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Abstract: The snowy Mespilus, or serviceberry (Amelanchier ovalis Medik., Rosaceae) represents a
neglected and underutilized small fruit tree species with high nutritional value. In this work, we
present the results of a long-term study facilitating the sustainable exploitation of A. ovalis as a new
germplasm resource from the Greek flora. Ten wild-growing population samples of A. ovalis have
been collected from natural habitats in northern Greece. Asexual propagation trials on these materials
delivered successful propagation (83.3% rooting) on a selected genotype via leafy cuttings of young,
primary, non-lignified soft wood with the application of the rooting hormone. The ex situ cultivation
potential of the selected genotype has been evaluated under distinct fertilization regimes in a pilot
field trial. Three-year results of this ongoing trial have shown that A. ovalis does not require external
nutrient enhancement to be established during its early stages since plant growth rates between
conventional fertilization and control plants were similar for the first two years and higher compared
to organic fertilization. Conventional fertilization delivered higher fresh fruit production in the third
year, with higher fruit number and fruit size compared to organic fertilization and control plants. The
phytochemical potential of the cultivated genotype was assessed via the total phenolic content and
radical scavenging activity of separate extracts from leaves, twigs, flowers, and young fruits, which
revealed that individual plant organs have strong antioxidant activity despite their moderate total
phenolic content. The multifaceted approach applied herein has provided novel data that may set
the framework for further applied research toward the sustainable agronomic exploitation of Greek
A. ovalis as a diversified superfood crop.

Keywords: snowy mespilus; serviceberry; native germplasm resources; superfood fruit crops; asexual
propagation; ex situ conservation; nutrient management

1. Introduction

In the context of sustainable agronomic exploitation, the native, neglected, and under-
utilized germplasm resources of different regions can convey significant potential as sources
of genetic material [1]. A wide variety of plant species with significant agro-alimentary
potential can be found in several countries’ native germplasm pools, and relevant research
is ever-increasing to date [1–8], particularly on halophytic species [9]. In addition, the
potential for strategic utilization of native germplasm resources has recently been brought
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forward for several ornamental, medicinal, and nutraceutical species across the Mediter-
ranean basin and should also be extended to poorly documented rare and locally endemic
species [1,6,7,10]. Native tree species of different regions in particular can produce fruits of
high nutraceutical value as a natural source of antioxidants. These antioxidants have the
potential to convey significant health benefits and thus can be characterized as superfoods
upon consumption [8,11,12]. Greece is a well-known biodiversity hotspot in the context
of Europe and the Mediterranean region [6]. Currently, coordinated efforts are underway
to identify, select, domesticate, and utilize neglected native plant germplasm of poten-
tially high agronomical value based on its nutraceutical potential through a multifaceted
evaluation framework [6,8,13,14].

The acquisition of data that can set the groundwork for exploring the utilization poten-
tial of native germplasm resources usually employs distinct and consecutive stages. This
includes documentation of selected materials that should be performed in situ, develop-
ment of asexual propagation protocols coupled with ex situ conservation of the produced
material, and cultivation trials. The latter provides essential data regarding the potential
for agronomical exploitation on a commercial scale as well as valuable materials for new
crops and pre-breeding efforts [6,13,14]. Propagation-wise, successful asexual propagation
protocols via cuttings with the use of external hormone application, such as indole-3-butyric
acid (IBA) have already been demonstrated for several native phytogenetic resources in
Greece and elsewhere [13,15–19]. Cultivation-wise, new native species originating directly
from the wild flora of Greece or other Mediterranean areas have been recently assessed
in pilot trials examining fertilization needs and testing different regimes [13–15,20–23].
Cultivation-wise, orchard management practices have long been studied in a plethora of
mainstream tree crops across the Mediterranean and beyond, evidencing the benefits of
diversified management systems compared to conventional ones, such as the increase of
soil organic C and soil N through organic fertilization [24,25].

Species-wise, this study is focused on Amelanchier ovalis Medik (Rosaceae), which
is commonly known as snowy Mespilus, serviceberry, or European juneberry (https://
wfoplantlist.org/plant-list/taxon/wfo-0001003268-2022-12 accessed on 18 February 2023).
This species naturally occurs throughout central and southern Europe, in sub-Mediterranean
areas, and in south-west Asia [26]. A. ovalis is a Greek native deciduous shrub or small
tree naturally occurring in bushland areas and along forest edges in rocky (limestone)
terrain [27]. Natural tree heights can range from 1.5 to 3 m, and primary soft wood is
covered with hair that turns brown as it develops. The leaves can be 2 to 7 cm long; they are
ovate and serrate, with trichomes on the abaxial side when young [28]. A. ovalis in Greece
is in flower from April through June depending on region, aspect, and altitude, showing
impressive inflorescences of small hermaphrodite flowers with white petals. The flowers
develop into small (5–15 mm in diameter) pomes of initially crimson/purple color that turn
reddish-blackish during full maturity. The fruit taste is relatively mild due to its low acid
and sugar content. However, its fruits are pleasantly edible and are associated with high nu-
tritional and antioxidant value stemming from high levels of phenolic acids, anthocyanins,
and flavonols [29–31]. A. ovalis is rather neglected and underutilized compared to the
closely related North American A. alnifolia (Nutt.) Nutt. ex M. Roem., commonly known as
Saskatoon berry. The latter formed an integral part of the traditional native American diet
and medicine, with various parts of the plant being used to treat gastrointestinal ailments,
infections, and complications of pregnancy and labor [32]. Recent studies, however, have
revealed the beneficial effect of A. ovalis fruits on hematopoiesis as well as the antibacterial
activity of the extracts from its leaves and branches [33–35]. Three subspecies of A. ovalis
have been recorded in Greece (https://portal.cybertaxonomy.org/flora-greece/intro ac-
cessed on 18 February 2023), namely A. ovalis subsp. cretica (Willd.) Maire & Petitm. with
East-Mediterranean range; A. ovalis subsp. ovalis with European range which concerns
the current study; and A. ovalis subsp. integrifolia (Boiss. & Hohen) with almost circum-
Adriatic range (http://ww2.bgbm.org/EuroPlusMed/PTaxonDetail.asp?NameCache=
Amelanchier%20ovalis&PTRefFk=7300000 accessed on 18 February 2023). However, none
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is cultivated or agronomically exploited in any way. Additionally, any literature review re-
garding the asexual propagation of different Amelanchier spp. may only furnish information
about the North American species A. alnifolia and A. laevis Wiegand. Both of these propa-
gated with commercially acceptable results (>50% rooting) via the use of IBA on softwood
cuttings under mist [36,37] or A. canadensis (L.) Medik., which showed better propagation
performance [38]. To the best of our knowledge, there is no species-specific knowledge on
the propagation and cultivation of A. ovalis. Only limited data on A. ovalis can be found,
originating from in situ studies examining the climatic effects on the phenology during the
growth cycle of wild European populations of A. ovalis in SE Spain [39,40].

In the above-mentioned framework, the current investigation aims to provide data for
the first time on Greek A. ovalis germplasm for its sustainable agronomic exploitation. In
particular, this study aimed at: (i) developing an asexual propagation protocol to secure the
transferability of agronomical traits coupled with fast, reliable, and low-cost production of
high volumes of plant material; (ii) launching a long-term pilot orchard-type cultivation
trial with distinct fertilization management regimes tested under a diversified tree crop
management framework (still ongoing); and (iii) evaluating the phytochemical potential of
different organs of A. ovalis from cultivated material at the premises of the Balkan Botanic
Garden of Kroussia (BBGK), Institute of Plant Breeding and Genetic Resources (IPBGR),
Hellenic Agricultural Organization Demeter (ELGO-Dimitra) in northern Greece.

2. Results
2.1. Asexual Propagation of the Greek Native Germplasm

Hardwood-type propagation material collected from wild-growing populations of
A. ovalis subsp. ovalis failed to root in all cases. Soft-wood cuttings produced limited
rooting, which in most cases, was very low (≤5%) except for genotype GR-1-BBGK-04,2547,
which produced comparatively higher rooting rates (20%) during preliminary trials with
the application of 4000 ppm IBA in early summer (with no pre-treatment). As such, A. ovalis
subsp. ovalis genotype GR-1-BBGK-04,2547 was selected for further experimentation.

Concerning the two experiments conducted in 2020, the cuttings from A. ovalis subsp.
ovalis genotype GR-1-BBGK-04,2547 that was pre-treated with OFS failed to root in all
cases in both experiments. The same holds true for the 0.25% powder IBA treatment. In
both experiments, rooting was achieved only with external hormone application without
pre-treatment. In the first experiment, hormone treatments significantly affected rooting
rates and the number of emerged roots on rooted cuttings (Table 1, p < 0.05). Rooting rates
reached 83.3% after 28 days under 4000 ppm IBA and 2500 ppm NAA treatments without
any significant differences in root number and length of rooted cuttings (Table 1, p < 0.05).
Similarly, 2000 ppm IBA and 5000 ppm NAA showed 66.6% rooting with the latter showing
a higher number of roots on rooted cuttings that surpassed all other treatments without,
however, differences in root length (Table 1, p < 0.05). The highest IBA treatment (6000 ppm)
showed the lowest rooting frequency (50%) (Table 1, Supplementary Materials Figure S1).
In the second experiment, in which cuttings with higher levels of lignification were used
(Supplementary Materials Figure S1), fewer cuttings managed to root. This was accom-
panied by the highest rooting treatments being 4000 ppm IBA and 2500 ppm NAA, both
reaching 33.3% rooting after 30 days without differences in root length of rooted cut-
tings, followed by 2000 ppm IBA with 16.6% rooting. This occurred while the rest of the
treatments (including the control) failed to root (Table 1, p < 0.05).

2.2. Total Phenolic Content and Antioxidant Activity

Regarding the Total Phenolic Content (TPC), no statistically significant difference was
observed between the examined samples of leaves, twigs, and young fruits. Flowers, on
the other hand, had a significantly lower TPC value (Table 2, p < 0.05). As far as the extracts’
antioxidant activity is concerned, no significant disparity between plant parts was observed,
as all extracts exhibited remarkable radical scavenging capacity (Table 2).
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Table 1. Overview of the rooting results for A. ovalis subsp. ovalis genotype GR-1-BBGK-04,2547
with rooting frequencies and the corresponding rooting attributes in terms of root number and
average root length (±SEM, p < 0.05) of the rooted cuttings for each hormone treatment in the
two experiments conducted in 2020. Cuttings in both experiments were leafy soft-wood sections
of primary stem growth with cuttings for the second experiment having a more advanced level
of lignification. Rooting conditions were under automated mist within a greenhouse at ambient
temperature and relative humidity (RH) was maintained at >85%. None of the combinations of
hormone treatment and pre-treatment were successful. Thus, only the results from treatments under
which cuttings managed to root in either of the two experiments are shown. The control treatments
(i.e., no hormone treatment or pre-treatment application), failed to root in both experiments.

Experiment Hormone
Treatment (%) Rooting Mean Root

Number *
Mean Root

Length (mm)

1

Control 0.0 - -
2000 ppm IBA 66.6 6.25 (±0.75) a 31.27 (±5.88) A
4000 ppm IBA 83.3 † 6.40 (±2.03) a 22.26 (±4.23) A
6000 ppm IBA 50.0 6.66 (±0.33) a 34.74 (±6.13) A

2500 ppm NAA 83.3 † 6.20 (±0.58) a 24.24 (±3.27) A
5000 ppm NAA 66.6 36.50 (±16.65) b 18.42 (±3.69) A

2

Control 0.0 - -
2000 ppm IBA 16.6 6.00 (±0.00) ** 33.50 (±0.00)
4000 ppm IBA 33.3 † 11.00 (±0.00) 31.18 (±4.54) A
6000 ppm IBA 0.0 - -

2500 ppm NAA 33.3 † 9.00 (±0.00) 18.11 (±2.66) A
5000 ppm NAA 0.0 - -

The † symbol denotes the highest rooting frequencies following pairwise comparisons of the observed rooting
frequencies via Pearson X2 tests (a = 0.05) conducted for each experiment separately. * Values within each column
for each experiment that do not share the same letter are significantly different (Tukey HSD, p < 0.05 for the first
experiment, Dunnet’s T3 test p < 0.05 for the second experiment), with lowercase letters for root number and
capital letters for average root length. The analysis was conducted for each experiment separately. ** In cases
where only one replicate cutting managed to root, the standard error of the means for root number and length is
0.0 because they stem from a single value, as is the standard error of the means for root numbers that stem from
two identical values; as such, those means are not included in the post-hoc test.

Table 2. Total phenolic content (TPC—mg GAE L−1 extract) and antioxidant activity (AA) expressed
as Radical Scavenging Activity (% RSA) were measured in four different plant organs of A. ovalis
subsp. ovalis native Greek genotype GR-1-BBGK-04,2547.

Plant Organ
Phytochemical Attribute

Total Phenolic Content
(mg GAE L−1)

Antioxidant Activity
(%RSA)

Leaves 37.639 (4.432) a 93.239 (1.609) a
Twigs 32.476 (3.966) a 93.431 (0.626) a

Flowers 9.468 (1.675) b 92.056 (1.596) a
Young fruits 33.214 (3.108) a 93.136 (1.541) a

Values represent mean values with standard deviation in parentheses (SD) of samples analyzed in triplicate (n = 3);
values within the same column that do not share the same letter are significantly different (Tukey post-hoc test,
p < 0.05).

The 1H-NMR spectra of the extracts (Figure 1) revealed the presence of phenolic
compounds (both as aglycones and glycosides) in all examined plant organs of A. ovalis
subsp. ovalis. In specific, trans-caffeic acid derivates were identified by the characteristic
pair of trans- olefinic proton signals at 7.56 and 6.29 ppm (d, J = 15.9 Hz), whereas signals
that correspond to ABX systems and other aromatic protons (at 6.20–8.10 ppm), as well as
signals between 3.20–5.55 ppm that correspond to sugar protons, attested to the presence
of other phenolic acids and flavonoids.
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Figure 1. 1H-NMR spectra of hydromethanolic extracts of (A) leaves, (B) twigs, (C) flowers, and
(D) young fruits of A. ovalis subsp. ovalis genotype GR-1-BBGK-04,2547 (CD3OD, 500 MHz). Signals
between 6.20–8.10 ppm correspond to aromatic protons of caffeic acid, other phenolic acids, and
flavonoids, whereas signals between 3.20–5.55 ppm are attributed to sugar protons.

2.3. Field Cultivation Trial under Different Fertilization Regimes

Individuals of A. ovalis subsp. ovalis genotype GR-1-BBGK-04,2547 that were produced
via cuttings were successfully established at the pilot field in IPBGR. Concomitantly with
planting, the fertilization trial commenced. Overall, the results showed that the fertilization
treatments had a significant effect on plant growth in terms of plant height. These effects
seemed to change in magnitude at different times during each growing season and from
one year to the next during the first three years of the trial, which is actually a big part of
the young growth stage of the cultivated trees (Figures 2 and 3).

During the first year of the trial (2020), the results showed that for the first five months
after planting (March 2020), the individuals grew significantly in size, but the fertilization
treatments used had no effect. This was statistically expressed as a significant effect of the
time of the season (i.e., growth through time) but with no treatment effect, according to
repeated measures ANOVA on plant height data that were recorded at regular intervals
after planting (Figure 2, p < 0.05). However, after the 5th month (August 2020), significant
differences between the organic fertilization treatment and the other two (control and
conventional fertilization) were detected following discreet statistical testing for each
measurement date, with organic fertilization exhibiting lower growth rates (Figure 2,
p < 0.05). In August 2020, the trees were already 12 months old, and until the end of the
season and the start of leaf shedding at the onset of dormancy, the trees reached 1.11 m,
1.04 m, and 0.67 m mean height in the control, conventional fertilization, and organic
fertilization treatments, respectively (Figure 2, p < 0.05).

Similarly, during the second year (2021), the time of season showed (as expected)
a significant effect on plant height. All fertilization treatments showed similar growth
patterns, with a significant increase in height between May and June/July 2021. In addition,
organic fertilization was significantly lower throughout the growing season from March–
October 2021 (Figure 2, p < 0.05). At the end of the 2021 growing season, the trees in the
treatments reached 1.9 m, 1.85 m, and 1.41 m mean height in the control, conventional
fertilization, and organic fertilization groups, respectively (Figure 2, p < 0.05).
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Figure 2. Plant growth patterns expressed as average plant height (cm) for Amelanchier ovalis subsp.
ovalis genotype GR-1-BBGK-04,2547 during the three years of the pilot field trial (2020, 2021, and 2022)
for the three fertilization treatments applied (control, conventional, and organic). Standard errors of
the means are shown on the graphs (p < 0.05) as well as the respective p values of a repeated-measures
ANOVA conducted on treatment effects over time (within-subjects effects) separately for each year
(p < 0.05). Asterisks denote dates when significant differences between treatments were observed
following discreet analyses for each measurement date via Tukey’s HSD mean comparison for each
year separately (p < 0.05).

During the third year (2022), it was found that the organic fertilization led to signifi-
cantly lower growth at the beginning of the season in May 2022, whereas as the season pro-
gressed, no significant differences between treatments were detected. This was evidenced
by similar growth patterns coupled with no time-of-season effects (Figure 2, p < 0.05). At
the end of the 2022 growing season, the trees in each treatment reached 2.09 m, 2.05 m,
and 1.73 m mean height in control, conventional fertilization, and organic fertilization,
respectively (Figures 2 and 4).
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Figure 3. Fruit yield and morphometric data for Amelanchier ovalis subsp. ovalis genotype GR-1-
BBGK-04,2547 during the 2022 pilot field trial for the three fertilization treatments applied (control,
conventional, and organic). (A) Mean fresh fruit weight and mean number of fruits per treatment.
Bars that do not share the same label letter are significantly different (Tukey’s HSD, p < 0.05); capital
letters for fruit number, and lowercase letters for fruit fresh weight. (B) Mean fresh weight of ten
randomly sampled fruits for each fertilization treatment. Bars that do not share the same label letter
are significantly different (Tukey’s HSD, p < 0.05). (C) Average fruit length (cm) and average fruit
width (cm) for each fertilization treatment. Bars that do not share the same label letter are significantly
different (Tukey’s HSD, p < 0.05); capital letters for fruit width, and lowercase letters for fruit length.
Standard errors of the means are shown on all graphs (p < 0.05).
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Figure 4. Representative growth of Amelanchier ovalis subsp. ovalis GR-1-BBGK-04,2547 trees in the
pilot field (Thermi, Thessaloniki, Greece) during autumn 2022 with discolored leaves before shedding
after different fertilization regimes applied ((A) control; (B) conventional fertilization; (C) organic
fertilization). The bars in the photos represent 1 m.

During the 2022 growth period, the trees produced fruits that were picked for the
first time. According to the recorded fruit yield data, conventionally fertilized trees clearly
produced more fruits, with 615 g of average fruit weight per tree compared to 83.4 and 78 g
of average fruit weight per tree in organic fertilization and control, respectively (Figure 3,
p < 0.05). Additionally, conventionally fertilized fruits were both heavier and larger in
size than the control, based on a weight comparison of ten-fruit samples coupled with
morphometric measurements of fruit length and width (Figure 3, p < 0.05). Moreover, 100 g
of fresh fruits were randomly sampled from each treatment and were dried in an indoor
dryer, resulting in 36.35 g of dry fruit per 100 g of fresh fruit for the control, 35.18 g of
dry fruit per 100 g of fresh fruit for organic fertilization, and 25.05 g of dry fruit per 100 g
of fresh fruit for conventional fertilization. The above measurement suggests that fruits
produced from conventionally fertilized trees seem to contain more water.

3. Discussion
3.1. Asexual Propagation of Greek Native Amelanchier ovalis

The current propagation results of Greek A. ovalis subsp. ovalis germplasm indicates
that soft-wood material with the least amount of lignification in combination with the
external application of rooting hormone is probably the best method for cutting rooting
induction. Similarly, evidence from the literature, albeit limited to scarce and old studies,
has shown the positive effects of the application of hormone for rooting of soft-wood cut-
tings on germplasm of different Amelanchier spp. of both cultivated and wild origin [36–38].
Furthermore, the necessity of hormone application on soft-wood cuttings for rooting in-
duction has recently been demonstrated on other Greek native wild germplasm of other
species [8,14], including members of the Rosaceae family [13]. However, excessive levels
of hormone application seem to reduce rooting capacity, which was more severe here
in lignified cuttings (Table 1, Supplementary Materials Figure S1). Superfluous levels of
hormone application on cuttings of woody species have known effects on rooting [41,42].
In a similar study on native Greek germplasm of Sambucus nigra accessions, superfluous
levels of hormone application on cuttings have shown highly adverse effects [14]. A further
factor that can affect adventitious root formation on cuttings can be the anatomical changes
that take place during the growth and maturation of the stem tissue from which cuttings are
excised since these changes are linked with the spontaneous emergence of roots from the
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meristematic cambium cell zones or cambium-derived callus areas outward and through
the epidermis of the stem tissue of woody species [43–46]. During the current study, A.
ovalis cuttings of young, soft tissue outperformed in rooting capacity cuttings of slightly
older tissue with a higher level of lignification at all respective hormone application levels
between the first and second experiments. Consequently, the current results support the
superiority of soft-wood material with a minimum amount of lignification compared to
hard-wood material during the asexual propagation of Greek A. ovalis. Such a prevalence
of soft-wood material in cutting propagation has also been demonstrated elsewhere in the
wild germplasm of members belonging to genera such as Cornus L., Rosa L., and Prunus L.,
among others [8,13,47,48].

The propagation results presented here are based on experimentation on a single
genotype of Greek A. ovalis subsp. ovalis (GR-1-BBGK-04,2547), because the majority of the
documented genotypes had very low to non-existent rooting potential. This suggests that
the rooting of Greek wild-growing A. ovalis subsp. ovalis, apart from the cuttings’ lignifica-
tion level and hormone application discussed above, may also depend on the genotype. In
comparison to the current study, the effects of genotype on the rooting potential of cuttings
have been observed in other members of the Rosaceae family, such as a broad spectrum of
wild Prunus germplasm, where cuttings from different wild genotypes presented dramatic
differences in rooting capacity, ranging in some cases from 0 to >50% rooting of different
genotypes under matching treatments within each tested Prunus species as well as between
different wild species of the genus Prunus [48]. Additional studies reported significant
effects of genotype on the rooting of cuttings of Prunus rootstock germplasm tested both
under mist and hydroponically [49–51]. Further studies on Rosaceae small trees have
reported noteworthy differences in rooting of cuttings between wild genotypes of Rosa
canina L. but also between wild genotypes of damask roses (R. × damascena Herrm.) [13,52].
A potential strategy that has been employed in other species to overcome the genotype
problem in asexual propagation has been the method of grafting a desirable hard-to-root
genotype onto a genotype with high rooting capacity for the steadfast production of stock
material [53–55]. However, further research is suggested on the asexual propagation of the
A. ovalis germplasm studied herein, including an assessment of grafting methods based on
more extensive propagation data.

Based on our results, it can be stated that the response of Greek A. ovalis cuttings to
rooting is probably caused by several factors, such as the type and concentration of external
hormone application, cutting type, season, and genotype. Other studies [56] have reviewed
the control of adventitious rooting in cuttings as affected by internal (molecular) and
external factors in a plethora of species. Such studies have demonstrated a multifactorial
control of rooting via genetic, physiological, nutritional, physical, metabolic, and hormonal
effects [56]. As a result, rooting of cuttings is a system-oriented concept in which genotype
is involved at almost every stage [56].

3.2. Total Phenolic Content and Antioxidant Activity of Greek Native Amelanchier Ovalis

To the best of our knowledge, there is limited data concerning the phenolic profile and
antioxidant activity of leaves, twigs, flowers, and young fruits of A. ovalis subsp. Ovalis, but
also of other species of the genus for that matter, besides A. alnifolia, and all research lines
tend to focus on mature fruits of members of the genus Amelanchier. The results concerning
the TPC and radical scavenging activity as well as significant nutraceutical traits of leaves,
twigs, flowers, and young fruits of Greek A. ovalis subsp. ovalis are therefore reported herein
for the first time. In the study of Ekin et al. [57] hydroethanolic extracts from two A. ovalis
subsp. ovalis leaf extracts from Turkey were screened (among other Rosaceae species)
for their Acetylcholinesterase (AchE) and Butytylcholinesterase (BchE) inhibitory activity,
alongside their in vitro antioxidant activity using FRAP assay, metal-chelation capacity by
Fe+2-ferrozine test system and Radical scavenging effect against DMPD (N,N-dimethyl-p-
phenylenediamine). Even though the extracts showed moderate to low enzyme-inhibitory
activity (24.38 ± 3.26% and 0% for AchE, 19.99 ± 1.60% and 19.58 ± 1.67% for BchE),
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FRAP value (absorbance: 0.694 ± 0.02 and 0.793 ± 0.08,) and DMPD-antiradical activity
(2.37 ± 1.72% and 8.40 ± 1.63%), their metal-chelating capacity was comparatively among
the highest ones (14.51 ± 1.92% and 27.12 ± 0.46%). Nevertheless, the phytochemical
profile of these extracts was not investigated, as only the most active samples were chosen
for further analyses.

In another study, Lavola et al. [58], have analyzed the leaves, stems, and berries of
four A. alnifolia (Saskatoon berry) cultivars growing in Finland using HPLC-DAD and
HPLC-ESI/MS. The results showed that the leaves had a much higher polyphenol con-
tent compared to berries, both in terms of total phenolic acids (22.78 mg g−1 DW and
1.084 mg g−1 DW, respectively) and total flavonols (26.62 mg g−1 DW and 0.440 mg g−1

DW, respectively), thus indicating that leaves are expected to have a higher antioxidant
activity than berries. In the same study, the stem extracts had a considerably different phe-
nolic profile, as flavan-3-ol- and flavanone-derivatives were the main phenolic compounds
(38% and 55% of total phenols, respectively). The aforementioned results are in concurrence
with those of Tian et al. [59], indicating that A. alnifolia leaves may surpass branches and
fruits in terms of total phenolic content (227.1 ± 0.7, 116.1 ± 2.5 and 49.8 ± 1.4 mg GAE
100 mL −1, respectively, evaluated with the Folin-Ciocalteau assay), which, in turn, was
only moderate when compared to leaf extracts from other berry plants. The extracts of
the individual plant organs are also reported to exhibit strong radical scavenging activity,
with the leaf extract being the most potent among them (88.8 ± 0.8%, 56.2 ± 1.1%, and
52.1 ± 4.6%, as measured at 10 min, using the DPPH assay). Conversely, Saskatoon berries
are expected to be particularly rich in total phenolics. Similarly, Grygorieva et al. [60] have
reported that A. alnifolia leaf extract has a moderate content of total polyphenols, total
phenolic acids, and total flavonoids in comparison to other leaf extracts, though it may
nonetheless exhibit potent antiradical activity. In the study of Męczarska et al. [61], on the
other hand, Saskatoon berry extract was found to possess a higher TPC value than that of
the leaf extract (406 ± 1.0 mg GAE g−1 DW versus 253 ± 4 mg GAE g−1 DW, as determined
by the Folin-Ciocalteau method).

Zengin et al. [62] examined the phenolic profile (utilizing HPLC–MS/MS) and eval-
uated in vitro the total phenolic and total flavonoid content, as well as the antioxidant
activity (utilizing phosphomolybdenum test, ABTS, DPPH, FRAP, CUPRAC, and ferrous
chelating assays) of methanolic, aqueous, and ethyl acetate extracts of A. parviflora Boiss.
subsp. dentata (Browicz) K.I. Chr. collected during the flowering season. In vitro results
have shown that the methanolic extract has the highest total phenolic and total flavonoid
content (125.28 ± 4.54 mg GAE g−1 and 49.14 ± 0.58 mg RE g−1, respectively) and the
strongest antioxidant activity in all assays, except for the metal chelating assay, in which
the ethyl acetate extract shows a greater potency.

Very high antioxidant potency was observed in the Greek A. ovalis subsp. ovalis
genotype evaluated herein, with equally high antioxidant activity (AA) among the ex-
amined plant organs. However, in terms of total phenolic content (TPC), the extracts of
leaves and twigs exhibited lower TPC values than their A. alnifolia counterparts, which
can be attributed mostly to differences in the phytochemical profiles of the two species
and environmental conditions as well between their regions of origin (North America,
Mediterranean Greece). Furthermore, the flowers herein showed significantly lower pheno-
lic content compared to young fruits, leaves, and twigs, albeit with equally high antioxidant
activity. The phytochemical composition of the tested extracts, particularly the specific
nature of the contained (poly)phenols, may result in differences between AA and TPC
within the same plant tissue. Phenolic compounds are known to be potent antioxidants
due to the presence of one or more phenol rings, alongside other functional groups, such as
hydroxyl (-OH) or carboxyl (-COOH) groups, which enable polyphenols to act as radical
scavengers, metal cation chelators, and hydrogen donors. Depending on their specific
chemical structures, the antioxidant activity of the different classes of polyphenols can
vary [31,59,63]. Differences in the chemical structure of phenols also affect the results of the
Folin-Ciocalteu assay, as reported previously [64]. The results of the NMR spectrometry
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corresponded to the observed composition of the extracts in terms of antioxidant potency.
Existing literature concerning the phytochemical composition of A. ovalis corroborates
the current results, reporting the presence of phenolic acids (both hydroxybenzoic and
hydroxycinnamic derivatives), depsides (such as chlorogenic acid), flavonol glycosides
(mainly quercetin-type), and anthocyanins (mainly cyanidin-type) [29–32,65]. In a previ-
ous study [30], mature A. ovalis fruits were found to contain the highest content of total
polyphenols (356.20 mg 100 g−1) among the examined species (A. alnifolia, A. ovalis, and A.
canadensis), especially in terms of total anthocyanin (203.23 mg 100 g−1) and total flavonol
(33.26 mg 100 g−1) content. Moreover, some studies [31] report the strong radical scaveng-
ing activity of the Siberian A. ovalis berry extract as evaluated in vitro employing the ABTS
assay, as well as its ex vivo activity against H2O2-induced oxidative stress in Saccharomyces
cerevisiae Y-564 yeast. The current results on the antioxidant profile of Greek A. ovalis in
different plant organs may suggest that the synthesis and transport of secondary metabo-
lites with antioxidant activity may be systemic (of a whole-plant nature), at least for young,
developing tissues. To this end, Green and Mazza [66] have found that the ripening of
A. alnifolia fruits may lead to an increase in total anthocyanins and total phenolics. On the
other hand, some studies [67] report a decrease in total phenolics and an increase in total
anthocyanins, especially through the later stages of maturation. Undoubtedly, the need for
further investigation of secondary metabolites and their health-promoting activities as a
rich source of nutraceuticals is strongly suggested.

3.3. Pilot Orchard-Type Cultivation of Greek Native Amelanchier ovalis

The acclimatized new plants of Greek A. ovalis subsp. ovalis (GR-1-BBGK-04,2547 pro-
duced via the asexual propagation attempts discussed above) were successfully established
in a pilot field cultivation trial. The 2020-initiated (still ongoing) orchard-type trial has
provided up-to-date data on the establishment of A. ovalis subsp. ovalis individuals during
the first three years of their juvenile growth under distinct fertilization treatments, includ-
ing organic fertilization, applied gradually throughout every growing season aimed at its
novel assessment as a diversified tree crop as opposed to traditional and conventionally
managed tree crops. Considering the observed phenological progression of Greek A. ovalis
subsp. ovalis trees over each studied growing season, their vegetative growth in the pilot
field trial was active almost throughout each season from April through October for all
experimental treatments applied. In contrast, the vegetative growth studied in Spanish
wild-growing populations of A. ovalis was active mainly from April to May/June, thus
presenting limited phenological development and nutrient retention in leaves over the
dry summer period [39]. This higher growth capacity observed in the pivotal orchard-
type trial may be linked to the fact that trees were irrigated throughout their growing
season, contrasted to wild-growing trees with natural water seasonality and scarcity in
the Mediterranean context [68]. However, flower bud formation, flowering, and fruit set
in the current field trial took place during the same period as its wild A. ovalis counter-
parts studied in Spain under similar climatic conditions (Mediterranean), albeit at a higher
altitude in the case of Spain [39]. This observation may stem from the genetic control of
reproductive transition as opposed to vegetative growth, with the latter probably being
more affected by environmental conditions such as water availability. Higher levels of
reproductive phenological synchronization than vegetative phenophase synchrony among
wild-growing populations, both inter- and intra-species, including A. ovalis, have been
observed in Mediterranean environments with continental features, attributing vegetative
asynchrony to resource availability differences among habitats [40].

According to the current data, both control and conventional fertilization demon-
strated higher growth rates expressed as greater plant height, albeit under similar patterns
compared to organic fertilization during the first two years. In the third year, however, the
vegetative growth rates were similar between fertilization treatments. This observation
may be linked to the fact that during the third year, the plants entered the reproductive
stage of their life cycle and produced fruits, thus re-distributing their assimilate transport
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toward reproductive growth and ameliorating differences in vegetative growth [69]. The
produced fruit load in the third year was different between fertilization treatments with a
conventional fertilization regime, which was rich in N throughout, delivering higher fruit
production without significantly higher vegetative growth rates. Fertilization studies on
cultivated germplasm of mainstream Rosaceae tree crops such as pears (Pyrus spp.) and
almonds (Prunus amygdalus Batch) have demonstrated that conventional fertilization, and
more specifically N fertilization, when applied up to specific thresholds, may enhance soil
N concentration and fruit yield, affecting fruit quality [70,71]. On the other hand, organic
fertilization via green manure in almonds has been suggested to be applied in combination
with some form of tillage between rows under semi-arid conditions for adequate fruit
production [72]. Organic fertilization in the form of farmyard manure has been studied in
other typical Mediterranean tree crops like olives (Olea europaea L.), where it was shown
to enhance soil fertility via an increase in organic C content while positively affecting
production [73]. However, in the current study, organic fertilization was applied in the
form of standardized organic fertilizers containing, among others, a plethora of elements,
organic acids, amino acids, humic acid, and nitrogen, and was applied gradually in tar-
geted applications over each growing season. To the best of our knowledge, this type of
fertilization was applied here for the first time, and further observations over the next few
years are suggested to draw safe conclusions.

Overall, the current data on Greek native A. ovalis subsp. ovalis as affected by fertiliza-
tion regimes within a pivotal commercial cultivation setting have not shown differences
between conventional fertilization and control in early tree establishment and growth
as a potential new crop. In addition, young tree establishment and growth may also be
dependent on soil fertility properties such as organic matter and N concentration [24]. On
the other hand, external fertilization inputs did deliver higher fresh fruit production herein,
with conventionally fertilized trees producing more fruits that were both heavier and larger
in size than the other two treatments (control and organic fertilization). However, the fruits
produced under conventional fertilization showed higher water content. In general, high
fresh fruit water content in relation to fruit size may affect fruit quality in terms of soluble
carbohydrates, free amino acids, and desirable secondary metabolites due to a dilution
effect. The alteration of the biochemical profile of significant metabolites in relation to fruit
water content and size has been repeatedly marked in Rosaceae soft fruits and tree crops
as well as in grapes [74–77]. As such, in cases where high fresh fruit volumes of A. ovalis
subsp. ovalis are desirable, conventional fertilization may deliver positive results. However,
from the current data, it is unclear whether the higher fresh fruit production in terms of
fruit size, weight, and water content takes a toll on the nutritional quality of the fruit in
terms of desirable antioxidant/secondary metabolite concentrations. The latter suggests
the need for further research on Greek A. ovalis fruits’ phytochemical profile under the
pivotal commercial cultivation setting.

4. Materials and Methods
4.1. Documentation of Plant Material

Wild-growing populations of A. ovalis subsp. ovalis were initially located in Mt. Tzena
(prefecture of Pella) in 2004 and after targeted botanical expeditions during 2018–2019
in different regions of northern Greece, including Mt. Tzena (Table 3, Figure 5A). The
plant material was collected under a special permit to the IPBGR, ELGO-Dimitra (Permit
82336/879 of 18 May 2019, and 26895/1527 of 21 April 2021) issued by the Greek Ministry
of Environment and Energy. The collected plant material consisted of primary soft-wood
cuttings and hardwood cuttings of both apical and sub-apical stem parts for propagation,
and the materials were taxonomically identified using diagnostic keys [78]. Each collected
sample from geographically isolated populations represented a distinct genotype, which
was assigned a unique IPEN (International Plant Exchange Network) accession number
given by the BBGK. The investigation resulted in ten collected population samples from
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different habitats across northern Greece (Table 3). The collected materials were transferred
to the laboratory of IPBGR for further handling and use in experimentation (Figures 5–7).

Table 3. IPEN (International Plant Exchange Network) accession numbers assigned to the collected
samples of Greek native Amelanchier ovalis wild-growing populations, with collection details and the
types of material collected.

No IPEN Accession
Number

Greek
Prefecture Area

Coordinates
(HGRS87/EGSA87)

(Lat, Lon)

Altitude
(m)

Collected
Material *

1 GR-1-BBGK-19,185 Thessaly Mt Lakmos,
Trikala 39.667963, 21.135741 1984 HC

2 GR-1-BBGK-19,612 Thessaly Mt Lakmos,
Trikala 39.650822, 21.150658 1763 SC

3 GR-1-BBGK-19,613 Thessaly Venetikos
river, Trikala 40.052361, 21.481166 468 HC, SC

4 GR-1-BBGK-19,680 Macedonia Mt Paiko,
Kilkis 40.98824, 22.34423 750 HC, SC

5 GR-1-BBGK-19,845 Macedonia Lake Prespa,
Oxia 40.73076, 21.12622 1196 HC, SC

6 GR-1-BBGK-19,846 Macedonia Lake Prespa,
Oxia 40.72997, 21.11763 1249 HC, SC

7 GR-1-BBGK-19,928 Macedonia Mt Tzena,
Pella 41.12088, 22.21743 1152 HC, SC

8 GR-1-BBGK-19,929 Macedonia Mt Tzena,
Pella 41.12242, 22.21924 998 HC, SC

9 GR-1-BBGK-19,987 Macedonia Lake Prespa,
Oxia 40.72767, 21.11599 1282 HC, SC

10 GR-1-BBGK-04,2547 Macedonia Tzena, Pella ** 41.123857, 22.184903 1120 HC, SC

* SC: Soft-wood stem cuttings for propagation; HC: Hard-wood stem cuttings for propagation. ** Ex situ conserved
in the Balkan Botanic Garden of Kroussia.
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Figure 5. (A) Appearance of in situ adapted wild-growing young individual of Amelanchier ovalis
subsp. ovalis GR-1-BBGK-19,928 from Mt. Tzena, Pella (northern Greece) thriving in an inclined
rocky substrate; (B) Mature trees of Amelanchier ovalis subsp. ovalis GR-1-BBGK-04,2547 from Mt.
Tzena (Pella, northern Greece) acclimatized ex situ at the grounds of the Balkan Botanic Garden
of Kroussia (600 m above sea level); Young twigs (C), flowers (D), leaves and young fruits (E) of
ex situ cultivated Amelanchier ovalis subsp. ovalis GR-1-BBGK-04,2547 from Mt. Tzena used for
phytochemical evaluation.

4.2. Preliminary Propagation Trials of the Collected and Documented Greek Germplasm

In preliminary trials, the material from the collected population samples of A. ovalis
subsp. ovalis was assessed for asexual propagation potential. Each population sample’s
cuttings were prepared for rooting in propagation trays with peat (Klasmann, KTS 1):
perlite at 1:3 v/v under automated misting within a greenhouse at ambient temperature
and relative humidity (RH) maintained at >85%. External indole-3-butyric acid (IBA)
hormone was applied in all cases via a quick dip (10 s) of the basal part of the cuttings into
the hormone solution. The hormone concentrations used varied from 2000 to 4000 ppm
for soft material and up to 10,000 ppm for hardwood cuttings. The rooting of cuttings was
assessed weekly. In cases where successful propagation was achieved, the produced plants
were consecutively transplanted from trays to 1 L pots for one week and then to 3 L pots
for plant establishment using a mixture of peat (Klasmann, KTS 2): perlite at 3:1 v/v and
were watered regularly.
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Figure 7. Geographical distribution of Greek native Amelanchier ovalis subsp. ovalis wild-growing
populations sampled across northern Greece. The last 5 or 6 digits of the IPEN accession number are
given for each population on the map, with full IPEN accession numbers shown in the legend. For
localities, geographical coordinates, collection details, and types of collected material see Table 3.

4.3. Propagation Experiments with Greek Germplasm

The population sample GR-1-BBGK-04,2547 was qualified for further experimentation
as it was the genotype that performed better in preliminary trials. Two consecutive asexual
propagation experiments were conducted in 2020. The second experiment mirrored the
first in design and treatment structure but with a different starting material. The first
experiment was set for May 2020, and the second was set for July 2020. For the first
experiment, fresh, leafy, primary soft-wood cuttings (internode sections) with 2–3 buds and
two fully developed leaves were taken from mother plants of the genotype GR-1-BBGK-
04,2547. For the second experiment, fresh, leafy cuttings were taken from the primary wood
of the same mother plants, but at a later developmental stage than the first experimental
material, resulting in cuttings with a more advanced level of lignification compared to those
used in the first experiment (see Supplementary Materials Figure S1). Including control, a
plethora of thirteen external hormone treatments were applied in both experiments. Indole-
3-butyric acid (IBA) was used at concentrations of 2000, 4000, and 6000 ppm (dissolved
in 50% ethanol), and 1-Naphthaleneacetic acid (NAA) was also used at concentrations of
2500 and 5000 ppm (dissolved in 50% ethanol) via a quick dip (10 sec) of the basal part
of the cuttings into the hormone solution. In addition, most of the above treatments were
also applied in combination with a pre-treatment of a 30-min dip of the cuttings’ base into
a commercially available organic fertilizer solution before the hormone dip. The organic
solution used contained 2.5% water-soluble copper, 1.5% organic matter, and 3% water-
soluble nitrogen, as used in commercial applications for seedlings and young plantlets for
root enhancement and protection against root rots. In Table 4, the details of the applied
propagation treatments are given. The cuttings were set for rooting in propagation trays
with peat (Klasmann, KTS 1): perlite at 1:3 v/v under automated mist within a greenhouse
at ambient temperature with relative humidity (RH) maintained >85%.
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Table 4. Overview of the applied hormonal treatments involving indole-3-butyric acid (IBA), 1-
Naphthaleneacetic acid (NAA), and pre-treatments with a commercial organic fertilizer solution
(OFS) on the cuttings’ experiments of the Greek Amelanchier ovalis subsp. ovalis population sample
GR-1-BBGK-04,2547. All hormone concentrations in the two trials except the 0.25% powder were
dissolved in 50% ethanol. In combined treatments, the dip in OFS was for 30 min followed by a dip
of the basal part of the cutting in the hormone solution for 5–7 s.

No Pre-Treatment Treatment

1 - Control
2 - 2000 ppm IBA
3 - 4000 ppm IBA
4 - 6000 ppm IBA
5 - 2500 ppm NAA
6 - 5000 ppm NAA
7 5% OFS * 2000 ppm IBA
8 5% OFS * 4000 ppm IBA
9 5% OFS * 2500 ppm NAA
10 5% OFS * 5000 ppm NAA
11 10% OFS * 2000 ppm IBA
12 10% OFS * 4000 ppm IBA
13 - 0.25% powder IBA

* 2.5% water soluble copper + 1.5% organic matter + 3% water soluble nitrogen.

The cuttings were assessed for rooting weekly for four weeks. After this period, the
rooted cuttings were taken out of the trays, and rooting frequency per treatment, root
number, and average root length per cutting were recorded. Concurrently, rooted cuttings
were transplanted in 1 L pots using a mixture of peat (Klasmann, KTS 2): perlite at 3:1 v/v
and were kept for the first two weeks within a greenhouse with automated irrigation for
plant establishment.

4.4. In Vitro Assessment of the Total Phenolic Content and Antioxidant Activity in Different
Organs of the Greek Germplasm
4.4.1. Extracts from Plant Material

Flowers, leaves, and twigs collected during spring and young fruits collected in early
summer 2020 were firstly air-dried in the dark at room temperature and then comminuted
and extracted separately with aqueous methanol as follows: 1 g of dried and comminuted
plant tissue was extracted with 30 mL of MeOH(aq) 70% v/v for 10 min in a sonicator bath at
room temperature. The extracts were filtered through a paper filter, and the sediment was
re-extracted a second time with an additional 30 mL of the extraction solution. The filtrates
were combined and dried in vacuo (40 ◦C, Rotavapor® R-210, Büchi, Labortechnik, Flawil.
Switzerland). 1H-NMR (Nuclear Magnetic Resonance) spectra of all extracts were recorded
in an AGILENT DD2 500 NMR spectrometer (20 mg of extract dissolved in 500 µL of
CD3OD) operating at 500 MHz. Chemical shifts are reported in ppm (δ). Before the in vitro
analyses, the extracts were reconstituted with DMSO at a concentration of 5 mg mL−1.

4.4.2. Determination of Total Phenolic Content (TPC)

The total phenolic content of the individual plant organs was determined using the
Folin-Ciocalteu method [79] as follows: 20 µL of the extract was mixed with 2.500 µL of
deionized water and 400 µL of Folin-Ciocalteu reagent (F9252, Sigma-Aldrich, Darmstadt,
Germany). After an initial incubation in the dark for 8 min at room temperature, 500 µL
of Na2CO3 7% (w/v) was added, and the reaction mixture was incubated for 30 min
in the dark at 40 ◦C. The samples’ absorbance was measured at 750 nm using a UV-vis
spectrophotometer (UV-1700 PharmaSpec, Shimadzu, Kyoto, Japan) and their TPC was
calculated using a gallic acid standard curve (0–1.5 mg mL−1, R2 = 0.947). The results were
expressed as mg of gallic acid equivalents per L of extract (mg GAE L−1). The assay was
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performed in triplicate, and the results represent the mean of three replications ± SD for
each sample.

4.4.3. Evaluation of Antioxidant Activity (AA)

The extracts’ antioxidant activity was evaluated using the DPPH (2,2-diphenyl-1-
picrylhydrazyl) method, following the modified protocol of Risaliti et al. [80] as follows:
an aliquot of DPPH (D211400, Sigma-Aldrich, Darmstadt, Germany) solution in MeOH
(0.1 mM) was added to 20 µL of extract, and the mixture was left to stand in the dark at
room temperature for 30 min. The absorbance of the reaction mixture was read at 517 nm
using a UV-vis spectrophotometer (UV-1700 PharmaSpec, Shimadzu, Kyoto, Japan). The
results were expressed as % Radical Scavenging Activity (% RSA), calculated using the
following formula:

% RSA = [(Ao − As)/Ao]× 100 (1)

where Ao is the absorbance of the control, and as is the absorbance of each sample. The
assay was performed in triplicate and the results represent the mean of three replications
± SD for each sample.

4.5. Pivotal Field Cultivation Trial of the Greek Germplasm

The pilot field trial of the A. ovalis GR-1-BBGK-04,2547 genotype was set on the
grounds of the IPBGR, ELGO-Dimitra in Thermi near Thessaloniki, Greece (40.534934 N,
23.002401 E, 40 m elevation). The topsoil was of medium composition, loamy with 34% clay
and 48% sand, and slightly alkaline with 1.37% organic matter. The main macronutrient
concentrations for a 0–30 cm depth sample were 19 ppm N, 3 ppm P, 200 ppm K, 211 ppm
Mg, and >2000 ppm Ca.

The fertilization treatments applied were: (a) no fertilization (control); (b) conventional
crop fertilization and (c) organic crop fertilization. Specific application regimes were
empirically calculated and designed for conventional and organic fertilization treatments
based on the soil analysis, and these were applied throughout each growing season (see
Supplementary Materials Table S1). Conventional fertilization was applied in the form
of commercial inorganic granulated fertilizers containing N, P, Zn, S, Fe, and B. Organic
fertilization was applied in the form of standardized organic fertilizers containing, among
others, a plethora of elements, organic acids, amino acids, humic acid, and nitrogen. The
details of the fertilization regimes and their application intervals are given in Supplementary
Materials Table S1. During the growing season, all plants were drip-irrigated weekly with
1.92 L/h. The establishment of the trees was assessed through above-ground plant growth
in terms of plant height, which was recorded at regular intervals from the beginning of the
trial (planting) across each annual growing season (April–October) for the entirety of the
three years of the study (2020–2022). Furthermore, when the trees began to bear fruit in
the third year after planting, fruit production was measured in terms of fruit number, fruit
weight, and fruit morphometric dimensions of length and width per tree.

The climatic conditions of the region can be described as Mediterranean with continen-
tal features. The annual mean temperature during the three years of the study fluctuated
between 16.9 and 17.8 ◦C with annual precipitation showing higher variation between
338 and 423 mm (Supplementary Materials Figure S2). The area typically is characterized
by a warm season from May to September with average monthly temperatures >20 ◦C
and maximum temperatures above 30 ◦C. At the same time, the months between May
and September were also the driest months with the lowest amounts of precipitation for
2020 and 2021, whereas, in 2022, rainfall was more evenly distributed across the year
(Supplementary Materials Figure S2). The trial was set under standard orchard practice
techniques implemented in Greece. In March 2020, eight-month-old, acclimatized, cutting-
originated plants were planted at the pilot field at N–S orientation.
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4.6. Experimental Design and Statistical Analysis

Propagation-wise, both experiments on the A. ovalis GR-1-BBGK-04,2547 genotype
followed a completely randomized design with 13 hormonal treatments and six replicate
cuttings per treatment. The rooting attributes (root number and average root length per
cutting) data for the first propagation experiment were subjected to analysis of variance
(GLM-ANOVA) to establish treatment effects. The means were compared using Tukey’s
HSD post hoc test at the a = 0.05 significance level. For the second propagation experiment,
rooting attribute data were found not to be homogenous (Levene’s test), and as such, the
non-parametric Kruskal-Wallis test was applied to assess treatment effects while means
were compared using Dunnet’s T3 test (a = 0.05). In addition, the observed rooting fre-
quencies for each treatment were compared in pairs for each experiment separately via
consecutive Pearson Chi-Square tests (a = 0.05).

Cultivation-wise, a completely randomized design was followed, which included three
distinct fertilization treatments (including a control) with five replicate plants per treatment.
Treatment effects on plant height data measured over time were assessed through repeated
measures ANOVA for each growing season separately (a = 0.05) to conclude whether the
observed differences resulted over time, were purely due to treatment effects, or both. In
addition, a GLM-ANOVA was conducted separately for each measurement date and each
season, coupled with a mean comparison through Tukey’s HSD post hoc test (a = 0.05), to
pinpoint any specific treatment differences at different stages of plant development.

The phytochemical analyses were measured in triplicate and a mean coupled with its
standard deviation (±S.D.) was calculated in each case. Phytochemical data were analyzed
using one-way ANOVA and means were compared using Tukey’s HSD post hoc test
(a = 0.05).

All analyses were conducted using the IBM-SPSS 23.0 software (IBM Corp., Armonk,
NY, USA), and graphs were drawn using Microsoft Excel.

5. Conclusions

The current investigation sets a groundwork framework for the sustainable agronomic
exploitation of the Greek native germplasm of Amelanchier ovalis subsp. ovalis by docu-
menting a selected genotype originating from Greek native wild-growing populations.
This was carried out using a multifaceted approach that included: (i) facilitation of its
sustainable utilization through the development of a species-specific asexual propagation
protocol; (ii) agronomic evaluation in a pilot field cultivation trial; and (iii) comparative
phytochemical evaluation of plant organs from the cultivated germplasm.

The above-mentioned steps are presented for the first time in this study. This provides
substantial data for future applied research attempts on the sustainable exploitation of
this noteworthy genetic resource with significant antioxidant capacity, which makes it a
potential superfood candidate with additional ornamental and medicinal value.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants12051142/s1. Table S1: Overview of the conventional
and organic fertilization regimes applied in the pilot field trial of Amelanchier ovalis subsp. ovalis
GR-1-BBGK-04,2547 genotype during the experimental period (2020–2022). Figure S1: Indicative
photos of cutting propagation of the Greek native genotype of Amelanchier ovalis subsp. ovalis GR-
1-BBGK-04,2547. (A1) Prepared soft-wood cuttings (experiment 1); (A2) Prepared cuttings for the
second experiment; (B) Rooting results (experiment 1) across eight of the thirteen applied treatments,
i.e., control, 2000 ppm indole-3-butyric acid (IBA), 4000 ppm IBA, 6000 ppm IBA, 2500 ppm 1-
Naphthaleneacetic acid (NAA), 5000 ppm NAA, and the failed treatments 0.25% powder IBA and
2000 ppm IBA pre-treated with 5% organic fertilizer solution (OFS); (C1): Rooted individuals; (C2):
Acclimatized, ex situ raised plants. Bars in photos represent 10 cm; Figure S2: Temperature and
rainfall variation during the experimental period (2020, 2021, 2022) with average temperature and
the total precipitation for each year) of the pilot field trial study in the experimental grounds of
Thermi, Thessaloniki, Greece (elevation 40 m), presented yearly as monthly average temperature

https://www.mdpi.com/article/10.3390/plants12051142/s1
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(◦C, T) patterns coupled with mean monthly high and mean monthly low temperatures (◦C, T) and
accumulated total monthly precipitation (ppt, in mm) patterns.
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48. Johnson, E.P.; Preece, J.E.; Aradhya, M.; Gradziel, T. Rooting response of Prunus wild relative semi-hardwood cuttings to
indole-3-butyric acid potassium salt (KIBA). Sci. Hortic. 2020, 263, 109144. [CrossRef]

49. Rosa, G.G.; da Zanandrea, I.; Mayer, N.A.; Bianchi, V.J. Effect of genotype on rooting and acclimatization of semi hardwood
cutting of peach rootstock. Rev. Cienc. Agrovet. 2017, 16, 449–455. [CrossRef]
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