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Abstract: The restoration of cartilage damage is a slow and not always successful process. Kartogenin
(KGN) has significant potential in this space—it is able to induce the chondrogenic differentiation
of stem cells and protect articular chondrocytes. In this work, a series of poly(lactic-co-glycolic
acid) (PLGA)-based particles loaded with KGN were successfully electrosprayed. In this family
of materials, PLGA was blended with a hydrophilic polymer (either polyethyleneglycol (PEG) or
polyvinylpyrrolidone (PVP)) to control the release rate. Spherical particles with sizes in the range
of 2.4–4.1 µm were fabricated. They were found to comprise amorphous solid dispersions, with
high entrapment efficiencies of >93%. The various blends of polymers had a range of release
profiles. The PLGA-KGN particles displayed the slowest release rate, and blending with PVP or
PEG led to faster release profiles, with most systems giving a high burst release in the first 24 h.
The range of release profiles observed offers the potential to provide a precisely tailored profile
via preparing physical mixtures of the materials. The formulations are highly cytocompatible with
primary human osteoblasts.
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1. Introduction

The native osteochondral (OC) unit is a multi-layer gradient system composed of
articular cartilage, calcified cartilage, and the underlying subchondral bone. It plays an
important role in buffering stress and strain [1]. The articular cartilage is a highly orga-
nized tissue that is easily damaged and has limited self-repair capabilities [2]. In normal
conditions, articular cartilage has homeostatic crosstalk with bone; however, this home-
ostasis can be disturbed when damage occurs. Cartilage damage is a major problem, with
around 250 million patients suffering from it globally and this number increasing yearly [3].
Cartilage damage can manifest itself as dysregulated bone remodeling, imbalanced car-
tilage regulation, and progressive OC degeneration caused by trauma or degenerative
diseases [4]. Over the past years, many therapies, such as physiotherapy and non-steroidal
anti-inflammatory drugs (NSAIDs), have been applied to treat cartilage damage and have
proven to relieve the symptoms. However, none of the current treatments can provide
complete and long-term repair and restore the function of cartilage tissue [5]. Considering
the socioeconomic impact of cartilage damage, improved treatments that have long-lasting
therapeutic effects are urgently needed.

One innovative strategy for treating cartilage damage is the approach of tissue engi-
neering, which has been studied by many researchers because of its potential to construct
new healthy tissues [6]. There are two requirements for a scaffold used in tissue engineering.
Firstly, it must be biocompatible and biodegradable to ensure safety. Secondly, it should be
able to mimic the mechanical properties of the native tissue, which means that the scaffold
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should have a porous structure with properties similar to those of bone tissue [7]. Because
of the attractiveness of cartilage tissue engineering, many types of biomaterials have been
produced to mimic the structure of the OC unit [8].

Electrohydrodynamic (EHD) techniques use electricity to solidify a solution or melt
and have attracted considerable attention for the fabrication of tissue engineering scaffolds.
Such formulations can achieve local, sustained, and effective delivery of active ingredients
to cells located on the scaffold [9]. Electrospraying is a form of EHD that can generate
polymer-based micro- and nanoparticles. It has been explored for several pharmaceutical
applications [10–14] and has a number of advantages over other, more conventional, drying
techniques such as spray drying or hot melt extrusion. In particular, because electrospraying
does not rely on heat to dry, it can be employed to make solid dispersions that contain
heat-sensitive drugs. It can also yield smaller particles than other approaches, and since
it applies electricity directly to achieve drying (rather than converting electrical to heat
energy) it is greener and more energy-efficient than other technologies [15].

The experimental setup for electrospraying consists of four basic components: a
syringe fitted with a narrow-bore needle (the spinneret), a pump, a high-voltage power
supply, and a collector plate. The pump is used to infuse a polymer solution through
the spinneret. The application of an electrical field between this and the collector plate
causes the pendant droplet to deform into a conical shape (the Taylor cone), and then it
undergoes a Coulombic explosion to generate fine droplets. As these travel toward the
collector, they become increasingly small, and the solvent present is evaporated. This
results in dry particles being deposited, with sizes on the nm-to-µm scale. The product
properties can be tuned by varying the solution properties (polymer concentration, viscosity,
conductivity), processing parameters (voltage, flow rate, spinneret-to-collector distance),
and environmental conditions (temperature, relative humidity) [16,17].

Several small molecules have been developed using high-throughput screening tech-
niques for the repair of bone defects [18]. The active pharmaceutical ingredient (API)
kartogenin (KGN) is one such drug, which can not only reduce cartilage degeneration
but also enhance the differentiation of human bone marrow–derived mesenchymal stem
cells (hBMSCs) into chondrocytes (CH) [19,20]. This is important as chondrogenesis at
the growth plate (epiphyseal plate) drives upgrowth by the elongation of long bones and
helps repair cartilage damage. This process results from CH hypertrophy, proliferation,
and extracellular matrix secretion. It is prearranged by a complex network of paracrine,
cellular, nutritional, and endocrine factors [21,22]. Although KGN is a promising drug for
cartilage repair, more work is required to target its delivery. Previous studies have reported
that the direct injection of KGN into the joints is ineffective because most of the drug is
absorbed by the circulatory system [23,24]. The limited cellular uptake demands repeated
injections, thus increasing both pain to patients and the risk of infection. To enhance the
efficiency of KGN, a local sustained-release formulation is required.

Electrospraying is widely used in the preparation of microspheres for bone-targeted
applications. For instance, hBMSCs were successfully embedded in electrosprayed alginate-
gelatine B particles [25]. 17β-estradiol (E2)-loaded poly(lactic-co-glycolic acid) (PLGA)
nanoparticles incorporated in hydroxyapatite-chitosan scaffolds were developed by Ir-
mak et al. [26] to induce osteogenic differentiation of adipose-derived stem cells (ADSCs)
obtained from a rat model. A formulation of PLGA-based nanoparticles with a poly-aspartic
acid (poly-Asp) peptide sequence bound with hydroxyapatite, which acts as a molecular
tool in bone-focused applications, was reported by Jiang et al. [27].

PLGA is a synthetic biodegradable polymer that has been approved by the US Food
and Drug Administration for pharmaceutical use [28] and employed as a small-molecule
drug carrier for decades [29,30]. It can be used to construct porous scaffolds that are able
to support OC tissue repair through chondrocyte proliferation [31,32]. PLGA has not
only excellent biocompatibility but also degradation rates that can be tuned through the
variation of the lactic acid/glycolic acid ratio in the polymer [33]. It can also be surface
modified to aid cell adhesion [34,35].
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The PLGA-based scaffolds reported in the literature include electrospun nanofibers,
electrosprayed micro/nanoparticles, 3D-printed systems, and hydrogels [36]. For in-
stance, Li et al. fabricated PLGA/nanohydroxyapatite electrospun fibers and found that
the scaffold can efficiently promote osteoblast cell proliferation [37]. Xu et al. devel-
oped a composite pearl/PLGA scaffold using 3D printing and reported that it could
satisfy the requirements of OC tissue engineering [38]. In other work, Zhao et al. con-
structed a PLGA(KGN)/chondrocyte extracellular matrix microsphere scaffold and ob-
served that it could provide sustained KGN release [32]. Another group synthesized a
PLGA–poly(ethylene glycol)–PLGA triblock copolymer and used this to prepare a KGN-
loaded thermogel for intra-articular injection [39]. This scaffold provided a 3-week sus-
tained release of KGN and showed enhanced cartilage regeneration and the inhibition of
joint inflammation in a rabbit OC model. These successful examples confirm that PLGA is
a promising material for cartilage repair.

There can, however, be a problem with PLGA formulations in that the hydrophobic
nature of the polymer can lead to overly slow drug release [40,41]. This can be ameliorated
by mixing in a quantity of a hydrophilic polymer [42]. Poly(ethylene glycol) (PEG) is
one such polymer and is widely used for solid dispersion formations. PEG is regarded
to be safe, though it should be noted that allergic reactions have been reported in some
cases [43,44]. Doping varied amounts of PEG into a PLGA formulation should change the
drug release profile and permit fine-tuning. PEG has also been extensively studied for
preparing hydrogels for OC tissue engineering [45]. PEG hydrogels can provide a swollen
network with properties similar to those of cartilage tissues [46]. An injectable hydrogel
consisting of PEG and collagen was formed by Sargeant et al. for tissue regeneration [47].
This composite platform showed excellent biodegradability and the ability to promote the
proliferation of fibroblasts. Another example is the simvastatin-loaded PLGA–PEG–PLGA
hydrogel successfully prepared by Yan et al. [48]. This material showed thermal sensitivity
and an excellent osteogenic effect both in vivo and in vitro.

In this work, blends of hydrophilic polymers with PLGA were prepared to generate
electrosprayed systems with tunable KGN release. To do this, either PEG or polyvinylpyrroli-
done (PVP, another water-soluble, biocompatible, non-toxic polymer [49] widely used in
drug release formulations [50–53]) was used. A set of PLGA, PVP/PLGA, and PEG/PLGA
particles containing different amounts of PVP or PEG were fabricated, and these blends
were used to fine-tune the release of KGN.

2. Materials and Methods
2.1. Materials

Chloroform, dimethyl formamide (DMF), polyvinylpyrrolidone (PVP; average Mn
10 k), poly(ethylene glycol) (PEG; average Mn 35k), poly(D,L-lactide-co-glycolide) (PLGA;
85:15 lactide:glycolide ratio, Mn 50 k–75 k), and phosphate-buffered saline (PBS pH = 7.4)
were purchased from Sigma-Aldrich (Gillingham, UK). Dimethyl sulfoxide (DMSO) and
methanol were sourced from Fisher Scientific (Loughborough, UK). Kartogenin was pur-
chased from Acros Organics (Loughborough, UK). The RealTime-Glo™ MT Cell Viability
Assay was obtained from Promega (Southampton, UK). Primary human osteoblasts (HOB)
were purchased from PromoCell (Heidelberg, Germany), and complete osteoblast growth
medium was bought from Cell Applications, Inc. (San Diego, CA, USA).

2.2. Electrospraying of Drug-Loaded Nanoparticles

For the production of PLGA particles, a PLGA solution at a concentration of 4% w/w
was prepared in chloroform, magnetically stirred until all the polymer was dissolved (at
least 3–4 h), and loaded into 5 mL plastic syringes (Terumo, Bagshot, UK). A conductive
needle (20G, part number: 7018169; Nordson, Aylesbury, UK) was used as the spinneret.
The syringes were then mounted on syringe pumps (KDS-100; Cole-Parmer, St. Neots,
UK) and the positive electrode of an HCP35-35,000 high-voltage power supply (FuG
Elektronik, Schechen, Germany) was clamped to the spinneret. The particles were collected
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on an aluminum plate covered with aluminum foil, with electrospraying performed in
cone-jet mode. Initially, a preliminary optimization (exploring flow rate and voltage) was
performed, after which the following set of parameters was chosen to give PLGA particles
with clean spherical morphology: flow rate 0.5 mL/h; voltage 10 kV; tip-collector distance
22 cm. Experiments were performed at ca. 21 ◦C and 45% relative humidity.

Formulations loaded with KGN were then prepared. KGN was first dissolved in
200 µL of DMF to give a KGN concentration of 50 mg/mL (5% w/v). Chloroform was then
added to give a 3% w/v KGN solution. Finally, PLGA and PEG or PVP were dissolved
into the solvent mixture to give a homogenous solution with a total polymer content of
4% w/w. To generate particles, the same equipment as above was used, but the flow rate
was set to 0.4 mL/h. The voltage and collection distance used were optimized for each
formulation and fell in the range of 7.1–12.3 kV and 23–25 cm, respectively. Full details are
given in the Supporting Information, Tables S1 and S2. As controls, blank (without KGN)
formulations of PLGA/PEG and PLGA/PVP were electrosprayed, with the PLGA/PEG
and PLGA/PVP ratios set at 70/30% w/w.

2.3. Material Characterization

A MiniFlex 600 instrument (Rigaku, Tokyo, Japan) was used to collect X-ray diffraction
(XRD) data. The instrument is equipped with a Cu-Kα radiation source. Raw materials and
formulations were loaded into low background glass holders and analyzed in the 2θ range
between 2.5◦ and 50.0◦. The step size was 0.02◦, and the scan rate was 5.0◦/min. Fourier
transform infrared (FTIR) spectroscopy was undertaken on a Spectrum 100 spectrometer
(PerkinElmer, Waltham, MA, USA). Experiments were performed in attenuated total re-
flectance mode over the wavenumber range of 4000–600 cm−1, with 8 scans recorded at
a resolution of 4 cm−1. Differential scanning calorimetry (DSC) data were collected on a
Q2000 instrument (TA Instruments, New Castle, DE, USA). Next, 3–10 mg of the sample
was loaded into a Tzero hermetic pan. The pans were sealed with a Tzero lid and pinholed.
Initially, the raw materials and formulations were equilibrated at 20 ◦C for 5 min and then
heated to 300 ◦C at a rate of 10 ◦C/min. This procedure was carried out under a nitrogen
atmosphere with a flow rate of 50 mL/min. Scanning electron microscopy was undertaken
on a Quanta FEG 200 instrument (FEI, Hillsboro, OR, USA) after sputter-coating samples
with gold. The size of the particles was calculated using the ImageJ software. At least
30 individual particles were measured for each image.

2.4. Encapsulation Efficiency

KGN encapsulation efficiency (EE%) was calculated using Equation (1) [54]:

EE% = (100 × mass of KGN in formulation)/(mass of KGN in feedstock) (1)

To determine the EE%, 5 mg of KGN was dissolved in 1 mL of DMF. This stock
solution was then diluted, and a calibration curve was collected on a UV-Vis spectrome-
ter (7315 spectrometer; Jenway, London, UK; 274 nm) with samples mounted in quartz
cuvettes (Fisher Scientific, Loughborough, UK); see Supporting Information, Figure S1.
Next, 8.75 ± 0.20 mg of each sample was mixed with 1 mL of DMF to give a final drug
concentration of ca. 0.25 mg/mL. The solutions were stirred overnight to ensure complete
dissolution. The EE% determinations were performed in triplicate and are reported as
mean ± standard deviation (S.D.).

The drug loading (DL%) was also calculated from these experiments using Equation (2) [55].

DL% = (100 × mass of KGN in formulation)/(mass of formulation) (2)

2.5. Drug Release Studies

A total of 10.5 ± 0.1 mg of each electrosprayed sample was dispersed in a glass
vial with 3 mL of PBS (pH 7.4). Considering that the solubility of KGN in an aqueous
environment is very limited, the maximum concentration of KGN in each solution was
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about 0.1 mg/mL (solubility of KGN in water is below 1 mg/mL) [56]. The release study
was conducted at 37 ◦C in an incubator with shaking (150 RPM). Next, 1 mL aliquots were
removed at periodic time points, and a constant volume was maintained by adding 1 mL
of fresh pre-warmed PBS. The aliquots were subject to centrifugation (15,000 rpm, 10 min),
and the concentration of KGN was determined by UV spectroscopy as above, using a
predetermined calibration curve (Figure S2).

2.6. In Vitro Cell Assay

Primary human osteoblasts (HOB) were used in this study to evaluate the cytotoxicity
of KGN and the formulations. Cells were routinely maintained as monolayers at 37 ◦C in
standard cell culture conditions (5% CO2/air and 95% humidity). As a control, a series
of different concentrations of KGN in DMSO/media were prepared. The concentrations
were 0.005, 0.01, and 0.02 mg of KGN per 100 µL of media. The medium employed was
a complete osteoblast growth medium, which was used as supplied. Then, 10,000 HOB
cells (passage number 7–10) in 100 µL of media were seeded in each well of 96 well plates.
Each formulation was added to the cells at a concentration of 0.35 mg per 100 µL, giving
0.01 mg of KGN per 100 µL of media. Three independent experiments were performed
with triplicate wells in each plate. The RealTime-Glo MT cell viability assay (Promega,
Southampton, UK) was employed to determine viability according to the manufacturer’s
instructions. Luminescence was measured on a GloMax® Navigator luminometer (Promega,
Southampton, UK).

3. Results
3.1. SEM Examination

SEM images of blank PLGA, PLGA/PEG 30% w/w, and PLGA/PVP 30% w/w particles
are given in Figure S3. The particles were generally spherical in shape and uniform in
size. Images of particles formulated from a polymer matrix (PLGA, PLGA/PEG and
PLGA/PVP) and loaded with KGN are shown in Figure 1. It was observed that the
particles were uniform across the different blends, with spherical morphologies. The
particles were always heavily aggregated, and those prepared from PLGA and PLGA/PEG
30% w/w were indented in places, while the others had smooth surfaces.

The particle sizes were calculated as 3.53 ± 0.93 µm (PLGA), 2.67 ± 0.65 µm (PEG 10%
w/w), 2.9 ± 1.63 µm (PEG 30% w/w), 2.41 ± 0.81 µm (PEG 50% w/w), 4.08 ± 1.61 µm (PVP
10% w/w), 2.56 ± 0.62 µm (PVP 30% w/w), and 2.77 ± 0.83 µm (PVP 50% w/w). These
sizes were largely consistent, and there were no clear trends to be observed in the data.
The particle size is similar to that reported in the literature. For example, Kibler et al. [57]
obtained blank particles of diameter 1.23 ± 0.45 µm and around 2.46 ± 0.9 µm in length,
and Tanaka et al. [58] prepared 1.30–6.19 µm PLGA particles.

3.2. XRD

XRD patterns are depicted in Figure 2.
The XRD pattern of KGN (Figure 2a) shows strong Bragg reflections, indicative of a

crystalline material and consistent with the literature [59]. The polymer data (Figure 2a)
reveal that PVP and PLGA were both amorphous, with broad halos in their patterns. In
contrast, PEG was semi-crystalline, with particularly distinct reflections noted at 20 and 25◦.
In Figure 2b, the electrosprayed PLGA and PEG/PLGA formulations loaded with KGN
are depicted. The KGN-PLGA data (Figure 2b) indicate the formulation was amorphous,
and the pattern observed is the same as for raw PLGA (Figure 2a). No peaks for KGN were
observed in the formulation, suggesting it was present as a molecular dispersion in the
polymer carrier (though it should be noted this could be due to the low drug loading in the
formulations making crystalline material hard to detect by XRD). The same is noted for
the 10% w/w PEG formulation. The materials containing higher amounts of PEG showed
some Bragg reflections attributable to PEG, but the KGN reflections were absent. Figure 2c
indicates that all formulations containing PVP were amorphous.
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Figure 2. XRD patterns of (a) raw materials (PLGA, PEG, PVP, and KGN); (b) PLGA and PLGA/PEG
particles loaded with KGN; and (c) PLGA/PVP particles loaded with KGN.

3.3. DSC Analysis

The DSC trace of KGN shows a broad endothermic peak over the range of 180–220 ◦C
(Figure 3a) [59] and a sharp endothermic melting peak at 292 ◦C [60]. The latter confirms the
crystalline nature of the material and agrees with the XRD data. There are a superimposed
relaxation endotherm and a baseline shift visible in the trace of PLGA at 50 ◦C, which
correspond to the polymer’s glass transition temperature (Tg). This is in agreement with a
literature report that the Tg of PLGA (85/15) is 50.4 ± 0.2 ◦C [61]. PEG displays a melting
endotherm at 68 ◦C, consistent with its semi-crystalline nature (Figure 3a) [62–64]. The DSC
trace for PVP is largely featureless except for an event at around 50 ◦C, which represents
water loss upon heating [65]. Again, this is consistent with an amorphous material.
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Considering the DSC data for the formulations (Figure 3b,c), the KGN melting en-
dotherm is not visible in any case, which indicates that KGN is present in the amorphous
form in all the electrosprayed samples (though, as noted above, the low drug loading
means caution must be taken here). It was observed in all cases that the thermograms of the
electrosprayed particles resembled a composite of those of their polymer constituents. The
PLGA Tg is clearly visible for the PEG and PVP-containing formulations, though it overlaps
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with the PEG melt or PVP dehydration endotherm in the 30 and 50% w/w systems. In the
PEG formulations (Figure 3b), the PEG melting endotherm (around 58 ◦C) becomes more
intense with an increased concentration of PEG. There is no clear relaxation endotherm
from PLGA visible, though there is a shoulder on the PEG melting endotherm for the 30 and
50% PEG systems, which may have arisen from PLGA relaxation. For the PVP-loaded sys-
tems (Figure 3c), an increase in PVP concentration manifests itself in a larger dehydration
endotherm at 50–100 ◦C, which is overlaid with the PLGA relaxation endotherm.

3.4. FTIR

The FTIR data for the raw materials and KGN-loaded particles are presented in
Figure 4.
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raw materials.

In Figure 4a, PLGA displays characteristic bands at 3040–2880 cm−1 associated with
C-H stretching, 1760 cm−1 (C=O stretching), and 1184 cm−1 (C-O stretching of aliphatic
ester). In the PEG spectrum (Figure 4a), C-H stretching appears at 2870 cm−1, and another
characteristic peak at 1124 cm−1 is correlated with C-O stretching (aliphatic ether). PVP
has notable bands at 2950 and 1652 cm−1 (asymmetric stretching of CH2 and stretching
of C=O, respectively) and at 1423 and 1288 cm−1 (C-H bending and CH2 wagging). The
peak at 1018 cm−1 is the CH2 rocking. KGN has a visible band at 3400–3000 cm−1 (N-H
stretching), 3000–2500 cm−1 (C-H stretching), 1760 cm−1 (carboxylic acid C=O stretching),
and 1680 cm−1 (amide C=O stretching).

The spectra of the KGN-PLGA formulations (Figure 4b) resemble those of PLGA, but
no bands from the KGN are visible. The CH2 peaks of PEG at 2884 cm−1 and 2857 cm−1

are still visible in the PLGA/PEG formulations, and it can be noted that a higher content of
PEG leads to greater absorption at these positions. The C=O bond of PLGA at 1747 cm−1

still exists, but the peak of KGN at 1715 cm−1 is not visible. This is because the C=O band
of PLGA is dominant over that of KGN. In Figure 4c, the C=O peak of PVP appears as a
shoulder on the right of the PLGA C=O peak in the 10% w/w and 30% w/w PVP samples,
while in the 50% w/w PVP sample, these two peaks show similar intensities. O-H stretching
peaks at 3200 cm−1, due to the absorbed water, can be observed in the PVP-containing
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systems. Again, KGN peaks are not visible. This is likely to be because of the low drug
loading in the system.

3.5. Encapsulation Efficiency and Drug Loading

The encapsulation efficiencies and drug loadings of KGN in the particles are detailed
in Table S2. In general, the encapsulation efficiency was close to 100%, with all values at or
above 93 ± 2%. The drug loading was almost the same as the theoretical loading, with a
value of 3% w/w (Table S2) across all formulations.

3.6. Release Studies

The drug release profiles are given in Figure 5.
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An initial burst release can be observed in all the samples, though this was notably
reduced for PLGA and the 10% w/w PVP system. The 30% w/w and 50% w/w PEG
materials had the greatest burst release, with more than 90% of the KGN in the samples
released in the first hour, while the 30% w/w and 50% w/w PVP systems had a burst
release of 80–90%. This phenomenon could be attributed to the fact that a high content
of KGN was present on or near the surface of the particle formulations and that the PVP
and PEG in the formulation could dissolve into the release medium to create pores. The
latter allowed water ingress and for the KGN to escape into the solution. This explanation
is in agreement with the findings in the literature [66,67]. The samples with higher PLGA
content showed reduced release on the first day, owing to the hydrophobic nature of the
polymer. While the PVP and PEG could dissolve rapidly into the solution, the PLGA was
slowly eroded. Overall, the best-performing formulation seems to be pure PLGA, as it had
almost a zero-order release after the first 5 days. This is followed by the 10% w/w PVP
formulation, which provided sustained release over 3 weeks but then tailed off.

Comparing the scaffolds prepared here with the literature, it can be seen that the
KGN release continued from the PLGA formulation over more than 45 days (reaching a
little over 40% w/w), a slower release profile than seen in other studies, which reported
70% release after 35 days when PLGA/KGN particles were fabricated by a single emul-
sion/solvent evaporation method or simple mixing methods [68,69]. The formulations
presented here offer the potential for a wide range of different release profiles through
preparing physical mixtures of the different systems. For instance, the PLGA and 30 or 50%
w/w PEG systems could be combined to provide a required loading dose of KGN followed
by sustained release.

3.7. In Vitro Assay

The viability of HOB cells after exposure to selected formulations is depicted in
Figure 6. In Figure 6a, the toxicity of KGN is explored. Cells were treated with a range
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of concentrations of KGN (1.5, 3, and 6% w/v, where 3% w/v represents the same KGN
concentration as in the formulations). It is clear that in all cases, the cell viability was very
similar to that of the untreated cells and that the presence of KGN in different concentrations
was not causing cell death over 72 h. A similar observation was made by Wang et al., where
the addition of KGN had no adverse effect on primary human fibroblast viability during
48 h [70].
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Figure 6. HOB cell numbers for (a) different concentrations of KGN; (b) PLGA formulations;
(c) blended PLGA/PEG-KGN formulations; and (d) blended PLGA/PVP-KGN formulations. KGN-
treated wells were exposed to different concentrations of KGN dissolved in DMSO/culture media,
with the final concentration of DMSO being 0.1% v/v. DMSO control wells were treated with
DMSO/media mixture at the same DMSO concentration. ‘Positive control’ are the wells that were
treated with 100% ethanol. Statistical analysis using ANOVA revealed no significant differences
between the formulations and negative controls.

As can be seen from the data in Figure 6b–d, cell numbers increased up until ca. 24 h,
after which they plateaued (48 h) and then declined (72 h). The decline arose because the
cells became over-confluent after 48 h (confluence occurs at approximately 40,000 cells per
well). The PLGA, PLGA/PEG, and PLGA/PVP formulations did not show any toxicity
and, therefore, have the potential to be used as a carrier for KGN. The PLGA, PVP, and PEG
blanks indicated that the formulations alone have no negative influence on cell survival
and are cytocompatible. Cell proliferation occurred at very similar rates both for the
untreated cells control and for the KGN-loaded particles and was not markedly inhibited
by the presence of the polymer particles. This is in good agreement with the literature,
in which PLGA, PVP, and PEG were all shown to be highly biocompatible [71–74]. It is
also suggestive that along with cell viability, the KGN-loaded formulations do not interfere
with cell adhesion as cells continue to proliferate over 72 h.

4. Conclusions

In this work, PLGA-based particles with KGN encapsulated were successfully electro-
sprayed. A series of materials was generated in which PLGA was blended with various
ratios of PEG or PVP and KGN. The particles were largely spherical, with relatively uniform
sizes in the range of 2.4–4.1 µm. The KGN encapsulation efficiency was high, at >93%
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of the theoretical loading. XRD and DSC suggested the particles comprised amorphous
solid dispersions. KGN features were not clearly visible in the IR data, owing to the low
drug loading (3% w/w). The various materials gave a range of drug release rates, offering
the potential for precisely tunable systems. PLGA particles loaded with KGN displayed
the slowest release because of the hydrophobicity of PLGA, reaching only 40% release
after 45 days. After an initial burst release of ca. 15%, there was almost zero-order release
between days 5 and 45. Blending the PLGA with PVP or PEG resulted in markedly changed
profiles, with most systems giving a high burst release of >60% in the first 2 h. The exception
was the 10% PVP system, which gave a burst release of around 15%. The range of release
profiles observed offers the potential to provide a precisely tailored profile, depending on
the patient’s needs, by the simple expedient of making physical mixtures of the materials.
For instance, a combination of PLGA and PLGA/PEG particles could give a loading dose
of KGN (over 1–5 days) followed by sustained release over 45 days or longer. In vitro assay
on HOB cells showed that the formulations were cytocompatible and did not affect viability
or survival over 72 h. These are promising findings; in the future, we seek to consolidate
these by exploring more detailed in vitro experiments (e.g., alkaline phosphatase assay).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym15051275/s1, Figure S1: Calibration curve for KGN in
DMF; Figure S2: Calibration curve for KGN in PBS; Figure S3: SEM images of blank (a) PLGA;
(b) PLGA/PEG 30% w/w; and (c) PLGA/PVP 30% w/w particles, with no drug loading; Table S1. Pa-
rameters used in the optimized electrospraying processes; Table S2. Composition, encapsulation
efficiency and drug loading of the KGN-containing particles (n = 3).
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26. Irmak, G.; Demirtaş, T.T.; Altindal, D.Ç.; Çaliş, M.; Gumusderelioglu, M. Sustained release of 17β-estradiol stimulates osteogenic
differentiation of adipose tissue-derived mesenchymal stem cells on chitosan-hydroxyapatite scaffolds. Cells Tissues Organs 2014,
199, 37–50. [CrossRef]

27. Jiang, T.; Yu, X.; Carbone, E.J.; Nelson, C.; Kan, H.M.; Lo, K.W.H. Poly aspartic acid peptide-linked PLGA based nanoscale
particles: Potential for bone-targeting drug delivery applications. Int. J. Pharm. 2014, 475, 547–557. [CrossRef]

28. Lü, J.M.; Wang, X.; Marin-Muller, C.; Wang, H.; Lin, P.H.; Yao, Q.; Chen, C. Current advances in research and clinical applications
of PLGA-based nanotechnology. Expert Rev. Mol. Diagn. 2009, 9, 325–341. [CrossRef]

29. Ford Versypt, A.N.; Pack, D.W.; Braatz, R.D. Mathematical modeling of drug delivery from autocatalytically degradable PLGA
microspheres—A review. J. Control. Release 2013, 165, 29–37. [CrossRef]

30. Hong, Y.; Liu, N.; Zhou, R.; Zhao, X.; Han, Y.; Xia, F.; Cheng, J.; Duan, M.; Qian, Q.; Wang, X.; et al. Combination Therapy Using
Kartogenin-Based Chondrogenesis and Complex Polymer Scaffold for Cartilage Defect Regeneration. ACS Biomater. Sci. Eng.
2020, 6, 6276–6284. [CrossRef]

31. Zhang, Y.; Yang, F.; Liu, K.; Shen, H.; Zhu, Y.; Zhang, W.; Liu, W.; Wang, S.; Cao, Y.; Zhou, G. The impact of PLGA scaffold
orientation on in vitro cartilage regeneration. Biomaterials 2012, 33, 2926–2935. [CrossRef]

32. Zhao, Y.; Zhao, X.; Zhang, R.; Huang, Y.; Li, Y.; Shan, M.; Zhong, X.; Xing, Y.; Wang, M.; Zhang, Y.; et al. Cartilage Extracellular
Matrix Scaffold with Kartogenin-Encapsulated PLGA Microspheres for Cartilage Regeneration. Front. Bioeng. Biotechnol. 2020,
8, 600103. [CrossRef]

33. Gentile, P.; Chiono, V.; Carmagnola, I.; Hatton, P.V. An Overview of Poly(lactic-co-glycolic) Acid (PLGA)-Based Biomaterials for
Bone Tissue Engineering. Int. J. Mol. Sci. 2014, 15, 3640–3659. [CrossRef]

34. Chun, K.; Yoo, H.; Yoon, J.; Park, T. Biodegradable PLGA Microcarriers for Injectable Delivery of Chondrocytes: Effect of Surface
Modification on Cell Attachment and Function. Biotechnol. Prog. 2004, 20, 1797–1801. [CrossRef] [PubMed]

35. Khorasani, M.; Mirzadeh, H.; Irani, S. Plasma surface modification of poly (l-lactic acid) and poly (lactic-co-glycolic acid) films for
improvement of nerve cells adhesion. Radiat. Phys. Chem. 2008, 77, 280–287. [CrossRef]

36. Jin, S.; Xia, X.; Huang, J.; Yuan, C.; Zuo, Y.; Li, Y.; Li, J. Recent advances in PLGA-based biomaterials for bone tissue regeneration.
Acta Biomater. 2021, 127, 56–79. [CrossRef]

http://doi.org/10.1016/j.progpolymsci.2012.03.002
http://doi.org/10.1186/s12645-022-00114-1
http://doi.org/10.1021/bm801033f
http://www.ncbi.nlm.nih.gov/pubmed/19072041
http://doi.org/10.1002/smll.200801907
http://www.ncbi.nlm.nih.gov/pubmed/19360725
http://doi.org/10.1039/c1jm12720a
http://doi.org/10.3390/pharmaceutics12070625
http://doi.org/10.1016/j.addr.2016.01.003
http://doi.org/10.1039/C8RA03490G
http://doi.org/10.3390/pharmaceutics13070983
http://doi.org/10.1126/science.1215157
http://doi.org/10.1155/2022/1278921
http://doi.org/10.1530/JME-14-0022
http://www.ncbi.nlm.nih.gov/pubmed/24740736
http://doi.org/10.6065/apem.2015.20.1.8
http://www.ncbi.nlm.nih.gov/pubmed/25883921
http://doi.org/10.1016/j.biomaterials.2014.08.042
http://www.ncbi.nlm.nih.gov/pubmed/25241157
http://doi.org/10.1016/j.biotechadv.2015.08.005
http://doi.org/10.1016/j.jot.2019.05.003
http://doi.org/10.1159/000362362
http://doi.org/10.1016/j.ijpharm.2014.08.067
http://doi.org/10.1586/erm.09.15
http://doi.org/10.1016/j.jconrel.2012.10.015
http://doi.org/10.1021/acsbiomaterials.0c00724
http://doi.org/10.1016/j.biomaterials.2012.01.006
http://doi.org/10.3389/fbioe.2020.600103
http://doi.org/10.3390/ijms15033640
http://doi.org/10.1021/bp0496981
http://www.ncbi.nlm.nih.gov/pubmed/15575714
http://doi.org/10.1016/j.radphyschem.2007.05.013
http://doi.org/10.1016/j.actbio.2021.03.067


Polymers 2023, 15, 1275 13 of 14

37. Li, M.; Liu, W.; Sun, J.; Xianyu, Y.; Wang, J.; Zhang, W.; Zheng, W.; Huang, D.; Di, S.; Long, Y.-Z.; et al. Culturing Primary Human
Osteoblasts on Electrospun Poly(lactic-co-glycolic acid) and Poly(lactic-co-glycolic acid)/Nanohydroxyapatite Scaffolds for Bone
Tissue Engineering. ACS Appl. Mater. Interfaces 2013, 5, 5921–5926. [CrossRef]

38. Xu, M.; Li, Y.; Suo, H.; Yan, Y.; Liu, L.; Wang, Q.; Ge, Y.; Xu, Y. Fabricating a pearl/PLGA composite scaffold by the low-temperature
deposition manufacturing technique for bone tissue engineering. Biofabrication 2010, 2, 025002. [CrossRef]

39. Wang, S.J.; Qin, J.Z.; Zhang, T.E.; Xia, C. Intra-articular Injection of Kartogenin-Incorporated Thermogel Enhancing Osteoarthritis
Treatment. Front. Chem. 2019, 7, 677. [CrossRef] [PubMed]

40. Su, Y.; Liu, J.; Tan, S.; Liu, W.; Wang, R.; Chen, C. PLGA sustained-release microspheres loaded with an insoluble small-molecule
drug: Microfluidic-based preparation, optimization, characterization, and evaluation in vitro and in vivo. Drug Deliv. 2022, 29,
1437–1446. [CrossRef] [PubMed]

41. Lim, Y.W.; Tan, W.S.; Ho, K.L.; Mariatulqabtiah, A.R.; Abu Kasim, N.H.; Rahman, N.A.; Wong, T.W.; Chee, C.F. Challenges
and Complications of Poly(lactic-co-glycolic acid)-Based Long-Acting Drug Product Development. Pharmaceutics 2022, 14, 614.
[CrossRef] [PubMed]

42. Liu, W.-Y.; Hsieh, Y.-S.; Wu, Y.-T. Poly (Lactic-Co-Glycolic) Acid–Poly (Vinyl Pyrrolidone) Hybrid Nanoparticles to Improve the
Efficiency of Oral Delivery of β-Carotene. Pharmaceutics 2022, 14, 637. [CrossRef] [PubMed]

43. Cox, F.; Khalib, K.; Conlon, N. PEG That Reaction: A Case Series of Allergy to Polyethylene Glycol. J. Clin. Pharmacol. 2021, 61,
832–835. [CrossRef]

44. Wylon, K.; Dölle, S.; Worm, M. Polyethylene glycol as a cause of anaphylaxis. Allergy Asthma Clin. Immunol. 2016, 12, 67.
[CrossRef]

45. Papavasiliou, G.; Turturro, M.V.; Christenson, M. Synthetic PEG hydrogel extracellular matrix mimics for the vascularization of
engineered tissues. Cardiovasc. Pathol. 2013, 22, e31–e32. [CrossRef]

46. Papavasiliou, G.; Sokic, S.; Turturro, M. Synthetic PEG Hydrogels as Extracellular Matrix Mimics for Tissue Engineering
Applications. In Biotechnology—Molecular Studies and Novel Applications for Improved Quality of Human Life; IntechOpen: London,
UK, 2012. [CrossRef]

47. Sargeant, T.D.; Desai, A.P.; Banerjee, S.; Agawu, A.; Stopek, J.B. An in situ forming collagen–PEG hydrogel for tissue regeneration.
Acta Biomater. 2012, 8, 124–132. [CrossRef] [PubMed]

48. Yan, Q.; Xiao, L.-Q.; Tan, L.; Sun, W.; Wu, T.; Chen, L.-W.; Mei, Y.; Shi, B. Controlled release of simvastatin-loaded thermo-sensitive
PLGA-PEG-PLGA hydrogel for bone tissue regeneration: In vitro and in vivo characteristics. J. Biomed. Mater. Res. Part A 2015,
103, 3580–3589. [CrossRef]

49. Kurakula, M.; Rao, G.S.N.K. Pharmaceutical assessment of polyvinylpyrrolidone (PVP): As excipient from conventional to
controlled delivery systems with a spotlight on COVID-19 inhibition. J. Drug Deliv. Sci. Technol. 2020, 60, 102046. [CrossRef]

50. Moreira, A.; Lawson, D.; Onyekuru, L.; Dziemidowicz, K.; Angkawinitwong, U.; Costa, P.F.; Radacsi, N.; Williams, G.R. Protein
encapsulation by electrospinning and electrospraying. J. Control. Release 2020, 329, 1172–1197. [CrossRef] [PubMed]

51. Kim, W.T.; Park, D.C.; Yang, W.H.; Cho, C.H.; Choi, W.Y. Effects of electrospinning parameters on the microstructure of pvp/tio2
nanofibers. Nanomaterials 2021, 11, 26–28. [CrossRef]
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