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Abstract: Currently, three-dimensional convolutional neural networks (3DCNNs) are a popular
approach in the field of human activity recognition. However, due to the variety of methods used
for human activity recognition, we propose a new deep-learning model in this paper. The main
objective of our work is to optimize the traditional 3DCNN and propose a new model that combines
3DCNN with Convolutional Long Short-Term Memory (ConvLSTM) layers. Our experimental results,
which were obtained using the LoDVP Abnormal Activities dataset, UCF50 dataset, and MOD20
dataset, demonstrate the superiority of the 3DCNN + ConvLSTM combination for recognizing human
activities. Furthermore, our proposed model is well-suited for real-time human activity recognition
applications and can be further enhanced by incorporating additional sensor data. To provide a
comprehensive comparison of our proposed 3DCNN + ConvLSTM architecture, we compared our
experimental results on these datasets. We achieved a precision of 89.12% when using the LoDVP
Abnormal Activities dataset. Meanwhile, the precision we obtained using the modified UCF50
dataset (UCF50mini) and MOD20 dataset was 83.89% and 87.76%, respectively. Overall, our work
demonstrates that the combination of 3DCNN and ConvLSTM layers can improve the accuracy of
human activity recognition tasks, and our proposed model shows promise for real-time applications.
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1. Introduction

Presently, there is an increased emphasis on safety, and video capture and storage
devices are constantly evolving to meet this demand. However, these devices need to
be equipped with a system capable of accurately classifying various abnormal incidents
and reducing human error. By increasing the effectiveness of surveillance systems, we
could not only reduce crime and prevent various incidents but also provide first aid as
soon as possible. Currently, video classification research in the field of computer vision
has become a popular yet challenging topic. In addition to static information, videos also
contain time information. Therefore, it is necessary to take into account the previous and
subsequent frames to accurately recognize and classify incidents. This makes incident
recognition from video more challenging than image recognition. In recent years, 3DCNN
(3D Convolutional Network) and ConvLSTM (Convolutional Long Short-Term Memory)
networks have emerged as popular techniques for video classification. These models are
capable of capturing both spatial and temporal features, enabling them to accurately classify
videos with high accuracy. Overall, with the continued development and improvement of
video classification techniques, we can create more effective surveillance systems that can
enhance safety and security in various settings.

In [1], the authors employ a combination of ConvLSTM and Conv3D layers for the
task of human activity recognition. In [2], the authors use 3DCNN networks for Facial
Micro-Expression recognition. Gesture recognition is covered in [3], where the classic
3DCNN network and the 3D Resnet network are used. In [4], the authors propose several
approaches for the classification of abnormalities in video, including a deep hierarchical
architecture that extracts generic video descriptors using 3DCNN and BICLSTM layers.
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As part of this work, they also use a combination of 3DCNN, ConvLSTM, and Conv2D
layers. In [5], the authors develop a non-contact method of assessing respiratory rate in
sub-optimal light using video recordings, combining Euler scaling and a 3DCNN network
to eliminate the need for Region of Interest (ROI). In [6], the authors develop a framework
that takes pose-based skeleton joint sequences as input, followed by an LSTM network
to learn the temporal evolution of the poses. The obtained results are compared with
two fine-tuned deep neural networks, ConvLSTM and 3DCNN, and the Histogram of
the Optical Flow (HOF) descriptor achieves the best results when used with the MLP
classifier. This approach is applied by the authors in the diagnosis of Autism Spectrum
Disorder (ASD) using video recordings, which is also covered in [7]. In [7], the authors
use popular neural networks, 3DCNN and ConvLSTM, to detect diseases from video.
In [8], the authors propose a hierarchical LSTM Convolutional Neural Network for the
classification of farmers’ behavior in agriculture. Finally, gesture recognition is also dealt
with in [9], where the authors use two types of neural networks, 3DCNN and ConvLSTM
network [10–13].

In our previous work, we also focused on the classification and recognition of video
incidents. In [14,15], we proposed 3DCNN and ConvLSTM neural network approaches,
respectively. For the recognition of abnormal incidents, we created the LoDVP Abnormal
Activities database [14]. We trained and tested the proposed ConvLSTM network on this
database, achieving an accuracy of 96.19%. The proposed 3DCNN neural network was
trained and tested on the UCF YouTube action, UCF50, and UCF101 databases, achieving ac-
curacy values of 87.4%, 80.6%, and 78.5%, respectively. It is worth noting that the proposed
ConvLSTM network in [14] was specifically designed for our LoDVP Abnormal Activities
database, which may have contributed to its high accuracy. Meanwhile, the proposed
3DCNN network in [15] was tested on several well-known databases, which demonstrated
its generalizability to different video recognition tasks.

Based on the results we have obtained thus far, as well as the current state of the field,
we have decided to focus on combining ConvLSTM and 3DCNN networks. Specifically, we
aim to leverage both ConvLSTM layers and Conv3D layers in our approach. By doing so,
we hope to achieve better performance in video recognition tasks, as both types of layers
have shown promise in previous work. We believe that this approach has the potential to
yield improved accuracy and generalizability in video recognition tasks.

2. Materials and Methods

In our research, we are investigating a combination of 3DCNN and ConvLSTM net-
works for video classification. ConvLSTM networks use their temporal memory to capture
spatiotemporal patterns in videos, while 3DCNN networks leverage the third dimension
for classification. Both networks are widely used for video and image classification in
various fields including industry and medicine.

2.1. 3DCNN Architecture

The 3DCNN neural network can analyze and identifying different moving 2D objects
in images and 3D images, such as in medical imaging. In 3DCNN, the 3D convolution
operation is applied to the dataset in three directions (x, y, z) using a three-dimensional
filter as is shown in Figure 1. The values in the layer within the three-dimensional filter
must be set to be non-negative. The equation below defines the value for each position in
the 3D convolution map of features in the layer:

vxyz
ij = tanh〈bij + ∑

m

Pi−1

∑
p=0

Qi−1

∑
q=0

Ri−1

∑
r=0

wpqr
ijmv〈x+p〉〈y+q〉〈z+r〉

〈i−1〉m , (1)

where wpqr
ijm expresses the value of the kernel attached to the convolutional feature map in

the previous layer, Ri expresses the size of the 3D kernel [15].
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Figure 1. Comparison of the mathematical operation of 2D convolution and 3D convolution [16].

The 3D convolution is created by stacking adjacent layers around the center of the cube,
and the convolution maps are interconnected, which captures motion information. How-
ever, the convolutional kernel can only extract one type of feature. Generally, 3DCNN is
similar to Conv2D (2D Convolutional Neural Network). Combining multiple convolutional
layers can improve the results of 3DCNN, similar to 2D convolution. When constructing a
3DCNN, it is crucial to set the number of layers, the number of filters in each layer, and the
filter size properly. If pooling is used in the neural network design, the pooling size must
have three dimensions to accommodate the 3D data. The output shape from the 3DCNN
network is a 3D volume space [16–18].

2.2. ConvLSTM Architecture

The ConvLSTM neural network was developed by combining a Convolutional Neu-
ral Network (CNN) and a Long Short-Term Memory (LSTM) network. The ConvLSTM
network is similar to an LSTM network in that it is a memory network, but it performs con-
volution operations on the transitions between layers. The internal design of a ConvLSTM
network is illustrated in Figure 2 [19].

Figure 2. Inner structure of ConvLSTM [19].

The ConvLSTM neural network is commonly used for time-dependent image and
video recognition, as it is equipped to capture spatial and temporal correlations. ConvLSTM
implements a convolutional operation on the transitions between states and inputs. If we
view states as hidden representations of moving objects, a ConvLSTM with a larger transi-
tion kernel can capture faster motions, while a network with a smaller kernel can capture
slower motions. The key equations of ConvLSTM are derived from LSTM equations by
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convolutional coupling, as shown below, where “∗” denotes the convolution operator and
“◦” denotes the Hadamard product:

it = σ(Wxi ∗ Xt + Whi ∗ Ht−1 + Wci ◦ Ct−1 + bi), (2)

ft = σ(Wx f ∗ Xt + Wh f ∗ Ht−1 + Wc f ◦ Ct−1 + b f ), (3)

Ct = ft ◦ Ct−1 + it ◦ tanh(Wxc ∗ Xt + Whc ∗ Ht−1 + b f ), (4)

ot = σ(Wxo ∗ Xt + Who ∗ Ht + Wco ◦ Ct−1 + bo), (5)

Ht = ot ◦ tanh(Ct), (6)

where cell inputs are labeled Xt and cell states are labeled Ct, hidden states are labeled Ht;
the gates are it, ft, ot and σ is a sigmoidal function. We denote the convolution kernels in
the equation W− [19].

2.3. Proposed 3DCNN + ConvLSTM Architecture

Our proposed neural network architecture combines Conv3D layers with a ConvLSTM
network layer and a Conv2D layer. The architecture, referred to as 3DCNN + ConvLSTM,
contains multiple Conv3D layers followed by a single ConvLSTM layer and a single
Conv2D layer. The design of the architecture is depicted in Figure 3. This proposed
architecture comprises the following layers:

• Conv3D layers: These layers extract spatiotemporal features from the input video
data. The number of Conv3D layers can be adjusted based on the complexity of the
task. These layers incorporate a three-dimensional filter, which performs convolution
by moving in three directions (x, y, z).

• MaxPooling3D layer is a mathematical operation for 3D data (reduction of 3D data).
• ConvLSTM layer: This layer processes the extracted features from the Conv3D layers

and captures the temporal dependencies between the frames.
• Conv2D layer is layer, which applies convolution on 2D data. This layer performs the

final classification based on the output of the previous layers.
• A flatten layer converts the output matrix to the vector.

The proposed architecture combines the strengths of both Conv3D and ConvLSTM
networks. This architecture consists of multiple 3D convolutional layers, a single ConvL-
STM layer, and a single 2D convolutional layer, as well as batch normalization, a flattened
layer, and a dense layer. The 3D convolutional part of the architecture was adopted from a
previous study [15], while the ConvLSTM part was based on another previous research [14].
The hyperparameters of the 3D convolutional layers and MaxPooling, such as the number
of filters and kernel size, are determined by mathematical constraints, with the output of
the Conv3D layer being constrained to non-negative integer values. The flowchart of the
proposed architecture is illustrated in Figure 4.

The proposed 3DCNN + ConvLSTM architecture in this work consists of six 3D
convolution layers, four MaxPooling3D layers, and one ConvLSTM layer followed by a
single Conv2D layer. The input to the network has dimensions of 100 × 100 × 3 (width,
height, and number of channels). The first 3D convolution layer uses 64 filters with a kernel
size of 3 × 3 × 3. Following each of these 3D convolution layers are MaxPooling3D layers
of size 2 × 2 × 2 with a stride of 2. The next two 3D convolution layers have 128 filters of
size 3 × 3 × 3, and after these two layers, there is a MaxPooling3D layer of size 2 × 2 × 2.
The last two 3D convolution layers have 256 and 512 filters of size 3 × 3 × 3, respectively,
and are used in the 3D convolution part of the network. The entire 3DCNN network has a
batch normalization layer after every MaxPooling3D layer to improve the training process.
The ConvLSTM network includes one ConvLSTM layer with a size of 3 × 3 and 64 filters.
After the ConvLSTM layer, there is a batch normalization layer and a Conv2D layer with
16 filters of size 2 × 2. The output of the Conv2D layer is then passed through a flattened
layer that turns a matrix into a vector, and the final dense layer has only one neuron that
directly predicts the class of the input. The used optimization algorithm was “Adamax”
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and the learning rate was set to 0.001. A detailed description of the layers of the proposed
3DCNN + ConvLSTM architecture is shown in Figure 5.

Figure 3. Proposed 3DCNN + ConvLSTM architecture.

Figure 4. The flowchart of the proposed architecture.
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Figure 5. Description of the layers our proposed architecture.

The values in Table 1 show the total number of parameters, as well as the number of
trainable and non-trainable parameters.

Table 1. The overall number of parameters of our suggested architecture.

Parameters of the Proposed Architecture Number of Parameters

Total parameters 2,326,914
Trainable parameters 2,325,250

Non-Trainable parameters 1664

Deep-learning systems are built using Python libraries, such as Keras and TensorFlow,
and the experimental results were obtained using the Nvidia CUDA libraries. The input
data consisted of images with dimensions of 100 × 100 and 3 channels. For each database,
70% of the data were used for training, 20% for testing, and 10% were reserved for validation
(in a 70:20:10 split).

3. Description of the Datasets

In this section, the used datasets will be described. The all experimental results on the
LoDVP Abnormal Activities dataset, UCF50 dataset, and MOD20 dataset were obtained.

3.1. UCF50 Dataset

UCF50 dataset consisted of 50 action categories. The dataset included realistic videos
from YouTube. The dataset had large variations in camera motion, cluttered backgrounds,
illumination conditions, etc.

Videos in the same group may share some common features, such as the same person,
similar background, similar viewpoint, etc. The UCF50 dataset can be seen in Figure 6.
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The UCF50 dataset consisted of 50 categories. The dataset consists of categories such
as Baseball Pitch, Basketball Shooting, Bench Press, Biking, Billiards Shot, Breaststroke,
Clean and Jerk, Diving, Drumming, Fencing, Golf Swing, Playing Guitar, High Jump,
Horse Race, Horse Riding, Hula Hoop, Javelin Throw, Juggling Balls, Jump Rope, Jumping
Jack, Kayaking, Lunges, Military Parade, Mixing Batter, Nun chucks, Playing Piano, Pizza
Tossing, Pole Vault, Pommel Horse, Pull Ups, Punch, Push Ups, Rock Climbing Indoor,
Rope Climbing, Rowing, Salsa Spins, Skate Boarding, Skiing, Skijet, Soccer Juggling, Swing,
Playing Tabla, TaiChi, Tennis Swing, Trampoline Jumping, Playing Violin, Volleyball
Spiking, Walking with a Dog, and Yo Yo [20].

Figure 6. Example of the UCF50 dataset [20].

We cut the dataset used into 10 layers and used both datasets in training the network
to compare the results. We called the reduced dataset UCF50mini. Both datasets (reduced
and total) were divided into three sets (training, test and validation set).

3.2. LoDVP Abnormal Activities Dataset

The LoDVP Abnormal Activity dataset comprises 1069 videos. The incidents in the
videos are created by non-professional actors. The videos in the database are created
believably. Incidents are reported in the parking lot, in the university campus and in
the forest. The scenes were recorded from different angles. The dataset is divided into
11 classes, and each class contains about 100 videos. The length of the video depends on the
incident and lasts from 1 s to 30 s. Similar videos belonging to the same class may exhibit
common traits, such as a recurring individual, perspective of the camera, and a comparable
setting [14].

The LoDVP Abnormal Activity dataset consists of the following classes, which can
be seen in Figure 7. For our work, this dataset was also divided into a training test and a
validation set in the same ratio as UCF50mini. The division was in the ratio of 70:20:10.

3.3. MOD20 Dataset

The MOD20 dataset consists of 2324 videos, of which six videos were created by a
quadrotor UAV and 2318 videos were downloaded from YouTube. All clips are 1:1 aspect
ratio. Videos were sampled below 29.97 fps. The videos in the dataset are recorded from
both fixed and moving cameras. The videos show realistic scenarios in 20 selected classes
(see Figure 8). The dataset consists of classes such as backpacking, cliff jumping, cutting
wood, cycling, dancing, fighting, figure-skating, fire-fighting, chainsawing trees, jet skiing,
kayaking, motorbiking, football-catching, rock-climbing, running, skateboarding, skiing,
standup-padding, surfing, and windsurfing [21].
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Figure 7. LoDVP Abnormal Activities dataset: (a) Begging (b) Drunkenness (c) Fight (d) Harass-
ment (e) Hijack (f) Knife hazard (g) Normal videos (h) Pollution (i) Property damage (j) Robbery
(k) Terrorism [14].

Figure 8. The example of the MOD20 dataset [21].

4. Experimental Results

This section describes the experimental results achieved on the LoDVP Abnormal Ac-
tivities dataset, UCF50 dataset, and MOD20 dataset, which demonstrate the superiority of
the 3DCNN + ConvLSTM combination in recognizing human activities. To provide a more
comprehensive comparison of the proposed architecture, we compared the experimental
results achieved on these datasets. In our work, we divided this dataset into a training,
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testing, and validation set in the same ratio as the UCF50 mini and LoDVP Abnormal
Activities datasets, with a data distribution of 70:20:10.

Results

All of the tested datasets, including LoDVP Abnormal Activities, UCF50, and UCF50
mini, were divided into three main parts: training set, testing set, and validation set.
In this study, the first step was to classify the LoDVP Abnormal Activities dataset into
11 classes, which included Begging, Drunkenness, Fight, Harassment, Hijack, Knife Hazard,
Normal Videos, Pollution, Property Damage, Robbery, and Terrorism. The data underwent
preprocessing, which involved resizing each video to 100 × 100 size with 70 frames.
The accuracy and loss functions during training are displayed in Figure 9.

Figure 9. Accuracy during training process on the dataset (LoDVP Abnormal Activities).

In the early epochs, we observe a gradual increase in accuracy, and the highest accuracy
achieved during training is 92.5%. At the same time, there is a decrease in the loss function,
which is directly proportional to the increase in accuracy during the training process.
The accuracy and loss function have a directly proportional relationship, and the lowest
achieved loss function value during the training process was 0.2106.

To provide a comparison, we also monitored the accuracy and loss function achieved
on the UCF50mini dataset during the training process. The UCF50mini dataset includes
10 classes: Baseball Pitch, Basketball Shooting, Bench Press, Biking, Billiards Shot, Breast-
stroke, Clean and Jerk, Diving, Drumming, and Fencing. The data were preprocessed in
the same way as in the previous case, with a size of 100 × 100 and 70 frames. The accuracy
and loss function can be seen in Figure 10, which displays an increase in accuracy and
a decrease in loss function similar to the previous case. The highest accuracy attained
was 0.9668, and the lowest loss function value during training was achieved by the neural
network architecture with a value of 0.1042.

We also monitored the training process for comparison with the MOD20 dataset
and focused on accuracy and loss function (see Figure 11). The MOD20 dataset consists
of 20 classes (with backpacking, cliff jumping, cutting wood, cycling, dancing, fighting,
figure-skating, fire-fighting, chainsawing trees, jet skiing, kayaking, motorbiking, football-
catching, rock-climbing, running, skateboarding, skiing, standup-padding, surfing, and
windsurfing). The data were preprocessed in the same way as in the previous cases, with a
size of 100 × 100 and 70 frames. Figure 11 shows a linear increase in accuracy and a decrease
in loss function, as observed previously. The highest accuracy value achieved was 0.8630,
while the smallest value of the loss function was 0.4223. However, compared to the other
datasets, we achieved the worst results during the training process on this dataset.
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Figure 10. Accuracy during training process on the dataset (UCF50mini).

Figure 11. Accuracy during training process on the dataset (MOD20).

To make a clearer comparison, we created Table 2, which shows the training and
testing results of our proposed model on all three datasets, namely LoDVP Abnormal
Activities, UCF50, and UCF50mini. The table presents the values of training loss and
training accuracy achieved during the training process, as well as the test loss and test
accuracy obtained on a separate set of data. We computed the test results by evaluating the
trained model on the test set, which was not used for training or validation. The Table 2
provides a comprehensive comparison of the performance of our proposed model on all
three datasets, allowing us to evaluate its generalization ability and robustness to different
activity categories.

Table 2. The accuracy and loss function of the model over 50 epochs, during both training and
testing phases.

Evaluation Metrics MOD20 UCF50mini LoDVP Abnormal Activities

Train loss 0.4223 0.2106 0.1042
Train accuracy 86.30% 92.50% 96.68%

Test loss 0.5614 0.3568 0.3982
Test accuracy 78.21% 87.78% 83.12%

In both cases, we evaluated the confusion matrix for the LoDVP Abnormal Activities
and UCF50mini datasets. The first confusion matrix is shown in Table 3, which expresses
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the results of the neural network architecture tests on the LoDVP Abnormal Activities
dataset. All classes were divided into the following categories: 1. Begging, 2. Drunkenness,
3. Fight, 4. Harassment, 5. Hijack, 6. Knife hazard, 7. Normal videos, 8. Pollution,
9. Property damage, 10. Robbery, 11. Terrorism. The confusion matrix shows how the
tested videos were correctly and incorrectly classified into the given categories. For most
classes, the proposed architecture did not have a classification problem. However, for the
third class (Fight), we observe an increased error rate, where four videos were misclassified
into the first class (Begging) and six videos into the second class (Drunkenness). These
errors may have occurred due to the similarity of the videos. For example, sometimes a
small fight can be confused with begging, and begging can turn into a fight. The similarity
between a fight and drunkenness is also quite high, as drunk people can push each other
violently, which can lead to a fight.

Table 3. The example of the confusion matrix for LoDVP Abnormal Activities.

Targeted/ 1 2 3 4 5 6 7 8 9 10 11
Predicted

1 16 0 0 0 0 0 0 0 0 0 0
2 0 14 2 0 0 0 0 0 0 0 0
3 4 6 18 0 0 0 0 0 0 0 0
4 0 0 0 16 0 0 4 0 0 0 0
5 0 0 0 0 20 0 0 0 0 0 0
6 0 2 0 0 0 8 0 0 0 0 0
7 0 0 0 2 0 0 18 2 0 0 0
8 0 0 0 6 0 0 2 12 0 0 0
9 0 0 0 0 0 0 0 0 26 0 0

10 2 0 0 0 0 0 0 0 0 4 0
11 0 0 0 0 0 0 0 0 0 0 14

Furthermore, we created a confusion matrix to display the results of testing the pro-
posed neural network architecture on the UCF50mini dataset (see Table 4). The classes in
the confusion matrix are divided into the following categories: 1. Baseball Pitch, 2. Bas-
ketball Shooting, 3. Bench Press, 4. Biking, 5. Billiards Shot, 6. Breaststroke, 7. Clean and
Jerk, 8. Diving, 9. Drumming, 10. Fencing. The confusion matrix shows the increased
accuracy during classification within the testing process. Upon observing the confusion
matrix, we can assess that the biggest problem in the classification occurred in category
two Basketball Shooting, where four videos were incorrectly classified into category four
Biking. The neural network architecture also had a problem classifying class seven Clean
and Jerk, where it misclassified one video into class three Bench Press and two videos into
the Biking class.

Similarly, we evaluated the confusion matrix for the UCF50mini dataset, which is
shown in Table 4. The dataset consists of ten classes, and the confusion matrix shows how
the tested videos were correctly and incorrectly classified into these classes. The proposed
architecture performed well for most classes, with only a few misclassifications. However,
the model had difficulty distinguishing between two classes, namely Billiards Shot and
Drumming. Some videos were misclassified as Billiards Shot when they should have been
Drumming, and vice versa. This could be due to the similarity in the movements of the
two activities, such as hand-eye coordination and rhythmic movements.
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Table 4. The example of the confusion matrix for UCF50mini.

Targeted/ 1 2 3 4 5 6 7 8 9 10
Predicted

1 14 0 0 1 0 0 0 0 0 0
2 0 11 0 4 0 0 0 0 0 0
3 0 0 5 0 0 0 0 0 1 0
4 1 1 0 13 0 0 0 1 0 1
5 0 0 0 0 15 0 0 0 0 0
6 0 0 0 0 0 8 0 0 0 0
7 0 0 1 2 0 0 9 0 0 0
8 0 0 0 0 1 0 0 12 0 0
9 0 0 1 0 0 0 0 0 17 0

10 0 0 0 0 0 0 1 0 1 11

We also created a confusion matrix to display the results of testing the neural network
architecture on the MOD20 dataset (see Table 5). In the confusion matrix, the classes are
assigned numbers as follows: 1. tourism, 2. cliff jumping, 3. chopping wood, 4. cycling,
5. dancing, 6. fighting, 7. figure-skating, 8. Fire-fighting, 9. motorized saw-trees, 10. jet
ski, 11. kayak, 12. motorcycle, 13. FOOTBALL-catching, 14. rock-climbing, 15. running,
16. skateboarding, 17. skiing, 18. stand-up paddling, 19. surfing, and 20. windsurfing.
The confusion matrix enables us to monitor the accuracy of classification within the testing
process. By observing the confusion matrix, we can evaluate that there is not one class
with the biggest problem with classification, but the problems within the classification
are evenly distributed. The biggest mistakes made in placing a video into a class were
two videos. However, we can state that the best results were achieved by categories 13
(FOOTBALL-catching), 18 (stand-up paddling), and 20 (windsurfing), where the neural
network architecture had no problem with classification. The unproblematic classification
of the mentioned classes may be due to the clarity of the activity occurring in the video.

Table 5. The example of the confusion matrix for MOD20.

Targeted/ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Predicted

1 9 0 0 1 0 0 0 0 0 2 0 0 0 1 2 0 0 0 0 1
2 0 9 0 2 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
3 1 0 10 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0
4 0 0 0 7 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0
5 2 0 0 0 6 0 2 0 0 1 0 0 0 2 0 0 0 0 0 1
6 1 0 0 2 0 6 0 0 0 0 0 1 0 0 0 0 1 0 0 0
7 0 0 0 0 0 0 14 0 0 0 0 0 1 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 2 0 0
9 0 0 0 1 0 2 0 0 7 0 0 0 0 0 1 0 0 0 0 1

10 1 0 1 0 0 0 0 0 1 9 0 0 0 1 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 11 0 0 0 0 1 0 1 0 0
12 0 0 0 0 0 0 0 0 0 0 0 12 2 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0
14 1 0 0 0 0 0 0 0 0 0 0 0 1 9 0 0 0 0 1 0
15 1 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 11 0 0 0 0
17 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 0 0
19 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 12 0
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11
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In general, we have evaluated the results of our tests in several tables. First, we
assessed the resulting values of metrics such as F1 score, Precision, and Recall across
all three datasets (see Table 6). We can observe that the best results using the proposed
architecture were achieved on the UCF50mini dataset. However, the metric results were
roughly similar across all three datasets.

Table 6. The evaluation criterion of the proposed neural network architectures using different datasets.

Evaluation Metrics MOD20 UCF50mini LoDVP Abnormal Activities

Precision (P) 83.89% 87.76% 89.12%
Recall (R) 81.09% 88.63% 87.69%

F1 score (F1) 81.57% 87.84% 89.32%

Moreover, we compared the performance of our proposed architecture with other
available architectures. We applied the architectures to the given datasets and compared
their accuracy values. In Table 7, we can observe the resulting accuracy value after testing
on the LoDVP Abnormal Activities dataset. We tested ConvLSTM architectures published
in the article [21] and 3D Resnet networks such as 3D Resnet50, 3D Resnet101, and 3D
Resnet152 [22] on the same dataset. From these results, we can see that our proposed
architecture, which combines 3DCNN with ConvLSTM, has the third-best value. Therefore,
we can evaluate that our architecture can classify various abnormal incidents such as
harassment, fight, etc. very well compared to other architectures. However, compared to
classical ConvLSTM, it did not achieve the best results.

Table 7. Accuracy comparison of the proposed architecture with various neural network architectures
using the LoDVP dataset for detecting abnormal activities.

Video Recognition Architectures Accuracy [%]

Proposed architecture 93.41
ConvLSTM [21] 92.38
3D Resnet50 [22] 36.19

3D Resnet101 [22] 61.90
3D Resnet152 [22] 90.48

In Table 8, we can observe the accuracy results of the same neural network architectures
as in the previous case, i.e., ConvLSTM and 3D Resnet50, 101, 152, tested on the UCF50mini
dataset. In this case, our proposed architecture achieved significantly better results than
the other architectures after the testing process. Our 3DCNN + ConvLSTM architecture
achieved an accuracy of 87.7%.

Table 8. Accuracy comparison of the proposed architecture with various neural network architectures
using the UCF50mini dataset.

Video Recognition Architectures Accuracy [%]

Proposed architecture 87.78
ConvLSTM [21] 80.38
3D Resnet50 [22] 71.53

3D Resnet101 [22] 75.91
3D Resnet152 [22] 83.39

Furthermore, we trained and tested the MOD20 dataset with our proposed architecture
and compared the results with the Kernelized Rank-Based Pooling (KRBP) and Feature
Subspace-Based Kernelized Rank Pooling (KRP-FS) approaches used by the authors [21].
The best results were achieved using the 3DCNN + ConvLSTM architecture, with an
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accuracy of 78.21%. The accuracy results of our proposed neural network architecture and
the aforementioned approaches are shown in Table 9.

Table 9. Accuracy comparison of the proposed architecture with various neural network architectures
using the MOD20 dataset.

Video Recognition Architectures Accuracy [%]

Proposed architecture 78.21
BKRP [21] 66.55

KRP-FS [21] 74.00

Based on the results obtained on the three datasets (LoDVP Abnormal Activities,
UCF50mini, and MOD20), we can conclude that combining 3DCNN and ConvLSTM layers
can lead to a neural network architecture whose results are comparable to or better than
other available approaches. In terms of experimental results, we compared the performance
of our proposed architecture on the LoDVP Abnormal Activities and UCF50mini datasets
with architectures such as ConvLSTM and 3D Resnet50,101,152. In addition, we compared
the accuracy values obtained on the MOD20 dataset with the BKRP and KRP-FS approaches.
Our proposed architecture achieved an accuracy of 89.41% on the LoDVP Abnormal
Activity dataset, 87.78% on the UCF50mini dataset, and 78.21% on the MOD20 dataset.

5. Conclusions and Future Work

This paper proposes a mixed-architecture neural network for classifying human activ-
ities from videos. The architecture combines a 3DCNN network layer and a ConvLSTM
layer. We trained and tested our network on three databases: UCF50mini (where we
selected the first 10 classes), MOD20, and LoDVP Abnormal Activity. To ensure fair com-
parison between the datasets, we reduced the UCF50 database to match the number of
classes in the other two datasets. For UCF50mini, we performed classification on 10 classes:
Baseball pitch, Basketball shooting, Bench press, Cycling, Billiard shooting, Breaststroke,
Pure movement, Diving, Drumming, and Fencing. For LoDVP Abnormal Activities, we
classified 11 classes: begging, drunkenness, fighting, harassment, kidnapping, knife dan-
ger, common videos, pollution, property damage, robbery, and terrorism. MOD20 is the
largest dataset with 20 classes: tourism, cliff jumping, logging, cycling, dancing, fight-
ing, figure-skating, fire-fighting, chainsawing trees, water skiing, kayaking, motorcycle,
football-catching, climbing, running, skateboarding, skiing, standup-paddling, surfing,
and windsurfing. The input videos in all datasets were cropped to 100 × 100 × 3 RGB,
and we used 70 frames as input for the neural network architecture.

The results showed that the combined 3DCNN + ConvLSTM neural network was
effective in classifying video data containing various human activities. The training on the
UCF50mini dataset resulted in a decrease in the loss function to 0.2106 and an increase in
accuracy to 92.50%. For the LoDVP Abnormal Activities dataset, the loss function decreased
to 0.1042 and accuracy increased to 96.68% during training. On the MOD20 dataset, the loss
function during training was 0.4223 and accuracy increased to 86.30%. When comparing
the results on the datasets during testing, the combined architecture coped well with the
problem of temporal continuity between images. The confusion matrix across all three
datasets showed that the classification process was successful, with minimal errors in the
average of each class. The overall accuracy of the UCF50 mini dataset test was 87.78%,
with precision of 87.76% and recall of 88.63%. The F1 score was 87.84%. For the LoDVP
Abnormal Activity dataset, the overall accuracy was 93.41%, with precision of 89.12%, recall
of 87.69%, and F1 score of 89.32%. On the MOD20 dataset, the overall accuracy was 78.21%,
with precision of 83.89%, recall of 81.09%, and F1 score of 81.57%. The results showed that
the 3DCNN + ConvLSTM neural network is capable of classifying video data containing
various human activities, with high accuracy and minimal errors in the average of each
class. The proposed architecture achieved good results when compared to other existing
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networks designed for video-based human behavior classification. Overall, the results
demonstrate the success in creating a neural network architecture combining 3DCNN and
ConvLSTM layers for classifying human behavior in videos.

However, we aim to continue our work and improve the classification results of human
activities captured in videos. Accurate classification of human behavior by neural networks
can significantly enhance their practical applications. To provide a more comprehensive
evaluation of our network’s performance, we compared it to other available neural network
architectures, such as 3D ResNet 50,101,152, ConvLSTM, KRBP, and KRP-FS approaches,
using three different datasets. Our contribution focuses primarily on recognizing and
classifying non-standard human behavior in public spaces, which has a significant impact
on the scientific community. The proposed 3DCNN + ConvLSTM architecture has wide-
ranging applications in fields such as security and medicine and is comparable to existing
networks designed for video-based human behavior classification. However, monitoring
and detecting unusual behavior in public places such as city parks and squares is still a
challenging task, and our proposed combination of 3DCNN and ConvLSTM has some
limitations, including:

• Limited interpretability: 3DCNN with ConvLSTM is a deep-learning architecture,
and like most deep-learning models, it is not transparent in how it makes predictions
(understanding how the model arrives at a particular decision can be challenging).

• Limited availability of training data: The training of 3DCNN with ConvLSTM requires
a large amount of high-quality data to produce good results. This can be a significant
limitation in many applications where such data are not readily available.

• Difficulty in tuning hyperparameters: 3DCNN with ConvLSTM involves several
hyperparameters that need to be tuned correctly to achieve optimal performance.
Tuning these hyperparameters can be time-consuming and requires a significant
amount of expertise and experimentation.

• Sensitivity to noise and missing data: The combination of 3DCNN and ConvLSTM
relies on the temporal coherence of data for accurate predictions. Therefore, the model
can be sensitive to noise and missing data in the input, which can significantly affect
the model’s performance.

In summary, the proposed combination of 3DCNN with ConvLSTM is a powerful
deep-learning architecture with several limitations, which can impact its scalability, in-
terpretability, data requirements, hyperparameter tuning, and sensitivity to noise and
missing data.

In the future work, we plan to explore the incorporation of additional sensor data,
such as depth cameras and inertial measurement units, to enhance the performance of the
proposed model. We also plan to investigate the use of transfer learning techniques to adapt
the model to different domains and environments. Furthermore, we aim to investigate the
use of the proposed model for other related tasks such as anomaly detection. Finally, we
will also investigate the possibility of deploying the model on edge devices for real-time
monitoring. We believe that incorporating additional sensor data could further improve the
performance of our model and we look forward to exploring this direction in future work.

Author Contributions: Conceptualization, R.V., P.K. and R.H.; methodology, R.V.; software, R.V. and
P.S.; validation, P.K., R.V. and R.H.; formal analysis, P.K., R.H. and P.S.; data curation, R.V.; writing—
original draft preparation, R.V. and P.K.; writing—review and editing, R.V. and P.K.; visualization,
R.V., P.K. and P.S.; supervision, R.H.; project administration, R.H. and P.K.; funding acquisition, R.H.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Slovak Research and Development Agency under the
contracts no. APVV-21-0502 BrainWatch.

Institutional Review Board Statement: Ethical review and approval were waived for this study, due
to the experiment did no harm to all subjects.



Sensors 2023, 23, 2816 16 of 17

Informed Consent Statement: Patient consent was waived due to the fact that we used existing
datasets for testing (UCF50, MOD20, LoDVP Abnormal Activities datasets). These datasets were
cited in the text of the article text of the article.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. This is according to the laboratory rules.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

ConvLSTM Convolutional Long Short-Term Memory
3DCNN 3D Convolutional Network
KRP-FS Feature Subspace-Based Kernelized Rank Pooling
BKRP Kernelized Rank-Based Pooling
BILSTM Bidirectional Long Short-Term Memory
Conv2D 2D Convolutional Neural Network
Conv3D 3D Convolutional Neural Network
ROI Region of Interest
MLP Multilayer perceptron
HOF Histogram of oriented gradients
ASD Autism Spectrum Disorder
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