Algorithm 1: IRACKF. |
Input: Initial state , sampling number T observation dimension n prediction noise covariance matrix Q, observation noise covariance matrix R, error covariance matrix of the priori state P, variance threshold Var_LOS, the average value of
in LOS environment D. |
Output: Estimate position and velocity
-
1:
-
2:
for
t ← 2 to T
do
-
3:
← Read UWB observations
-
4:
// Calculate the variance of errors in UWB observations
-
5:
Var ← get_var
-
6:
// Prediction update
-
7:
// Calculate the state prediction values and the prediction covariance matrix
-
8:
← get_pre()
-
9:
// Calculate the robust factor
-
10:
// Calculate the innovation and innovation covariance matrix
-
11:
)
-
12:
← identity matrixfor
-
13:
for
j ← 1 to n
do
-
14:
if Var > Var_LOS
-
15:
-
16:
-
17:
end if
-
18:
j ← j + 1
-
19:
end for
-
20:
// Measurements update
-
21:
if det<>1
-
22:
-
23:
←Mu_RCKF
-
24:
else
-
25:
←Mu_ACKF
-
26:
end if
-
27:
t ← t + 1
-
28:
end for
|