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Abstract: In recent years, the rapid development of sensors and information technology has made it
possible for machines to recognize and analyze human emotions. Emotion recognition is an important
research direction in various fields. Human emotions have many manifestations. Therefore, emotion
recognition can be realized by analyzing facial expressions, speech, behavior, or physiological signals.
These signals are collected by different sensors. Correct recognition of human emotions can promote
the development of affective computing. Most existing emotion recognition surveys only focus on
a single sensor. Therefore, it is more important to compare different sensors or unimodality and
multimodality. In this survey, we collect and review more than 200 papers on emotion recogni-
tion by literature research methods. We categorize these papers according to different innovations.
These articles mainly focus on the methods and datasets used for emotion recognition with different
sensors. This survey also provides application examples and developments in emotion recogni-
tion. Furthermore, this survey compares the advantages and disadvantages of different sensors
for emotion recognition. The proposed survey can help researchers gain a better understanding of
existing emotion recognition systems, thus facilitating the selection of suitable sensors, algorithms,
and datasets.

Keywords: sensors for emotion recognition; emotion models; emotional signal processing; classifiers;
emotion recognition datasets

1. Introduction

Emotion is a comprehensive manifestation of people’s physiological and psychological
states; emotion recognition was systematically proposed in the 1990s [1]. With the rapid
development of science and technology, emotion recognition has been widely used in
various fields, such as human-computer interactions (HCI) [2], medical health [3], Internet
education [4], security monitoring [5], intelligent cockpit [6], psychological analysis [7], and
the entertainment industry [8].

Emotion recognition can be realized through different detection methods and different
sensors. Sensors are combined with advanced algorithm models and rich data to form
human-computer interaction systems [9,10] or robot systems [11]. In the field of medical
and health care [12], emotion recognition can be used to detect the patient’s psychological
state or adjuvant treatment, and improve medical efficiency and medical experience. In the
field of Internet education [13], emotion recognition can be used to detect students’ learning
status and knowledge acceptance, and cooperate with relevant reminders to improve
learning efficiency. In the field of criminal interrogation [14], emotion recognition can be
used to detect lies (authenticity test). In the field of intelligent cockpits [15], it can be used
to detect the drowsiness and mental state of the driver to improve driving safety. In the
field of psychoanalysis [16], it can be used to help analyze whether a person has autism.
This technique can also be applied to recognize the emotions of the elderly, infants, and
those with special diseases who cannot clearly express their emotions [17,18].
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A correct understanding of emotion can deepen the research on emotion recognition.
Section 2 introduces the definition of emotion and famous emotion models. Each sensor
has different detection emphases for emotion recognition, which can be roughly divided
into three categories: The first one is to use human actions or speech signals, such as facial
expressions, speech, and gestures. The second one is to use the physiological signals inside
the human body, such as EEG, respiratory rate, and heart rate. The last type is multi-modal
fusion emotion recognition, which uses multiple signals for emotion recognition. These
three types of detection methods have their own advantages and disadvantages, which
are detailed in Section 3. Preprocessing, feature extraction, and classification methods for
different sensor signals are detailed in Sections 4 and 5. Section 6 presents some of the main
datasets for different signals. Sections 7 and 8 are the conclusion of the overall survey and
thoughts on the future development of emotion recognition.

2. Emotion Models

The definition of emotion is the basis of emotion recognition. The basic concept of
emotion was proposed by Ekman in the 1970s [19]. At present, there are two mainstream
emotion models: the Discrete emotion model and the dimensional emotion model.

Discrete Emotion Model

Darwinian evolution [20] holds that emotions are primitive or fundamental. Emotion
as a form is considered to correspond to discrete and elementary responses or tendencies
of action. The discrete emotion model divides human emotions into limited categories [21],
mainly including happiness, sadness, fear, anger, disgust, surprise, etc. There are two to
eight basic emotions, according to different theories. However, these discrete emotion
model theories have certain common features. They believe that emotions are: mental and
physiological processes; caused by the awareness of developmental events; inducing factors
for changes in the body’s internal and external signals; related to a fixed set of actions or
tendencies. Ekman proposed seven characteristics to distinguish different basic emotions
and emotional phenomena: autonomous evaluation; have specific antecedent events;
also present in other primates; rapid onset; short duration; unconscious or involuntary
appearance; reflected in unique physiological systems such as the nervous system and
facial expressions. R. Plutchik proposed eight basic emotions and distinguished them
according to intensity, forming the Plutchik’s wheel model [22]. It is a well-known discrete
emotion model, as shown in Figure 1 (adapted from [22]).

Dimensional emotion models view emotions as combinations of vectors within a more
fundamental dimensional space. This enables complex emotions to be researched and
measured in fewer dimensions. Core emotions are generally expressed in two-dimensional
or three-dimensional space. The dimensional emotion model in the two-dimensional space
is usually the arousal-valence model. Valence reflects the positive or negative evaluation of
an emotion and the degree of pleasure the participant feels. Arousal reflects the intensity
or activation of an emotion in the body. The level of arousal reflects the individual’s
will, and low arousal means less energy. However, dimensional emotion models in two
dimensions were not able to successfully distinguish core emotions with the same degree
of consistency and valence. For example, both anger and fear have high arousal and low
valence. Therefore, a new dimension needs to be introduced to distinguish these emotions.

The most famous three-dimensional emotion model is the pleasure, arousal, and
dominance (PAD) model [23] proposed by Mehrabian and Russell through the study of
environmental psychology methods [24] and the feeling-thinking-acting [25] model, as
shown in Figure 2 (adapted from [23]).
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Figure 2. PAD 3D emotion model.

Dominance represents control or position, and indicates whether a certain emotion is
submissive. It is worth noting the dimensional emotion model can accurately identify the
core emotion. However, for some complex emotions, the dimensional emotion model will
lose some details.
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3. Sensors for Emotion Recognition

The sensors used for emotion recognition mainly include visual sensors, audio sensors,
radar sensors, and other physiological signal sensors, which can collect signals of different
dimensions and achieve emotional analysis through some algorithms. Different sensors
have different applications in emotion recognition. The advantages and disadvantages of
different sensors for emotion recognition are shown in Table 1.

Table 1. Advantages and disadvantages of different sensors for emotion recognition.

Sensors Advantages Disadvantages

Visual sensor Simple data collection;
high scalability

Restricted by light;
easy to cause privacy leakage [26]

Audio sensor Low cost;
wide range of applications

Lack of robustness for complex
sentiment analysis

Radar sensor Remote monitoring of
physiological signals

Radial movement may cause
disturbance

Other physiological sensors Ability to monitor physiological
signals representing real emotion

Invasive, requires wearing close
to the skin surface [27]

Multi-sensor fusion Richer collected information;
higher robustness

Multi-channel information needs
to be synchronized;

the follow-up calculation is
relatively large

3.1. Visual Sensor

Emotion recognition based on visual sensors is one of the most common emotion
recognition methods. It has the advantages of low cost and simple data collection. At
present, visual sensors are mainly used for facial expression recognition (FER) [28–30]
to detect emotion or remote photoplethysmography (rPPG) technology to detect heart
rate [31,32]. The accuracies of these methods severely drop as the light intensity decreases.

The facial expression recognition process is shown in Figure 3. Facial expressions can
intuitively reflect people’s emotions. It is difficult for machines to capture the details of
expressions like humans [33]. Facial expressions are easy to hide, which leads to emotion
recognition errors [34]. For example, in some social activities, we usually politely smile
even though we are not in a happy mood [35].

Sensors 2023, 23, x FOR PEER REVIEW 5 of 38 
 

 

Emotion recognition based on visual sensors is one of the most common emotion 
recognition methods. It has the advantages of low cost and simple data collection. At pre-
sent, visual sensors are mainly used for facial expression recognition (FER) [28–30] to de-
tect emotion or remote photoplethysmography (rPPG) technology to detect heart rate 
[31,32]. The accuracies of these methods severely drop as the light intensity decreases. 

The facial expression recognition process is shown in Figure 3. Facial expressions can 
intuitively reflect people’s emotions. It is difficult for machines to capture the details of 
expressions like humans [33]. Facial expressions are easy to hide, which leads to emotion 
recognition errors [34]. For example, in some social activities, we usually politely smile 
even though we are not in a happy mood [35]. 

Input Preprocess Face
Recognition

Emotion
Classification Output

HAPPY！

 
Figure 3. Facial expression recognition process. 

Different individuals have different skin colors, looks, and facial features [36,37], 
which pose challenges to the accuracy of classification. Facial features of the same emotion 
can be different, and small changes in different emotions of the same individual are not 
very obvious [38]. Therefore, there is a classification challenge of large intra-class distance 
and small inter-class distance for emotion detection through facial expression recognition 
by the camera. It is also difficult to effectively recognize emotions when the face is oc-
cluded (wearing a mask) or from different shooting angles [39]. 

Photoplethysmography (PPG) is an optical technology for the non-invasive detection 
of various vital signs, which was first proposed in the 1930s [40]. PPG is widely used in 
the detection of physiological signals in personal portable devices (smart wristbands, 
smart watches, etc.) [41,42]. The successful application of PPG has led to the rapid devel-
opment of remote photoplethysmography (rPPG). A multi-wavelength RGB camera is 
used by rPPG technology to identify minute variations in skin color on the human face 
caused by changes in blood volume during a heartbeat [43], as shown in Figure 4. 

Figure 3. Facial expression recognition process.

Different individuals have different skin colors, looks, and facial features [36,37],
which pose challenges to the accuracy of classification. Facial features of the same emotion
can be different, and small changes in different emotions of the same individual are not
very obvious [38]. Therefore, there is a classification challenge of large intra-class distance
and small inter-class distance for emotion detection through facial expression recognition
by the camera. It is also difficult to effectively recognize emotions when the face is occluded
(wearing a mask) or from different shooting angles [39].

Photoplethysmography (PPG) is an optical technology for the non-invasive detection
of various vital signs, which was first proposed in the 1930s [40]. PPG is widely used in the
detection of physiological signals in personal portable devices (smart wristbands, smart
watches, etc.) [41,42]. The successful application of PPG has led to the rapid development
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of remote photoplethysmography (rPPG). A multi-wavelength RGB camera is used by
rPPG technology to identify minute variations in skin color on the human face caused by
changes in blood volume during a heartbeat [43], as shown in Figure 4.
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Figure 4. Schematic diagram of rPPG technology.

The rPPG technology can be used to obtain the degree of peripheral vascular constric-
tion and analyze the participant’s emotions. External vasoconstriction is considered to be a
defensive physiological response. When people are in a state of pain, hunger, fear, or anger,
the constriction of external blood vessels will be enhanced. Conversely, in a calm or relaxed
state, this response will reduce.

With the improvement in hardware and algorithm level, rPPG technology can also
realize remote non-contact monitoring and estimation of heart rate [44], respiratory rate [45],
blood pressure [46], or other signals. Emotion recognition is performed after analyzing
a large amount of monitoring data. These signals can classify emotions into a few types
and intensities. There are certain errors in the recognition of multiple types of emotions. It
is necessary to combine other physiological information to improve the accuracy rate of
emotion recognition [47].

3.2. Audio Sensor

Language is one of the most important components of human culture. People can
express themselves or communicate with others through language. Speech recognition [48]
has promoted the development of speech emotion recognition (SER) [49]. Human speech
contains rich information that can be used for emotion recognition [50,51]. Understanding
the emotion in information is essential for artificial intelligence to engage in effective dialog.
SER can be used for call center dialog, automatic response systems, autism diagnosis,
etc. [52–54]. SER is jointly completed by acoustics feature extraction [55] and language
mark [56]. The process of SER is shown in Figure 5.
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Figure 5. The process of SER.

In the preprocessing stage, the input signal is enhanced into segmentations [57] after
noise reduction; and then feature extraction and classification are performed [58]. The lan-
guage model [59] can identify emotional expressions with specific semantic contributions.
The acoustic model can distinguish different emotions contained in the same sentence
by analyzing the features of prosody or spectral [60]. Combining these two models can
improve the accuracy of SER.

Understanding the emotion in speech is a complex process. Different speaking styles
of different people will bring about acoustic variability, which will directly affect speech
feature labeling and extraction [61]. The same sentence may contain different emotions [62],
and some specific emotional differences often depend on the speaker’s local culture or
living environment, which also pose challenges for SER.

3.3. Radar Sensor

Different emotions will cause a series of physiological responses, such as changes in
respiratory rate [63], heart rate [64,65], brain wave [66], blood pressure [67], etc. For exam-
ple, the excitement caused by happiness, anger, or anxiety can lead to an increased heart
rate [68]. Positive emotions can increase respiratory rate, and depressive emotions can tend
to inhibit breathing [69]. Respiratory rate also affects heart rate variability (HRV), which
decreases when exhaling and increases when inhaling [70]. Currently, radar technology is
widely used in remote vital signs detection [71] and wireless sensing [72]. Radar sensors
can use the echo signal of the target to analyze the chest micro-motion caused by breathing
and heartbeats. It can realize remote acquisition of these physiological signals. The overall
process of emotion recognition based on radar sensor is shown in Figure 6.
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Compared with visual sensors, emotion recognition based on radar sensors is un-
restricted by light intensity [73]. However, in real environments, radar echo signals are
affected by noise, especially for the radial doppler motion close to or away from the
radar [74], which affects the accuracy of sentiment analysis.

3.4. Other Physiological Sensors

Emotions have been shown to be biological since ancient times. Excessive emotion
is believed to have some effects on the functioning of vital organs. Aristotle believed that
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the influence of emotions on physiology is reflected in the changes in physiological states,
such as a rapid heartbeat, body heat, or loss of appetite. William James first proposed the
theory of the physiology of emotion [75]. He believed that external stimuli would trigger
activity in the autonomic nervous system and create a physiological response in the brain.
For example, when we feel happy, we laugh; when we feel scared, our hairs stand on end;
when we feel sad, we cry.

Human emotion is a spontaneous mental state, which is reflected in the physiological
changes of the human body and significantly affects our consciousness [76]. Many other
physiological signals in the human body, such as electroencephalogram (EEG) [66], elec-
trocardiogram (ECG) [77], electromyogram (EMG) [78], galvanic skin response (GSR) [79],
blood volume pulse (BVP) [80], and electrooculography (EOG) [81], as shown in Figure 7.
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EEG measures the electrical signal activity of the brain by setting electrodes on the
skin surface of the head. Many studies have shown that the prefrontal cortex, temporal
lobe, and anterior cingulate gyrus of the brain are related to the control of emotions. Their
levels of activity induce emotions such as anxiety, irritability, depression, worry, and
resentment, respectively.

ECG is a method of electrical monitoring on the surface of the skin that detects the
heartbeat controlled by the body’s electrical signals. Heart rate and heart rate variability
obtained through subsequent analysis are widely used in affective computing. Heart
rate and heart rate variability are controlled by the sympathetic nervous systems and
parasympathetic nervous systems. The sympathetic nervous system can speed up the heart
rate, which is reflected in greater psychological stress and activation. The parasympathetic
nervous system is responsible for bringing the heart rate down to normal levels, putting
the body in a more relaxed state.

EMG measures the degree of muscle activation by collecting the voltage difference
generated during muscle contraction. The current EMG signal measurement technology
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can be divided into two types. The first is to study facial expressions by measuring facial
muscles. The second is to place electrodes on the body to recognize emotional movements.

GSR is another signal commonly used for emotion recognition. Human skin is nor-
mally an insulator. When sweat glands secrete sweat, the electrical conductivity of the skin
will change Therefore, GSR can reflect the sweating situation of a person. GSR is usually
measured on the palms or soles of the feet, where sweat glands are thought to best reflect
changes in emotion. When a person is in an anxious or tense mood, the sweat glands
usually secrete more sweat, which causes a greater change in current.

Related physiological signals also include BVP, EOG, etc. These signals all change with
emotional changes, and they are not subject to human conscious control [82]. Therefore,
these signals can be measured by different physiological sensors to achieve the purpose
of emotion recognition. Using these physiological sensors can accurately and quickly
obtain real human physiological signals. However, physiological sensors other than visual,
audio, and radar sensors usually need to touch the skin or wear related equipment to
extract physiological signals, which will affect people’s daily comfort (most people will not
accept this monitoring method). Contact sensors are limited by weight and size [27]. These
contact devices may also cause people tension and anxiety, which will affect the accuracy
of emotion recognition.

3.5. Multi-Sensor Fusion

There are certain deficiencies in single-modal emotion recognition, and it is usually
unable to accurately identify complex emotions. The multi-modal emotion recognition
method refers to the use of signals obtained by multiple sensors to complement each other
and obtain more reliable recognition results. Multi-modal approaches can promote the
development of emotion recognition. Multi-modal emotion recognition can often achieve
the best recognition performance, but the computational complexity will increase due to
the excessive number of channels. There are higher requirements for the collection of multi-
modal datasets. Multi-modal emotion recognition has different fusion strategies, which can
be mainly divided into pixel-level fusion, feature-level fusion, and decision-level fusion.

Pixel-level fusion [83] refers to the direct fusion of the original data; the semantic
information and noise of the signal will be superimposed, which will affect the classification
effect after fusion. Processing time is wasted when there is too much redundant information.

The feature-level fusion [84] process is shown in Figure 8. Feature-level fusion occurs
in the early stages of the fusion process. Extract features from different input signals and
combine them into high-dimensional feature vectors. Finally, output the result through
a classifier. Feature-level fusion retains most of the important information, it can greatly
reduce computing consumption. However, when the amount of data is small or some
details are missing, the final accuracy rate will decrease.
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The decision-level fusion [85,86] process is shown in Figure 9. Decision-level fu-
sion refers to the fusion of independent decisions of each part after making independent
decisions based on signals collected by different sensors.
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Figure 9. Decision-level fusion.

The advantage of decision-level fusion is that independent feature extraction and
classification methods can be set according to different signals. It has lower requirements
for the integrity of multimodal data. Decision-level fusion has higher robustness and better
classification results.

4. Emotion Recognition Method

Choosing the right method can improve the accuracy of emotion recognition [87]. The
emotion recognition method of different sensors is described in Figure 10.
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Signal preprocessing refers to improving signal quality and reducing noise. Feature
extraction is mainly used to find the characteristics of different signals and reduce the
amount of calculation required for classification. Classification refers to applying the
extracted features to a certain classification model. Finally, the emotion corresponding to
the signal is obtained through analysis.

4.1. Signal Preprocessing

For emotion recognition from different sensors, signal preprocessing is an important
step [88]. Preprocessing can reduce the impact of noise in the early stages of emotion recognition.

For visual signals, mainly use cropping, rotation, scaling, grayscale, and other methods
for signal preprocessing.

The signal preprocessing method for audio signals mainly includes:

• Silent frame removal: Remove frames below the set threshold to reduce calculation
consumption [89];

• Pre-emphasis: Compensate for high-frequency components of the signal;
• Regularization: Adjust the signal to a standard level to reduce the influence of different

environments on the results;
• Window: Prevent signal edge leakage from affecting feature extraction [90];
• Noise reduction algorithm: Use noise reduction algorithms such as minimum mean

square error (MMSE) to reduce background noise.
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The preprocessing methods for radar signals and physiological signals mainly include:

• Filtering: Remove noise, signal crosstalk [91], or baseline wander [92] by different filters;
• Wavelet transform [93]: Using time window and frequency window to characterize

the local characteristics of physiological signals;
• Nonlinear dynamics: Use approximate entropy [94], sample entropy [95], transfer

entropy [96] to obtain a smooth signal estimate and remove transient disturbances [97].

4.2. Feature Extraction

Feature extraction can ignore information irrelevant to the target, reduce the amount
of calculation, overcome the curse of dimensionality, and improve the generalization ability
of the model. Signals often require feature extraction before being input into some classical
classification models.

4.2.1. For Visual Signals

Principal Component Analysis (PCA) [98]: PCA is a very common dimensionality
reduction method. Keeping the most important features of high-dimensional data while
removing noise and unimportant features. This can greatly improve data processing speed
and save time and costs. PCA can be defined as an orthogonal linear transformation that
projects data to a new coordinate system. PCA can satisfy the maximum reconfiguration,
which means that the distance between the sample point and the hyperplane is close
enough. At the same time, PCA can also satisfy maximum separability, which means that
the projection of sample points onto the hyperplane can be separated as much as possible.

In [99], the authors simply used PCA to reduce the dimensionality of the feature
vectors. The accuracy rate on the JAFFE dataset reached 74.14%. In [100], the authors
combined PCA and PSO to obtain optimized feature vectors. The accuracy rate on the
JAFFE dataset reached 94.97%. In [101], the authors proposed two-dimensional PCA;
2DPCA is based on 2D image matrices instead of 1D vectors, so there is no need to convert
image matrices to vectors before feature extraction. Indeed, 2DPCA can directly use the
original image to construct the covariance matrix, which is more effective than PCA. In [102],
the authors utilized bidirectional PCA to extract visual features. The accuracy rate on the
YALE multimodal dataset reached 94.01, which was an increase of 0.9% compared with the
PCA method.

Histogram of Oriented Gradients (HOG) [103]: HOG was proposed based on image
edge information and was first used for object detection. Each window region of an image
can be described by the local distribution and gradient of edge directions. A HOG descriptor
can be obtained by computing the histogram of edge directions in these cells and normal-
izing them. Combining these descriptors can be used to detect facial expressions. The
features generated by HOG are not affected by illumination and geometric transformation.

In [104], the authors proposed a framework for emotion recognition based on HOG
and SVM. The accuracy rate on the GEMEP-FERA dataset reached 70%. In [105], the authors
proposed a FER framework for real-time inference of emotional states. The framework
extracted HOG features from active face patches; 95% accuracy was achieved on the CK+
dataset. In [106], the authors proposed an emotion recognition framework based on HOG
descriptors and the Cuttlefish algorithm. This method did not generate irrelevant or noisy
features. The model achieved 97.86%, 95.15%, and 90.95% accuracy on the CK+, RaFD, and
JAFFE datasets.

Other feature extraction methods for visual signals include Local Binary Patterns
(LBP) [107] and Linear Discriminate Analysis (LDA) [108].

4.2.2. For Speech Signals

Speech signal features mainly include prosodic features [109], frequency spectral
features, frequency cepstral coefficients [110], and energy features. These features carry
both information and emotion. Therefore, some methods can be utilized to extract them.
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Linear Predictor Coefficients (LPC) [111]: LPC is based on a speech production model.
This model uses an all-pole filter to model the characteristics of the vocal tract. LPC is
equivalent to the smooth envelope of the speech logarithmic spectrum. It can be directly
computed from windowed parts of speech by autocorrelation or covariance methods. LPC
can accurately and quickly estimate speech parameters.

In [112], the authors combined the features of TEO and LPC for T-LPC feature ex-
traction. This method can accurately recognize stress speech signals. The accuracy on the
Emo-DB dataset reached 82.7% (male) and 88% (female). In [113], the authors proposed
a combined spectral coefficient optimization method based on LPC. The accuracy on the
Emo-DB dataset reached 88%. Comparative experiments showed that this optimization
method improved the accuracy by 4%. In [114], the authors measured the emotion recogni-
tion accuracy when LPC coefficients were introduced in the feature vectors. Using only
the LOC coefficients, the model achieved 78% accuracy on the SROL dataset. In [115], the
authors proposed a meta-heuristic feature selection model. This model took LPC features
as input. The accuracy of the model on the SAVEE and Emo-DB datasets reached 97.31%
and 98.46%.

Teager Energy Operator(TEO) [116]: TEO is a powerful nonlinear energy operator.
It is able to extract signal energy based on mechanical and physical considerations. TEO
can extract the features of speech when the utterance presents a certain stress. It measures
speech non-proximity by processing the characteristics of speech signals in the frequency
and time domains.

In [117], the authors proposed a two-stage emotion recognition system based on TEO.
Autoencoders improved recognition rates. The accuracy on the RML dataset reached
74.07%. In [118], the authors proposed the EMD-TEO model. Experiments showed that
the features extracted based on TEO were robust, and the performance of speech emotion
recognition was significantly improved. The accuracy of the model on the EMO-DB dataset
reached 81.34%. In [119], the authors fused TEO and MFCC to form T-MFCC feature
extraction technology. TEO extracted the nonlinear features of speech and was mainly used
to identify stressful emotions. Experiments showed that T-MFCC had better performance.
The accuracy of the model on the EMO-DB dataset reached 93.33%.

Other commonly used speech signal feature extraction methods include Short-time
Coherence (SMC), Fast Fourier Transform (FFT), Principal Component Analysis (PCA) [120],
and linear discriminant analysis (LDA) [121].

4.2.3. For Physiological and Radar signals

Fast Fourier Transform (FFT) [122]: FFT is a popular signal processing method. It can
be used to convert time-domain signals to frequency-domain signals, and vice versa. For
spectrum analysis, the magnitude squared of the FFT is usually used to obtain the Power
Spectral Density (PSD). PSD can be used to analyze the contribution of a specific frequency
band to the total power of the signal.

In [123], the authors utilized FFT to analyze short-duration EEG signals for emotion
classification. Through experiments, it was concluded that the short-term EEG signal
characteristics reflected the changes in emotional state. The accuracy on the self-built
dataset reached 91.33%. In [124], the authors built an emotion recognition model based
on FFT and Genetic Programming (GP). FFT was used to convert a signal from the time
domain to the frequency domain. The accuracy on the self-built dataset (four emotions)
reached 89.14%. In [125], the authors utilized FFT and Wigner-Ville Distribution (WVD)
methods to convert physiological signals into images. Putting the image into a CNN
model could obtain excellent classification results. The accuracy on the self-built dataset
reached 93.01%.

Maximal-Relevance Minimal-Redundancy (mRMR) [126]: mRMR uses mutual in-
formation as a correlation measurement with maximum dependence criterion and mini-
mum redundancy criterion. It is capable of selecting features with the strongest correlation
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with the categorical variable. The mRMR algorithm can not only reduce dimensions and
improve prediction accuracy, but also obtain features with more meaning and value.

In [127], the authors researched stable patterns over time for emotion recognition from
EEG. The model used the mRMR algorithm to reduce the dimension and improve the
stability of the classifier. The accuracy on the DEAP dataset and SEED dataset reached
69.67% and 91.07%. In [128], the authors proposed a method that combined the feature
selection task of mRMR and kernel classifiers for emotion recognition. The authors used
mRMR to incorporate feature selection tasks into classification tasks. The accuracy on
the DEAP dataset reached 60.7% (Arousal) and 62.33% (Valence). In [129], the authors
analyzed non-stationary physiological signals and extracted features that could be used to
achieve accurate emotion recognition. The authors utilized the mRMR algorithm to reduce
the dimensionality of the constructed feature vectors. The average accuracy on the DEAP
dataset reached 80%.

Other feature extraction methods of physiological signals and radar signals include
Empirical Mode Decomposition (EMD), Linear Discriminate Analysis (LDA) [130], Locality
Preserving Projections (LPP) [131], and the Relief-F algorithm [132].

5. Classification

The classifier can classify different input signals and output the corresponding emotion
category. The quality of the classifier will affect the accuracy of emotion recognition.
The current classification methods can be divided into two categories: Classical machine
learning methods and deep learning methods. This section will introduce several commonly
used machine learning methods and deep learning methods.

5.1. Machine Learning Methods
5.1.1. SVM

Support vector machine (SVM) [133] aims to find the hyperplane with the largest
interval in the sample space to produce more robust classification results, as shown in
Figure 11. For more complex samples, it can be mapped from the original space to a higher
dimensional space. Solving the corresponding kernel function [134] makes these samples
linearly separable in the feature space. Soft margins [135] and regularization can be added
to prevent overfitting of the trained model.
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The hyperplane can be described by wTx + b. w = (w1; w2; . . . ; wd) is the normal
vector, which determines the direction of the hyperplane. b is the displacement term, which
determines the distance between the hyperplane and the origin. The distance from any
point x in the sample space to the hyperplane (w, b) is

r =

∣∣wTx + b
∣∣

‖w‖ (1)

In order to find the optimal plane, the sum of the distances from each support vector
to the hyperplane needs to be minimum, so it is only necessary to maximize ‖w‖−1.

In [136], the author used SVM to achieve a classification accuracy of 93.75% on the
Berlin Emotion speech dataset. In [137], the author used the SVM model trained by the
LDC dataset and the Emo-DB dataset to achieve an accuracy rate of 83.1% in SER based on
seven emotions. In [76], the author used SVM to classify EEG signals, and achieved 85%
classification accuracy. In [138], the author used SVM to perform FER on the CK+ dataset
and reached 91.95% accuracy. In [139], the author used binary-SVM to realize text sentiment
classification based on 15 types of emotions, and the F-score was as high as 68.86%.

5.1.2. GMM

GMM aims to classify data by superimposing Gaussian distributions in a linear com-
bination and formalize them into a probability model, as shown in Figure 12.
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GMM is an unsupervised learning method, which usually uses expectation maximization
(EM) [140] to determine the parameters of GMM, the main processes of EM are:

1. Expectation: Infer optimal latent variables from the training set;
2. Maximization: Use maximum likelihood estimation of parameters based on observed

variables. It can obtain a mixture model of probabilities of all sub-distribution con-
tained in the overall distribution. In this way, a better classification effect can be
achieved without pre-determining the label of the data.

In [141], the authors achieved 82.5% accuracy on mixed gender SER by SVM based
on GMM super vectors. In [142], the author used the GMM-DNN model to achieve
a classification accuracy of 83.97% for six emotions. In [143], the author proposed a
GMM-based federated learning framework and fully considered the privacy issues in
face monitoring data, and achieved 84.1% and 74.39% accuracy for the EmotioNet and
SFEW datasets.
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5.1.3. HMM

The Hidden Markov model (HMM) is a dynamic Bayesian network with a simple
structure, which can estimate and predict unknown variables based on some observed data,
as shown in Figure 13. HMM can efficiently improve the matching degree between the
evaluation model and the observation sequence. HMM is able to infer hidden model states
from observation sequences and better describe observed data.
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The hidden variables (state variables) of the HMM can be expressed as {y1, y2, . . . , yn},
so the state space of hidden variables contains N possible values. Observed variables
can be described as {x1, x2, . . . , xn}, and it is usually assumed that the value range of the
observed variable is {o1, o2, . . . , oM}. The system usually transitions between multiple
states {s1, s2, . . . , sN}.

The state transition probability of the model between each state is:

aij = P
(
yt+1 = sj

∣∣yt = si
)

1 ≤ i, j ≤ N (2)

The observed probability is:

bij = P
(

xt = oj
∣∣yt = si

)
1 ≤ i ≤ N, 1 ≤ j ≤ M (3)

The initial state probability is:

πi = P(y1 = si) 1 ≤ i ≤ N (4)

At any moment, the value of the observed variable only depends on the state variable.
The state variable yt at time t is unrelated to yt−2 and only depends on the state variable yt−1
at time t− 1. Based on this dependence, the joint probability distribution of all variables is:

P(x1, y1, x2, y2, . . . , xn, yn) = π1b11

n

∏
i=2

aijbij (5)

According to the above parameters, an HMM can be determined.
In [144], the authors used the HMM to classify six types of emotions for person-

dependent and person-independent facial expressions, and achieved 82.46% and 58%
accuracy. In [145], the authors used continuous HMMs to fully utilize low-level temporal
features, and, in the SER of seven emotions, the accuracy rate was 86%. In [146], the
authors developed an HMM-based audiovisual model that improved emotion recognition
performance for visual and auditory signals in noisy environments. The accuracy rate of
multi-modal emotion recognition in four emotions was 91.55%. In [147], the authors used
the HMM for hidden sentiment detection in continuous text, and achieved 61.83% ACC
and 66% AP.

5.1.4. RF

Random forest (RF) [148] is a type of parallel ensemble learning. RF uses the decision
tree as the base learner to construct Bagging, and further introduces random attribute
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selection in the training process of the decision tree. RF has a simple structure and a small
amount of calculation. It can be used for both classification and regression problems. Even
if the dataset is not complete, RF can maintain high classification accuracy. The increase in
the classification tree does not affect the generalization performance of the classifier.

RF is an extended variant of the Bagging algorithm, as shown in Figure 14.
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It randomly selects a subset containing k attributes from each node attribute set of
the base decision tree, and then selects an optimal attribute from this subset for division.
The parameter k controls the degree of randomness introduced. Finally, the base learners
that have been trained are combined, and the majority voting method is usually used for
classification prediction tasks.

In [149], the authors proposed two-layer fuzzy multiple random forest and achieved
SER accuracy rates of 81.75% and 77.94% in CASIA and EmoDB datasets. In [78], the authors
used RF to classify five emotions represented by HR and GSR physiological signals with
an accuracy of 74%. In [150], the authors utilized multi-modal physiological signals and
RF for anxiety state assessment. The classification accuracy for the five anxiety intensities
reached 80.83%.

5.2. Deep Learning Methods

Compared to traditional machine learning methods, deep learning methods combine
a feature extraction step and a classification step. With the support of large datasets, deep
learning methods can learn higher-level semantic features. They have better discrimination
ability for different emotions. Moreover, their generalization ability is stronger.

5.2.1. CNN

As a typical deep neural network, the convolutional neural network (CNN) plays an
important role in the field of emotion recognition. The convolutional neural network is
mainly composed of convolutional layers, a pooling layer, a fully connected layer, and a
classification layer. The convolutional layer acts as a filter to extract features of the input
signal. The introduction of nonlinear factors through activation functions can enhance the
expressive ability of the model. The number of parameters and calculation consumption
are reduced through the pooling layer. Finally, the classification layer is used to complete
the classification of the input data.

One of the earliest convolutional neural networks [151] is shown in Figure 15 (adapted
from [151]). The convolutional neural network has the characteristics of parameter sharing
and local connection, which makes the training of the model more efficient.
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In [152], the authors built Att-Net based on CNN, and the average recall of SER in
three datasets was 78.01%, 80%, and 93%. In [153], the authors proposed a CNN-RNN-
based approach for dimensional emotion recognition; in FER on the gradient emotion
dataset, the average concordance correlation coefficient (CCC) of the valence dimension
and the arousal dimension reached up to 0.450. In [154], the authors proposed the DCNN
method and achieved the best accuracies of 87.31%, 75.34%, 79.25%, and 44.61% on four
FER datasets. In [155], the authors proposed a dynamical graph convolutional neural
network (DGCNN) for emotion recognition on multi-channel EEG signals; the average
accuracy rate in the SEED dataset and the DREAMER dataset was 90.4%. In [156], the
authors proposed a 3D-CNN network framework for multimodal emotion recognition from
EEG signals and face video data; the accuracy of valence dimension and arousal dimension
was 96.13% and 96.79%.

5.2.2. LSTM

Long Short-Term Memory (LSTM) [157] is an excellent recurrent neural network that
can learn long-term dependencies from input data. At the same time, it can overcome prob-
lems such as exploding gradients and vanishing gradients. The classic LSTM framework is
shown in Figure 16, which mainly includes three kinds of gate units: Input gate it, output
gate ot, and forget gate ft. These gate units are used to control the information transfer of
hidden state ht, candidate state ct, and candidate internal state c̃t.
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Each control gate and control state are calculated by the following formula:

it = σ(Wixt + Uiht−1 + bi) (6)
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ft = σ
(

W f xt + U f ht−1 + b f

)
(7)

c̃t = f (Wctxt + Wchht−1 + bc) (8)

ot = σ(Woxt + Woht−1 + Wocct + bo) (9)

ct = ft � ct−1 + it � c̃t (10)

ht = ot � f (ct) (11)

Among them, W and U represent the weight, b is the bias, the matrix σ represents the
logistic function, f is the activation function, and � represents the product of vector elements.

In [158], the authors used LSTM to achieve a FER accuracy of 73.5% for six emotions
based on MFCC and spectrograms features. In [159], the authors proposed a CNN-LSTM
model for emotion recognition based on EEG signals. For RAW data and STD data,
the accuracy rates were 90.12% and 94.17%, and the loss rates were 30.12% and 42.43%.
In [160], the authors proposed the Bi-direction Long-Short Term Memory with Direction
Self-Attention (BLSTM-DSA) model for SER. For the IEMOCAP dataset and the EMO-DB
dataset, the overall accuracy rates were 61.20% and 85.95%, and the average accuracy rates
for each category were 54.99% and 82.06%.

5.2.3. DBN

The Deep Belief Network (DBN) generally consists of multiple restricted Boltzmann
machines (RBM), as shown in Figure 17. RBM can avoid falling into local optimum. Each
layer of the RBM is updated based on the previous layer. A DBN uses unsupervised
learning and joint probability distributions to produce outputs. Hidden layer units are
used to extract the correlation of high-order data in the display layer. The training of DBN
mainly includes pre-training and fine-tuning.
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In [161], the authors demonstrated the effectiveness of DBN in multimodal emotion
recognition and achieved the best classification accuracy of 73.78% on the IEMOCAP audio-
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visual dataset. In [162], the authors used DBN to extract deep features from EDA, PPG, and
EMG signals and then classified them. The final overall accuracy rate was 89.53%. In [163],
the authors proposed a bimodal deep belief network (BDBN) to fuse speech features and
expression features for multimodal emotion recognition. The classification accuracy rate on
the Friends dataset was 90.89%. In [164], the author proposed a method combining PCA,
LDA, and DBN; the average recognition rate in the self-built facial expression recognition
dataset was 92.50%.

5.2.4. Other Classification Methods

With the advancement in hardware and the improvement of computer processing
power, many modern models have been proposed. They tend to have stronger classification
performance and more complex structures. In order to make the classification method
described in this article more comprehensive, we collected some excellent classification
methods on large-scale datasets (including SER dataset, FER dataset, physiological signal
dataset, and multimodal dataset). The classification method and details used by these
articles are shown in Table 2 (details adapted from the cited article). Additionally, these
datasets are introduced in Section 6 of this paper.

Table 2. Other classification methods.

Model Name Dataset Used Classification Method Details

T5-3B [165] SST (NLP) Transformer and self-attention

The authors used transfer learning and self-attention
to convert all text-based language problems into a

text-to-text format. The authors compared the
pre-training objectives, architectures, unlabeled

datasets, and transfer methods of NLP. The
classification accuracy on the SST dataset is 97.4%.

MT-DNN-SMART [166] SST (NLP) Transformer and smoothness
inducing regularization

The authors proposed smoothness-induced
regularization based on transfer learning to manage

the complexity of the model. At the same time, a
new optimization method was proposed to prevent

over-updating. The classification accuracy on the
SST dataset is 97.5%.

GRU [167] CREMA-D (SER) Self-supervised representation
learning

The authors proposed a framework for learning
audio representations guided by the visual modality

in the context of audiovisual speech. The authors
demonstrated the potential of visual supervision for
learning audio representations; and achieved 55.01%

SER accuracy on the CREMA-D dataset.

EmoAffectNet [168] CREMA-D and AffectNet (FER) CNN-LSTM

The authors proposed a flexible FER system using
CNN and LSTM. This system consists of a backbone

model and several temporal models. Every
component of the system can be replaced by other

models. The backbone model achieved an accuracy
of 66.4% on the AffectNet dataset. The overall

model achieved an accuracy of 79% on the
CERMA-D dataset.

M2FNet [169] IEMOCAP and MELD
(multimodal)

Multi-task CNN and multi-head
attention-based fusion

The multimodal fusion network proposed by the
authors can extract emotional features from visual,
audio, and textual modalities. The feature extractor

was trained by an adaptive margin-based triplet loss
function. The model achieved 67.85% accuracy and

a 66.71 weighted average F1 score on the MELD
dataset. Meanwhile, it achieved 69.69% accuracy

and a 69.86 weighted average F1 score on the MELD
dataset.

CH Fusion [170] IEMOCAP (multimodal) RNN and feature fusion strategy

The authors used RNN to extract the unimodal
features of the three modalities of audio, video, and

text. These unimodal features were then fused
through a fully connected layer to form trimodal

features. Finally, feature vectors for sentiment
classification were obtained. The model achieved an
F1 score of 0.768 and an accuracy rate of 0.765 on the

IEMOCAP dataset.
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Table 2. Cont.

Model Name Dataset Used Classification Method Details

EmotionFlow-large [171] MELD (multimodal) BERT model and Conditional
random field (CRF)

The authors researched the propagation of emotions
in dialogue emotion recognition. The authors
utilized an encoder-decoder structure to learn

user-specific features. Conditional random fields
(CRF) were then applied to capture sequence

information at the sentiment level. The weighted F1
score on the MELD dataset was 66.50.

FN2EN [172] CK+ (FER) DCNN

The authors proposed a two-stage training
algorithm. In the first stage, high-level neuronal

responses were modeled using probability
distribution functions based on the fine-tuned face

network. In the second stage, the authors conducted
label supervision to improve the discriminative

ability. The model achieved 96.8% (eight emotions)
and 98.6% (six emotions) accuracy on the CK+

dataset.

Multi-task EfficientNet-B2 [173] AffectNet (FER) MTCNN and Adam optimization

In the article, the authors analyzed the behavior of
students in the e-learning environment. The facial
features obtained by the model could be used to
quickly predict student engagement, individual
emotions, and group-level influence. The model

could even be used for real-time video processing
on each student’s mobile device without sending the

video to a remote server or the teacher’s PC. The
model achieved 63.03% (eight emotions) and 66.29%
(seven emotions) accuracy on the AffectNet dataset.

EAC [174] RAF-DB (FER) CNN and Class Activation
Mapping (CAM)

The authors approached noisy label FER from the
perspective of feature learning, and proposed Erase
Attention Consistency (EAC). EAC does not require

noise rate or label integration. It can generalize
better to noisy label classification tasks with a large

number of classes. The overall accuracy on the
RAF-DB dataset was 90.35%.

BiHDM [175] SEED (EEG signal) RNNs

The authors proposed a model to learn the
differential information of the left and right

hemispheres of the human brain to improve EEG
emotion recognition. The authors employed four
directed recurrent neural networks based on two
orientations to traverse electrode signals on two

separate brain regions. This preserved its inherent
spatial dependence. The accuracy on the SEED

dataset reached 74.35%.

MMLatch [176] CMU-MOSEI (multimodal) LSTM, RNNs and Transformers

The neural architecture proposed by the authors
could capture top-down cross-modal interactions. A
forward propagation feedback mechanism was used

during model training. The accuracy rate on the
CMU-MOSEI dataset reached 82.4.

6. Datasets

Datasets play an important role in data-driven learning [177], which can improve the
performance and robustness of models. Emotion recognition datasets are based on signal
categories. According to the different signal categories, the emotion recognition datasets
can be divided into: speech (textual, audio) datasets, visual (facial expression picture or
video) datasets, physiological datasets, and multi-modal signal datasets.

Speech datasets for emotion recognition can be divided into performer-based [178],
induced [179], and natural [180] datasets according to the method of acquisition. The
performer-based datasets mainly consist of speech recordings of various emotions per-
formed by performers with extensive experience [49]. Induced datasets are the emotions
expressed by people in artificially created environments [181]. Induced datasets are rela-
tively less expressive, but closer to reality. Natural datasets are the most realistic, usually
taken from public conversations [182] or call center conversations [183], these data contain
more emotional changes and background noise, but the amount is relatively limited. The
commonly used speech emotion recognition datasets are shown in Table 3 (details adapted
from the cited article).
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Table 3. Dataset for speech emotion recognition.

Name Type Details Number of Emotion
Categories Number of Samples

MDS [184] Textual

Product reviews from
the Amazon shopping

site; consisting of
different words,
sentences, and

documents

2 or 5 100,000

SST [185] Textual

Semantic emotion
recognition database

established by Stanford
University

2 or 5 11,855

IMDB [186] Textual
Contains a large
number of movie

reviews
2 25,000

EMODB [187] Performer-based

The dataset consists of
ten German voices

spoken by ten speakers
(five males and five

females)

7 800

SAVEE [188] Performer-based
Performed by four
female speakers;

spoken in English
7 480

CREAM-D [189] Performer-based Spoken in English 6 7442

IEMOCAP * [190] Performer-based

Conversation between
two people (one male

and one female);
spoken in English

4 -

Chinese Emotion
Speech Dataset [191] Induced Spoken in Chinese 5 3649

MELD * [192] Induced Data from TC-series
Friends 3 13,000

RECOLA Speech
Database [179] Natural

Spoken by 46 speakers
(19 male and 27 female);

spoken in French
5 7 h

FAU Aibo emotion
corpus [193] Natural

Communications
between 51 children

and a robot dog;
spoken in German

11 9 h

Semaine Database [194] Natural

Spoken by 150
speakers;

spoken in English,
Greek, and Hebrew

5 959 conversations

CHEAVD [195] Natural

Spoken by 238 speakers
(from children to the

elderly);
spoken in Chinese

26 2322

* Can also be used for multimodal emotion recognition.

For facial expression datasets, different datasets vary in terms of the acquisition
environment, the number of emotion categories, age, race, image quality, etc. [196]. The
commonly used facial expression recognition datasets are shown in Table 4 (details adapted
from the cited article).
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Table 4. Datasets for facial expression recognition.

Name Type Details
Number of

Emotion
Categories

Number of
Samples

BP4D [197] Induced
41participants;

4 ethnicities;
18–29 years old

8 368,036

CK+ [198] Induced

123 participants;
23 facial
displays;

21–53 years old

7 593 sequences

BU-4DEF [199] Induced 101 participants;
5 ethnicities 6 606 sequences

SEWA [200] Induced
96 participants;

6 ethnicities;
18–65 years old

7 1990 sequences

MMI-V [201] Performer-based
25 participants;

3 ethnicities;
19–62 years old

6 1.5 h

JAFFE [202] Performer-based 10 participants 6 213

BU-3DEF [203] Performer-based 100 participants
18–70 years old 6 2500

AffectNet [204] Natural

Average age is
33.01 years old;

downloaded
from the Internet

6 450,000

RAF-DB [205] Natural Collected from
Flickr compound 29,672

EmotioNet [206] Natural Downloaded
from the Internet compound 1,000,000

Physiological signals can represent more real emotions and will not be affected by
people’s hidden emotional behavior. Common datasets based on physiological signals are
shown in Table 5 (details adapted from the cited article).

Table 5. Datasets of physiological signals.

Name Type Details
Number of

Emotion
Categories

Physiological
Signals

DEAP * [207] Induced
32 participants;
average age is
26.9 years old

Dimensional
emotion

(arousal-valence-
dominance)

EEG;
EMG;
RSP;
GSR;
EOG;

plethysmograph;
skin temperature
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Table 5. Cont.

Name Type Details
Number of

Emotion
Categories

Physiological
Signals

DECAF * [208] Induced 30 participants

Dimensional
emotion
(arousal-
valence)

EMG;
NIR;

hEOG;
ECG;
tEMG

AMIGOS * [209] Induced

Individual
participant and

group
participants

Dimensional
emotion
(arousal-
valance)

EEG;
GSR;
ECG

SEED * [210] Induced
15 participants;
average age is

23.3
3 EEG;

EOG

DREAMER *
[77] Induced

23 participants;
collected by

wireless low-cost
off-the-self

devices

Dimensional
emotion

(arousal-valance-
dominance)

EEG;
ECG

* Can also be used for multimodal emotion recognition.

The radar sensor can be used to obtain people’s heartbeat signals or breathing signals
without contact. These sensors mainly include continuous wave radar [47,211], continuous
frequency modulated wave (FMCW) radar [212], millimeter wave radar [213], and RFID
tag [34]. Datasets based on radar sensor signals are less widely used according to our
survey, and most researchers tend to make their own datasets. Most radar data use clipped
videos or pictures as emotional inducers. Radar sensors are used to collect physiological
signals of volunteers to make datasets.

Commonly used multi-modal emotion recognition datasets are shown in Table 6
(details adapted from the cited article). The multimodal signal dataset contains at least
two different signals and richer information. Multi-modal emotion recognition datasets
often require a larger amount of data, and the data usually needs to be labeled. Therefore,
making multimodal signal datasets becomes more difficult than normal datasets.

Table 6. Datasets for multi-modal emotion recognition.

Name Type Details
Number of

Emotion
Categories

Types of
Signals

eNTERFACE
[49] Induced

42 participants;
14 different
nationalities

6 Visual signals;
audio signals;

RECOLA [179] Natural 46 participants;
9.5 h

Dimensional
emotion
(arousal-
valence)

Visual signals;
audio signals;
ECG signals;
EDA signals
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Table 6. Cont.

Name Type Details
Number of

Emotion
Categories

Types of
Signals

CMU-MOSEI
[214] Natural

23,453 annotated
video segments;

1000 speaker;
250 topics

6
Textual signals
visual signals;
audio signals;

MAHNOB-HCI
[215] Induced 27 participants

Dimensional
emotion

(arousal-valence-
dominance)

Textual signals
visual signals;
audio signals;
EEG signals;
RSP signals;
GSR signals;
ECG signals;

skin temperature
signals

At the same time, we also need to consider the synchronization of multi-channel
signals during the recording of different sensors, as some devices may record on different
time scales. Multi-modal signal datasets can make the machine’s analysis of emotion more
comprehensive. At present, researchers are paying increasing attention to multimodal
emotion recognition.

7. Conclusions and Discussions

In this survey, we reviewed more than 200 papers, including working processes,
methods, and commonly used datasets of different sensors for emotion recognition. In this
section, we summarize the main findings from this survey.

Facial expressions can intuitively reflect the subjective emotions in interpersonal
communication, but they are affected by limited lighting, occlusion, small changes in
facial expressions, and individual differences. The performances of existing vision-based
emotion recognition systems will significantly drop in environments with changing lighting
conditions. Self-occlusion due to head rotation or face contact, and occlusion by other
people passing in front of the camera, are both common problems. Moreover, individual
differences can affect the feature extraction and learning of the model. There are large
differences between infants and adults, males and females, and different groups, which
makes it challenging to train a FER classifier with strong generalization performance.

SER is also of great significance in emotion recognition. Due to the variability of
emotions, a piece of speech often has multiple emotions, which is challenging for the
accurate extraction of speech information features. For multiple languages, cross-cultural
emotion recognition is the future development trend. People in different countries and
regions have certain cultural differences, but, for humans, even if they cannot understand
what foreigners are saying, they can roughly understand their tone and attitude.

Emotional changes are also reflected in the physiological changes of the human body.
The most basic challenge of emotion recognition from physiological signals is the accurate
emotional labeling of data. In real life, parties often do not realize that they have developed
certain emotions, because the parties are caught in the emotion itself. Therefore, partic-
ipants need to exactly record when a certain emotion occurs. Only in this way can the
corresponding physiological signals be extracted. Some physiological signal recording
devices are expensive and invasive, which greatly limits the number of subjects and the
length of the experiment. Therefore, some non-contact physiological signal recording
devices are more popular.

Multi-modal emotion recognition based on multi-sensors can make up for the de-
ficiency of single sensor. It is more robust and is now receiving more attention. It uses
different signals to extract features and perform feature-level or decision-level fusion to a
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certain extent, which can improve the accuracy of discrete or dimensional sentiment classi-
fication. The main challenges include how to choose an appropriate feature representation
method and feature selection method based on multi-modal signal input. Different modal
signals may also have mutual dependencies in different time dimensions, and classifiers
need to be designed according to the potential correlation of different modal datasets.

We introduced several commonly used classical machine learning and deep learning
classification methods. Classical machine learning methods have faster speeds and simpler
structures. However, for large and high-dimensional data, researchers prefer deep learning.
With the improvement in computer technology, deeper and larger deep learning models
have been proposed, which can extract high-dimensional features better. However, this
does not mean that classic machine learning methods are abandoned. For limited training
data, machine learning often achieves better results.

Based on the above conclusions, we think that single-modal emotion recognition
cannot meet human needs in some specific application scenarios. Therefore, the current
research on multimodal information processing is more popular. However, the research
on multimodal emotion recognition has more challenges. They include experimental
environment, sensors, signal acquisition, signal processing, information annotation, etc. At
the same time, we believe that emotion recognition is an important part of the development
of artificial intelligence. Accurate recognition of emotions can enable machines to better
serve people and care about people’s health and life in more detail.

8. Future Trends

Emotion recognition is of great significance to both human and social development.
The current challenges and development trends of emotion recognition mainly include
technical aspects and security aspects.

The first is to improve user acceptance. At present, many people are not familiar with
various emotional computing sensors, and some sensors need to be worn by users. In
order to improve the degree of cooperation of users, practitioners need to give detailed
instructions to users. The detection system should also be user-centered, with the primary
goal of protecting the user’s physical and mental health.

The second point is security. The process of human emotion recognition involves
highly private personal information, including health, location, and physiological charac-
teristics. Emotion recognition should be used in socially beneficial research rather than
being used to cause legal problems or discrimination. Therefore, protecting user privacy
has also become a major challenge for emotion recognition. At present, decentralized AI
technology can overcome the limitations of centralized information storage and improve
data privacy and security.

The third point is robustness and accuracy. The current emotion recognition model
cannot simulate all aspects of human emotions. In order to be more comprehensive,
multimodal emotion recognition has become the first choice for most researchers. With
larger models and datasets, multimodal approaches can achieve better results. Emotion
recognition often requires more information, and short-term or transient features can
only represent people’s psychological state at a specific time. Studies on personality
analysis, such as autism diagnosis and intelligence testing, require longer-term observation.
Therefore, the extraction of long-term features is also challenging and of great research
significance for emotion recognition.

In order to obtain a good emotion recognition model, there are more stringent require-
ments for datasets. With the continuous production of large-scale datasets, the advantages
of unsupervised learning and reinforcement learning are more obvious. Unsupervised
learning does not require pre-stored labels or specifications. Moreover, it can also complete
classification without category information. Reinforcement learning enables the model
to maximize rewards through the principle of trial and error, and can continuously opti-
mize the performance of the system. These emotion recognition methods are also worthy
of research.
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