711
https://doi.org/10.3389/FIMMU.2019.00711
https://doi.org/10.1007/BF00202069
https://doi.org/10.1007/BF00202069
https://doi.org/10.1023/A:1006928830251
https://doi.org/10.1023/A:1006928830251
https://doi.org/10.1186/1742-4933-2-11
https://doi.org/10.1186/1742-4933-2-11
https://doi.org/10.1369/0022155417742147
https://doi.org/10.1369/0022155417742147
https://doi.org/10.1523/JNEUROSCI.1781-07.2007
https://doi.org/10.1523/JNEUROSCI.1781-07.2007
https://doi.org/10.1038/s41598-020-70534-9
https://doi.org/10.1038/s41598-020-70534-9
https://doi.org/10.1016/J.TIPS.2021.11.015
https://doi.org/10.1016/J.TIPS.2021.11.015
https://doi.org/10.1186/1749-8104-3-34
https://doi.org/10.1016/J.BBAMCR.2016.03.018
https://doi.org/10.1016/J.BBAMCR.2016.03.018
https://doi.org/10.1101/GAD.1653708
https://doi.org/10.1101/GAD.1653708
https://doi.org/10.1002/JCB.240450403
https://doi.org/10.1016/J.CELREP.2020.01.005
https://doi.org/10.1016/J.CELREP.2020.01.005
https://doi.org/10.1093/GERONA/GLX177
https://doi.org/10.1093/GERONA/GLX177
https://doi.org/10.1172/JCI147343
https://doi.org/10.1016/j.immuni.2018.11.004
https://doi.org/10.1016/j.immuni.2018.11.004
https://doi.org/10.1016/j.cell.2017.05.018
https://doi.org/10.1016/j.cell.2017.05.018
https://doi.org/10.1016/J.ISCI.2021.102186
https://doi.org/10.1016/J.ISCI.2021.102186
https://doi.org/10.1038/s41593-022-01022-8
https://doi.org/10.1016/J.IMMUNI.2021.09.014
https://doi.org/10.1016/J.IMMUNI.2021.09.014
https://doi.org/10.1074/JBC.M114.634337
https://doi.org/10.1074/JBC.M114.634337


56. Borggrewe, M., Kooistra, S.M., Noelle, R.J.,
Eggen, B.J.L., and Laman, J.D. (2020).
Exploring the VISTA of microglia: immune
checkpoints in CNS inflammation. J. Mol.
Med. 98, 1415–1430. https://doi.org/10.1007/
S00109-020-01968-X.

57. Zöller, T., Schneider, A., Kleimeyer, C.,
Masuda, T., Potru, P.S., Pfeifer, D., Blank, T.,
Prinz, M., and Spittau, B. (2018). Silencing of
TGFb signalling in microglia results in
impaired homeostasis. Nat. Commun. 9,
4011. https://doi.org/10.1038/s41467-018-
06224-y.
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3DMorph Script MATLAB, Elisa M York https://github.com/ElisaYork/3DMorph

Prism 9 Graph Pad by Dotmatics https://www.graphpad.com/scientific-

software/prism/

ImerTest R package v4.1.1 CRAN https://cran.r-project.org/web/packages/
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RESOURCE AVAILABILITY

Lead contact

Requests for or questions about resources or reagents can be directed to the lead contact, Eva L. Feldman

(efeldman@med.umich.edu).

Materials availability

This study did not generate new materials.

Data and code availability

scRNA-seq data generated from this study has been deposited into the NCBI Gene Expression Omnibus

with accession ID GSE217464. The data analysis codes can be found at: https://github.com/hurlab/

HF_iScience. Any additional information required to reanalyze the data reported in this paper is available

from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

The HFDmodel is an established and deeply phenotypedmousemodel of diet-induced obesity,27,28 which

we have previously used in our studies.29 Male C57BL/6J mice were obtained (Jackson Laboratory, catalog

# 000664) at 4 weeks (wk) of age (n=40) and housed in a specific-pathogen-free facility at the Unit for Lab-

oratory Animal Medicine (ULAM) at the University of Michigan. Mice were housed in cages with littermates

on paper bedding at 20G 2�C and a 12/12-h light/dark cycle and weremonitored daily by ULAM staff. Mice

were acclimated for 1 wk, and at 5 wk of age were randomized to four groups: Control 1 month (mo) and

3 mo and HFD 1 mo and 3 mo (Figure 1A). Control diet (10% fat, 70% carbohydrates, 20% protein; Research

Diets, catalog #D12450J) or HFD (60% fat, 20% carbohydrates, 20% protein; Research Diets, catalog

#D12492) were provided ad libitum, andmice also had free access to water. All procedures were performed

according to a protocol approved by the University of Michigan’s Institutional Animal Care and Use Com-

mittee (IACUC; PRO00008116, approved 2 May 2018).
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Glucometers AlphaTrak, Abbott Laboratories Cat#ART12303

Blood Glucose Test Stripes AlphaTrak, Abbott Laboratories Cat#71681-01

Sterile .5mm Silanized Glass Pasteur Pipette BrainBits Cat#NC0319875

70mm Nylon Cell Strainer Falcon Cat#352350

MA900 Multi-Application Cell Sorter Sony Ma900

Countess II Automated Cell Counter Thermo Fisher Scientific Cat#AMQAX1000

Chromium Next GEM Chip G 10X Genomics Cat#2000177

Chromium Controller 10X Genomics Cat#PN-120223;120246

Tapestation 4200 Agilent Cat#G2991AA

NovaSeq 6000 Illumina Cat#20013850

Leica Stellaris 8 Falcon Confocal Microscope Leica https://www.leica-microsystems.com/

ppc/confocal/na/confocal-reimagined/

?nlc=20211206-SFDC-013738&utm_

source=google&utm_medium=cpc

&utm_campaign=Confocal_Stellaris_

Generic&utm_content=text_ad&utm_

term=confocal%20microscopy&gclid=

Cj0KCQjw0PWRBhDKARIsAPKHFGhl

shKjfHERcztyilMGquhOJWVh_

dLX-vbhDkiVvysxcnuhOYqhugIa
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METHOD DETAILS

Mouse metabolic phenotyping

HFD and control mice were weighed weekly, except at weeks 6 and 9. Baseline glucose tolerance tests

(GTTs) were performed for all animals at 5 wk of age. 1 mo control and HFD mice had GTTs at the 1 mo

endpoint; 3 mo control and HFD mice had GTTs at both 1 mo and 3 mo endpoints. For GTTs, mice

were fasted for 4 hours (h), and blood glucose levels were measured from one drop of tail blood using a

glucometer (AlphaTrak, Abbott Laboratories) at baseline and at 15, 30, 60, and 120minutes (min) after intra-

peritoneal injection of 1 g/kg body mass glucose in normal saline. Additional metabolic phenotyping

included terminal plasma insulin, cholesterol, triglycerides, phospholipids, and non-esterified fatty acids

performed by the Mouse Metabolic Phenotyping Center at the University of Cincinnati.

Microglial isolation, sorting, and scRNA-seq

Mice were euthanized using an IACUC approved protocol. Mice were injected with intraperitoneal pento-

barbital (Fatal-Plus, Vortech Pharmaceuticals) and perfused with Hanks’ balanced salt solution (HBSS;

Thermo Fisher, catalog # 14175-145) supplemented with the transcription inhibitors actinomycin D

(5 mg/ml; Sigma, catalog # A1410) and triptolide (10 mM; Sigma, catalog #T3652 or Cayman Chemical

#11973), an approach described byMarsh et al.53 All subsequent microglial isolation steps were performed

on ice or at 4�C when possible and in a laminar flow hood or biological safety cabinet. Transcription inhib-

itors and ice were used to minimize processing-associated microglial activation to preserve an in vivo tran-

scriptional state. Hippocampi were dissected from HFD and control mice (n=6 per group) and minced on

ice. A single cell suspension was prepared by a papain enzymatic digestion at 37�C followed by trituration

(1 mg/ml; Worthington catalog # LS003119) in Hibernate A-Calcium-Magnesium (BrainBits, catalog #

HACAMG) media with Glutamax (�0.5 nM; Gibco, catalog # 35050061). Transcription inhibitors actino-

mycin D, triptolide, and anisomycin (27.1 mg/ml; Sigma, catalog # A9789) were used until the end of the

enzymatic digestion step.

Digested tissue was serially triturated at room temperature with a fire-polished pipette twice followed by a

smaller diameter salinized �0.5 mm fire polished pipette twice (BrainBits, catalog # FPP). The cell suspen-

sion was passed through a wet 70 mm strainer on ice and then pelleted. Microglia were enriched by resus-

pending in 40% Percoll and centrifuging at 500g for 30minat room temperature. The cell pellet was washed

in ice-cold HBSS, centrifuged for 10minat 300gat 4�C, and resuspended in ice-cold flow sorting buffer (1X

PBS [phosphate buffered saline], 2% fetal bovine serum, 1 mM ethylenediaminetetraacetic acid). Cells were

moved to a 96-well plate, blocked with TruStain FcX� (anti-mouse CD16/32) (Biolegend, catalog # 101320)

for 30 min on ice, and then incubated with APC-CD45 (Biolegend, catalog # 103112) and APC-Cy7-CD11b

(Biolegend, catalog # 101226) at 1:50 in the presence of 1 mg/100 ml TotalSeq-B anti-mouse Hashtag anti-

bodies (Biolegend, catalog #s 155831, 155833, 155835) for 30 min on ice.

After staining, cells were washed with 200 ml ice-cold flow sorting buffer for 10minat 4�C and resuspended

for flow sorting on the Sony MA900 Cell Sorter by the University of Michigan Flow Cytometry Core. The

FACS sorting strategy first sorted cells by froward and side scatter, to exclude mostly dead or dying cells

along with cellular debris. Gating then selected cells that were CD45low and CD11b+. Tagged control and

HFD samples were combined on 10X chips to mitigate batch effects. scRNA-seq was performed by the

Advanced Genomics Core at the University of Michigan using the 10X Genomics Chromium system (10X

Genomics): An automated counter (Countess II, Thermo Fisher) was used to quantify cells/ml. The single

cell suspension was then diluted to a final concentration ranging from 700 to 1000 cells/ml. Using the Chro-

mium Controller, 3’ libraries of single cells were created leveraging 3’ V3.1 chemistry using NextGEM Chip

G reagents, according to the manufacturer’s protocol (all from 10X Genomics). The quality of the final li-

brary was evaluated by Tapestation 4200 (Agilent) and Kapa qPCR (Roche) was used to quantify libraries.

Pooled libraries were sequenced using 150 bp paired-end format (Illumina NovaSeq 6000). De-multiplexed

Fastq files were generated (Bcl2fastq2 Conversion Software, Illumina) and reads were aligned and counted

(CellRanger Pipeline, 10X Genomics).

scRNA-seq data alignment and sample aggregating

Raw data from 4,644 (HFD 1 mo), 5,024 (control 1 mo), 1,366 (HFD 3 mo), and 1,314 (control 3 mo) cells were

obtained from sequencing. Low-quality reads were filtered out (quality less than Q30) and reads were then

mapped to the GRCm38 mouse reference genome (CellRanger Pipeline81 version 4.0.0, 10X Genomics).
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The individual sample output files from CellRanger Count were read into Seurat v3.76 The hashtag oligo

(HTO)82 raw counts of each cell were normalized using a centered log ratio transformation across cells.

Cells were then demultiplexed by using the HTODemux function in Seurat,76 and droplets with two cells

(doublets), more than two cells, or no cell (empty droplet) were subsequently removed. Cells were

excluded from downstream analysis based on filtering by the following criteria: unique molecular identifier

counts per cell <200, gene count per cell >7500, and the fraction of transcripts mapped to mitochondrial

genes >25% (to exclude dead or dying cells). Filtering resulted in 4,555 HFD cells at 1 mo, 4,945 control cells

at 1 mo, 1,292 HFD at 3 mo, and 1,255 control cells at 3 mo, which were included in subsequent analyses.

The difference in microglia counts at the 1- and 3-mo time points may have arisen to biological differences

in the number of brain microglia in mice at 1 versus 3 mo,83,84 or from technical variability, although every

effort was made to mitigate contributions from this. To account for differing cell numbers at each time

point, data were normalized, and ratios were reported for changes in cell type rather than changes in ab-

solute number. Count data were then normalized using the NormalizeData function in Seurat with the

default setting.

Dimension reduction, clustering, and visualization

Principal component analysis (PCA) was performed based on the top 2,000 most variable genes. The

optimal principal component (PC) number was selected based on the point where the percent change

in variation in consecutive PCs was lower than 0.1%. Then, UniformManifold Approximation and Projection

(UMAP) was performed on the PCs to visualize cells, and graph-based clustering was performed on the

PCA-reduced data.

Celltype annotation and differential expression analysis

To assign a cell type identity to each cluster, the cluster gene markers were identified using the

FindAllMarkers function in Seurat. Cell types were assigned based on the cluster gene markers using

the CellMarker75 and PanglaoDB74 databases and information available in the relevant literature. DESeq277

was used to identify differentially expressed genes (DEGs) between control and HFD cells for all microglia

cell types combined and for each cell type separately. Genes were considered differentially expressed if

the adjusted P-value was lower than 0.05. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment

was performed using the richR package (https://github.com/hurlab/richR) and an adjusted P-value <0.05

was chosen as the cutoff value to select significant KEGG pathways.

Cell-to-cell communication

CellChat34 was used to examine communication among cells. CellChat uses network analysis and pattern

recognition to predict major signaling inputs to cells and signaling outputs from cells. CellChat also pre-

dicts how these cells and input and output signals coordinate. First, the software identified the significant

ligand-receptor pairs across cell clusters, which were classified into signaling pathways. Next, it predicted

incoming signals to specific cell clusters and outgoing signals from specific cell clusters. The global

communication pattern was also predicted by pattern recognition approaches. Signaling pathways were

then organized by similarity measures and manifold learning from topological perspectives. Finally,

CellChat calculated the communication probability of a signaling pathway by summarizing the probabili-

ties of its associated ligand-receptor pairs.

Weighted gene co-expression network analysis

Weighted gene co-expression network analysis (WGCNA)85 was performed to build signed co-expression

networks using the WGCNA R package. The co-expression network was built using the top 3,000 most var-

iable genes selected using the ‘‘mostVar’’ function from the transcripTools R package. Batch correction was

done using the ‘‘ComBat’’ function from the sva R package. Soft power 6 was chosen by WGCNA’s ‘‘pick-

SoftThreshold’’ function to calculate the adjacency matrix.

Correlation analysis of body weights to transcript levels

Correlation analysis was performed by Spearman correlation. Body weights at 1 mo and 3 mo were corre-

lated to transcript levels at 1 mo and 3 mo in all cell clusters. Significant correlations were assessed by

Spearman’s rank correlation rho. Significant correlated transcripts with Benjamini-Hochberg corrected

P-value<0.05 were used as input for KEGG functional enrichment analysis using richR package. The signif-

icant pathways with an adjusted P-value<0.05 were selected to generate dot plots.
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Immunohistochemistry and microglial morphology analysis

One brain hemisphere from each mouse was dissected at the time of sacrifice and fixed in 4% paraformal-

dehyde for�48 h. Each brain was then placed in 10% sucrose for�24 h, followed by 20% sucrose for�24 h,

and 30% sucrose for a minimum of 24 h. Sections (50 mm) were cut on a cryostat and immunohistochemistry

was performed on floating tissue. Sections were stained with rabbit anti-Iba1 (1:1000; Wako, catalog # 019-

19741) at 4�C overnight, followed by goat-anti rabbit Alexa fluor Plus 594 secondary antibody (1:2000; In-

vitrogen, catalog # A32740) for 2hat room temperature followed by a Hoechst nuclear stain for 8 min.

Z-stack images were acquired at 40X objective with oil immersion on a Leica Stellaris 8 Falcon Confocal Mi-

croscope. Z-stacks (25.5 mm) were pre-processed using Imaris Software (Oxford Instruments). The surface

rendering tool was used to identify intact microglial cells, and a mask was created and manually edited to

extract the fluorescent signal of full intact cells from the raw data, while eliminating cell branches not asso-

ciated with cell somas. An open microscopy environment TIF file was then run through an adapted

3DMorph script using MATLAB.30 Objects misidentified as cells and misrepresented cells were manually

removed from the final dataset. For each animal (HFD n=4, control n=3), 3 CA1 images were analyzed,

and a total of 34 to 46 cells per animal were included in the final analysis.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses of mouse metabolic phenotyping was performed in Prism 9. For HFD versus control

comparisons within timepoints, normality was tested using the Shapiro-Wilk test. Welch’s t-test was per-

formed to detect differences between groups for data with normal distributions, and the Mann-Whitney

test performed for non-normally distributed data. For repeated measurements (GTTs, body mass)

repeated measures 2-way ANOVA with Sidak’s multiple comparisons test was performed. For microglia

morphology measures, linear mixed effects models with random animal-specific intercepts were used to

detect differences between diet groups. The lmerTest package in R v4.1.1 was used to fit the mixed effects

models andmodel parameter estimates were determined using themaximum likelihoodmethod.86 T-tests

calculated using Satterthwaite’s degrees of freedom method were performed to assess differences in

morphologymeasurements between diet groups. Histograms provided visual confirmation of assumptions

of normality. The significance cutoff for all comparisons was P<0.05.
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