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Abstract: As a fundamental but difficult topic in computer vision, 3D object segmentation has
various applications in medical image analysis, autonomous vehicles, robotics, virtual reality, lithium
battery image analysis, etc. In the past, 3D segmentation was performed using hand-made features
and design techniques, but these techniques could not generalize to vast amounts of data or reach
acceptable accuracy. Deep learning techniques have lately emerged as the preferred method for
3D segmentation jobs as a result of their extraordinary performance in 2D computer vision. Our
proposed method used a CNN-based architecture called 3D UNET, which is inspired by the famous
2D UNET that has been used to segment volumetric image data. To see the internal changes of
composite materials, for instance, in a lithium battery image, it is necessary to see the flow of different
materials and follow the directions analyzing the inside properties. In this paper, a combination
of 3D UNET and VGG19 has been used to conduct a multiclass segmentation of publicly available
sandstone datasets to analyze their microstructures using image data based on four different objects
in the samples of volumetric data. In our image sample, there are a total of 448 2D images, which
are then aggregated as one 3D volume to examine the 3D volumetric data. The solution involves the
segmentation of each object in the volume data and further analysis of each object to find its average
size, area percentage, total area, etc. The open-source image processing package IMAGEJ is used for
further analysis of individual particles. In this study, it was demonstrated that convolutional neural
networks can be trained to recognize sandstone microstructure traits with an accuracy of 96.78%
and an IOU of 91.12%. According to our knowledge, many prior works have applied 3D UNET for
segmentation, but very few papers extend it further to show the details of particles in the sample.
The proposed solution offers a computational insight for real-time implementation and is discovered
to be superior to the current state-of-the-art methods. The result has importance for the creation of an
approximately similar model for the microstructural analysis of volumetric data.

Keywords: image segmentation; 3D image; 3D UNET-VGG19; image microstructure; particle analysis;
image reconstruction

1. Introduction

This research builds upon our previous work [1] that leveraged a CNN-based 2D
UNET architecture for multiclass 2D image segmentation. In this paper, we proposed
using 3D UNET in combination with VGG19 for modeling and multiclass segmentation
of volumetric images as well as subsequent particle-level analysis. With deep learning,
we can recognize objects with unprecedented precision. Object detection [2], deepfake
technology [3], and human–AI collaborative development [4] are just a few examples of
the many fields where deep learning models are employed. All of the above-mentioned
works somehow involved experimentation with image data. The majority of techniques are
computationally expensive and labor-intensive, rendering them unsuitable for real-time
applications such as robotics, virtual reality, and medical imaging. Another concern is that
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many current techniques have memory restrictions that limit them from processing massive
volumes of data, making them unsuitable for processing large 3D imaging such as CT scans
and MRI scans. Nevertheless, the combination of deep learning-based technique could be a
possible solution for tackling the limitations of the aforementioned work.The SLAM [5]
method is utilized to generate a dense point cloud map of the surroundings as well as
estimate the position and orientation of the platform within the orchard. Some potential
limitations of this method are mapping accuracy, expensive hardware requirements, and
lacking generalization to other types of set up. Deep learning-based techniques such as
CNN could be fruitful for certain tasks such as object detection and mapping optimization.
Sandstone’s unusual microstructure affects both the mechanical characteristics of the rocks
and how well hydrocarbons are stored and transported. Understanding the sandstone’s
microstructure has benefited from scanning electron microscopy (SEM). However, it has
been demonstrated that quantitative image analysis is challenging. Image segmentation
is a crucial part of many AI systems for visual comprehension. Partitioning images into
different segments or objects [6] is a key aspect of this process. Segmentation is crucial
in many fields [7], including medical image analysis (such as tumor border extraction
and measuring tissue volumes), autonomous vehicles (such as navigable surfaces and
pedestrian identification), video surveillance, and augmented reality. From simple thresh-
olding [8], region-growing [9], and more complex active contours [10], conditional and
Markov random fields, lane marking detection [11], and sparsity-based [12] methods, the
literature is replete with image segmentation algorithms. Recently, however, a paradigm
shift has occurred as deep learning (DL) models have produced a new generation of image
segmentation models with tremendous performance increases, often obtaining the highest
accuracy rates on common benchmarks. The segmentation of images can be viewed as a
multiclass classification issue with semantic labels for each pixel (semantic segmentation).
In contrast to image classification, which predicts a single label for the entire image, seman-
tic segmentation applies pixel-level labeling with a set of item categories (such as carbon,
graphite, etc. in the lithium battery image) for all image pixels [13]. However, the computa-
tional complexity of the above-mentioned work is very huge. In this research, we proposed
a unique approach to segment 3D volumetric objects. We evaluate how well computer
vision, and specifically deep learning, can reduce the time spent analyzing SEM images
from days to only a few seconds for a somewhat sized, high-resolution navigation area. For
researchers in Digital Porous Media, Petroleum Science and Engineering, Water Science and
Engineering, and Computational Fluid Dynamics who do not have the means to describe
these rock samples themselves, this model could be useful to overcome the aforementioned
challenges. The main contribution of the proposed model is the clarity of the approach,
which includes dataset preprocessing based on the proposed model, generation of a 3D
volumetric image from 2D slices, extraction of individual minerals from the 3D volume,
extraction of each material individually based on pixel value, and finally the microstruc-
tural analysis. As a result, the suggested method has proven useful in capturing important
information from porous materials. The initial experiment described was to determine if
software could accurately capture microstructural changes across a range of shapes. We
employed transfer learning on the VGG19 pretrained convolutional neural network (CNN)
rather than gathering all the data required to train a network from scratch [14].VGG19 can
learn an effective feature representation for the input image because it has been trained
on a big dataset (ImageNet) to recognize a variety of objects and situations. To transfer
learning to other tasks, such as image segmentation, similar pretraining can be used. The
vast amount of parameters in VGG19 enable it to learn a detailed and intricate feature
representation for the input image. When segmenting images, this is especially helpful
because it allows for the correct segmentation of small objects and fine details. The 3D
UNET model with VGG19, which relies on convolutional neural networks, is used for the
bulk of the segmentation process because it has been shown to work well with multiclass
microstructural data. The encoder–decoder architecture known as U-Net [15] was created
especially for image segmentation applications. U-Net is highly suited for situations where
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small objects or features need to be precisely separated because of its ability to preserve
delicate details. Due to its few parameters, U-Net is both computationally effective and sim-
ple to train. Based on specific requirements, such as the size of the dataset, computational
resources, and further microstructural analysis tasks, our model proved to be effective
for similar types of experiments. The study’s findings led to a categorization of several
components that will improve future research. The significant innovations and insights of
the work, in brief, are as follows:

• We have proposed a novel approach to solve the issue of volumetric image data
segmentation which is very crucial to discover underground resources;

• The proposed approach deployed the concept of transfer learning along with VGG19
as the backbone, which makes the model unique from existing works in terms of
performance;

• The findings and the results of our proposed model rely on the preprocessing of the
training data. Our model is applicable to any type of image data such as FIB-SEM, CT,
and MRI after proper annotation and mask generation for the training process;

• Our model extracts each particle individually based on their pixel value and represents
their 3D volumetric visualization, which makes our work more unique than existing
segmentation works. We have converted our volumetric data as multichannel objects,
which is very crucial for further analysis of each region separately;

• Based on our model’s segmentation result, we have performed a microstructural analysis
of each particle, which could be very useful for the measurement of individual particles
in a mixed object. We have calculated the total area, average size, area percentage, etc.
which makes our approach different from existing state-of-the-art work;

• Finally, in comparison with existing state-of-the-art works, our model shows impres-
sive results in terms of accuracy.

2. Related Work

Because unusual reserves are inherently tight, it is essential to comprehend their mi-
crostructural characteristics, such as their mechanical properties, in order to effectively
foresee how the formation will respond during the production and completion processes.
Organic materials and petroleum both dwell in the micro- and nano-pores of unconven-
tional reservoirs such as sandstones, shales, and coalbed methane formations. In order to
quantify pore volume and explain pore structure, much recent research on these pores has
relied on macroscopic, indirect measures [16]. Macroscopic porosity and pore structure can
be measured and characterized indirectly by techniques such as nuclear magnetic resonance
(NMR) spectroscopy, mercury injection capillary pressure (MICP) and surface area analysis.
While these techniques are great for defining the pore structure, they do not actually create
an image of the pore structure in great detail. Two- and three-dimensional pictures of
nanometer-sized pores can be obtained using conventional scanning electron microscopy
(SEM) or focused ion beam scanning electron microscopy (FIB-SEM) [17]. By firing an
electron beam at a sample and then detecting the resulting signals, a two-dimensional
image can be created using scanning electron microscopy (SEM). In FIB-SEM, an ion beam
progressively mills away the surface as a series of sequential photos are captured to build
a stack of images for a 3D representation, allowing for spot analysis in the mapping of
elements across the surface. By combining these techniques, a 2D matrix representation
of the sandstones’ minerals could be obtained. Reconstructing a 3D model of the matrix
with FIB-SEM imaging allows us to see the microstructure and the connections between
individual elements. There has been a lot of work based on CNN model object detection,
image segmentation, etc. In order to quickly and accurately identify and classify various
types of asphalt pavement cracks, Que et al. [18] proposed a method of automatic clas-
sification of asphalt pavement cracks utilizing a novel integrated GANs and improved
VGG model. The suggested method is a two-step approach. To augment the dataset in the
first stage and enhance the performance of the classification model, a GAN is employed to
produce synthetic crack images. In the second stage, an improved VGG model is trained
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using the generated images. The enhanced VGG model comprises more convolutional
layers that assist in extracting more characteristics from the images, increasing classifi-
cation precision. However, the work has potential limitations such as require extensive
computational resources, lack of generalization to real-world scenarios, and less diverse
datasets. Yang Yu et al. [19] proposed a hybrid framework based on the CNN model and
transfer learning to detect the cracks of various types of concrete. However, the crack
detection system has a major disadvantage of considering whole patches as cracks, which
could be resolved using a segmentation-based model. Noh et al. [20] presented an early
article on semantic segmentation based on deconvolution. The encoder uses convolu-
tional layers from the VGG 16-layer network, and the deconvolutional network takes the
classification model as input and generates a map of pixel-wise class probabilities. De-
convolution and unpooling layers detect pixel-wise class labels and forecast segmentation
masks. In SegNet, another promising study, Badrinarayanan et al. [21] suggested a convo-
lutional encoder–decoder architecture for image segmentation. SegNet’s basic trainable
segmentation mechanism comprises an encoder network that is topologically identical
to the 13 convolutional layers of the VGG16 network, which is followed by a decoder
network, and a pixel-wise classification layer. The decoder SegNet’s upsamples is unique.
It uses max-pooling-step pooling indices for nonlinear upsampling of its lower-resolution
input feature map(s). Upsampling is not required for learning. Using trainable filters to
combine sparse upsampled maps and dense feature maps, SegNet has fewer trainable
parameters than competing systems. Milletari et al. [22] proposed the V-Net, another
prominent FCN-based model, for 3D medical picture segmentation. They used a dice
coefficient-based goal function during model training to handle the substantial difference
between foreground and background voxels. The network was trained only on prostate
MRI data and can currently predict volume segmentation. A novel visual crack width
measurement method based on backbone double-scale features for enhanced detection
automation proposed by Tang et al. [23] is another significant contribution to the field of
computer vision. The suggested method seeks to increase the precision and effectiveness
of crack measurement and identification in diverse settings. The suggested method is
computationally efficient in addition to having a high degree of accuracy because it only
needs one forward pass of the backbone network to detect cracks and estimate their width.
This qualifies it for real-time applications, including automatically spotting cracks in roads
during inspections. It is crucial to note, though, that the proposed method has several
drawbacks, such as limited crack patterns and generalization to real-world scenarios. A 2D
CNN model with hyperparameter optimization performs well at predicting RC beams’
torsional strength [24]. However, we believe, for this type of work especially where
we have to see the insights of the structure, the 3D-based CNN model outperforms the
traditional 2D model. Progressive Dense V-net (PDV-Net) for the rapid and automatic
segmentation of pulmonary lobes from chest CT images and the 3D-CNN encoder for lesion
segmentation [25] are other notable medical image segmentation studies. Segmenting
images from biological microscopy was made possible by U-Net, which was proposed by
Ronneberger et al. [15]. Training and tuning their network on sparsely annotated images
requires data augmentation. The U-design net consists of a context-capturing contracting
path and a localization-enabling symmetric expanding path. In order to extract features, the
down-sampling or contracting section uses an FCN-like architecture with 3x3 convolutions.
When up-sampling or expanding, up-convolution (or deconvolution) is used to reduce the
number of feature maps while increasing their size. To prevent losing pattern information,
the down-sampling portion of the network’s feature maps is replicated in the up-sampling
portion. A segmentation map is created by applying an 11 convolution to the feature
maps, which labels each pixel in the input image with a predetermined label. The original
U-Net design has undergone various suggested alterations and extensions in recent years
to enhance its functionality. Modifications to the algorithm include adding skip connections
between the encoder and decoder, employing residual blocks in the encoder and decoder,
and using attention techniques to prioritize the features in the encoder and decoder. The
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U-Net architecture that Chen et al. [26] proposed may adaptively weight the feature maps
based on their significance in the segmentation job. It has a channel and spatial attention
mechanism. The use of U-Net in association with other deep learning models for image
segmentation tasks has also been investigated by a number of experts. For instance, Li et
al. [27] introduced the MMF-Net, which is a multi-scale and multi-model fusion U-Net that
merges multiple U-Net models of various scales to increase segmentation accuracy. The
performance of U-Net in image segmentation tasks can be considerably enhanced using
transfer learning, which is a potent deep learning technique. In order to segregate the
nuclei in a dataset of histopathology photos, Kong et al. [28] employed transfer learning to
pre-train a U-Net on the ImageNet dataset. The capacity of the pre-trained model to learn
high-level features that are essential for the segmentation task was cited by the authors as
the reason why the pre-trained U-Net outperformed the U-Net trained from scratch.

3. Proposed Methodology

Our proposed model consists of dataset processing, model architecture, loss calcu-
lation, and preparing output for further analysis. Below, we have discussed each part
separately.

3.1. Dataset Processing

We have used an open-source sandstone dataset for our experiment. The dataset
contains a total of 448 images of size 512 × 512 × 512 of sandstone which contains multiple
minerals. Every image in the volume is 256 × 256 × 256 in size. We make all images as
the volume and represent them as a stack for 3D segmentation. Again, every original size
image converts into multiple slices of size 256 × 256 × 256 based on system configuration.
Every slice of the image is manually annotated to create a mask for training and testing
purposes. Furthermore, the slices joint together and bring back to their original shape, and
this procedure has been completed for every big image. The sandstone dataset conatins
4 particles in it. The black area which is pore (class 0) in the sandstone, the busy darkish
area is mineral 1 (class 1), the grayish area which is most in this sample is mineral number
2 (class 2), and finally the bright or white region is mineral 3 (class 3) in Figure 1a,b as
well as in Figure 1c,d. Figure 1e,f represents the cropped sample of the original image
and corresponding mask. Table 1 represents the class and corresponding pixel value for
each class.

Table 1. Details of our dataset labeling.

Serial no. Class Name Value of Pixel

1 Pore 0
2 Mineral 1 1
3 Mineral 2 2
4 Mineral 3 3
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Figure 1. Represents the both 2D and 3D samples and train image/mask of individual slice. (a) Rep-
resentation of 3D volume raw sample. (b) Representation of 3D volume segmented result. (c) Repre-
sentation of 2D raw sample 512 × 512. (d) Representation of 2D segmented result. (e) 64 × 64 slice of
training image. (f) 64 × 64 slice of training mask for model training.

3.2. Model Architecture

We have implemented the modified 3D UNET model for segmenting the 3D subvol-
ume, which includes the stack of 2D images to speed up the segmentation result. Initially,
our image slice is 256 × 256 × 256. To speed up the process and hardware requirements,
we have converted the images in the batch of 64 × 64 × 64 using simple python code. Later
on, those small chunks aggregated together to bring back to their original shape. This step
has been completed for both training images and their corresponding masks. A total of
4 classes are defined for this segmentation, as our sample data contain 4 different materials:
pore, mineral 1, mineral 2, and mineral 3. The data are further split into training data which
is 80% of the total, while the validation data comprise 10% and the testing data comprise
10% of total. By adjusting the model after each epoch, a validation split enhances the
model’s performance. Hyperparameter tuning is essential for improving the deep learning
network’s performance, especially for challenging tasks such as the segmentation job. The
hyperparameter tuning job includes the selection of activation function, optimizer, learning
rate, batch sizes, number of epochs, etc. We have used dice loss and focal loss together to
calculate the total loss of our model, which is proved to be better for overall accuracy esti-
mation. Moreover, VGG19 is used as the backbone of the model. Our model used imagenet
weight so that it could start from some good baseline and not from the scratch. Softmax
is used as the activation function, as this a multiclass segmentation problem. We have
used 0.0001 as the learning rate, which is good for initial training. Finally, we used Adam
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optimizer, as it is the best fit for our segmentation task. Table 2 describes the parameter
settings of our model, which we have found to be the best for the accuracy. In Figure 2, our
proposed architecture is built on using the concept of transfer learning. In the contraction
part, we have added the pretrained model VGG19 so that we could start our training from
a stable stage; then, it works in the manner of 3D UNET.

Table 2. Description of the parameters for our model and their corresponding values.

Serial no. Parameters Corresponding Values

1 Encoder weights Imagenet
2 Backbone VGG19
3 Activation function Softmax
4 Loss Dice loss and Focal loss
5 Patch sizes 64
6 Num of classes 4
7 Channels 3
8 Learning rate 0.0001
9 Optimizer Adam

Figure 2. Architecture of our proposed model built combined with VGG19 AND 3D UNET.

Figure 3a–c describes the prediction of our test image based on our model which
shows almost accurate prediction. From the proposed architecture, we have used the slice
of 64 × 64 × 64 from our initial 256 × 256 × 256 images as input. There are two paths
in the complete model: one is contraction and another one is expansion. The difference
between conventional neural network and U-NET is both paths are responsible for the
concatenation of feature maps, which helps to achieve localized information. The proposed
architecture is designed over existing 3D UNET architecture with VGG19 as the backbone.
The conv layer for down-sampling is 3 × 3 × 3. Then, the max pooling we used is 2 × 2 ×
2. After that, the up-sampling process starts, which is 2 × 2 × 2. Finally, we obtained one
conv, which is 1 × 1 × 1: our output image. Initially, the model was trained and tested for
a cropped size image, which is smaller than the original, and finally, the model is applied
for the full volume of 512 × 512 × 512 images. For our further analysis, we have converted
our output image into multichannel output. All segmented images are reconstructed and
separated based on their pixel values. In our experiment, there are 4 segmentations based
on 4 different types of materials. Finally, the images are converted to multidimensional
images using exiting open source python software, which helps to separate each material
as multichannel, which is very helpful to analyze the particles individually. Multichannel
concepts convert the image into a binary image, which is further useful for analyzing each
particle individually. Figure 3d,e represents the RGB and grayscale image of our segmented
sample. In the color image, the red portion denotes the pore, while green is mineral 1,
blue is mineral 2, and the white portion is mineral 3. Figure 3f, is the 3D representation
of our segmented image, which we generate using free image acquisition and analysis
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software Zen lite. Furthermore, we have separated every individual particle based on their
pixel value.

Figure 3. Represents prediction, segmented sample both in 2D and 3D. (a) Test image of individual
slice. (b) Test mask of individual slice. (c) Prediction on test image. (d) Two-dimensional (2D)
representation of segmented result in RGB where the red area represents pores, lime is mineral 1,
blue is mineral 2, and finally, white represents mineral 3. (e) Representation of segmented 2D result
in grayscale. (f) Representation of 3D volume segmented result.

In Figure 4, we have represented the individual particle together for better visualiza-
tion. Separating the individual particle is useful for further analysis. Figure 4a–h are the 2D
visualization and their corresponding 3D visualization of each particle of the sample, which
we have generated using free 3D image analysis software Zen lite. Figure 4i–k represent the
particle together. This segmented volume was further used for our particle analysis work.
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Figure 4. Representation of each particle individually. We have leveraged the free image analysis
software Zen lite to represent our individual particle as multichannel data. (a,b) The red area
represents the pore area of the sample for both 2D and 3D. (c,d) The lime area represents the mineral 1
area of the sample for both 2D and 3D. (e,f) The blue area represents the mineral 2 area of the sample
for both 2D and 3D. (g,h) The white area represents the mineral 3 area of the sample for both 2D and
3D. (i–k) Three-dimensional (3D) representation of combined particles.

3.3. Loss Calculation

We have used the combination of dice loss and focal loss for our deep learning model.
Multiclass Dice loss adjusts the weight of each class based on the square of label frequencies,
similar to the original Dice loss. In the field of computer vision, the Dice coefficient is the
metric for determining the degree of visual similarity between two images.

Focal loss applies the notion of focal loss to circumstances with low probabilities and
high difficulty. When training for a job such as image segmentation, class imbalance can be
an issue. For the purpose of concentrating training on challenging misclassified samples,
focal loss modifies the cross-entropy loss as a whole. Focal loss can be calculated in “(1)”

FL(pt) = −αt(1 − pt)γloglog(pt) (1)

where pt is the extension to cross-entropy loss, alpha is the weighting factor and gamma
is the tunable parameter. Small values of pt indicate that the loss is unaffected by the
misclassification of the example. When pt is equal to 1, the factor becomes 0, and the loss
for correctly categorized samples is reduced. The focusing parameter gamma allows for a
gradual adjustment of the down-weighting of simple examples. If gamma is 0, then the
focal loss is equivalent to cross-entropy. Then, the total loss is calculated using “(2)”

Total_loss = dice_loss + (1 ∗ f ocal_loss) (2)
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3.4. Preparing Output for Particle Size Analysis

Our sample dataset contains different materials in it, including pores and materials. In
this step, we have further analyzed our output to obtain the quantitative analysis of each
mineral existing in the sample sandstone. After implementing the model to our original
full volume samples, we have further segmented each class of sample images separately
so that the analysis of particles could be completed easily. We have divided the predicted
results into four segments: pore, mineral 1, mineral 2 and mineral 3.

Figure 5a–d represent the individual elements of our segmented sample based on their
pixel value. First, we have segmented the full volume. Furthermore, we separated each
particle. This is important for converting the sample in a binary image for particle analysis.

Figure 5. Individual particles of segmented images based on the pixel value on particular slices.
(a) Represents pore area. (b) Represents mineral 1 area. (c) Represents mineral 2 area. (d) Represents
mineral 3 area.

4. Particle Analysis

We have used the open source imagej-fiji tool to analyze our sanstone dataset. Each
output voulme is converted into 8-bit binary images from which we have analyzed each
particle individually. We have prepared our output volume as 4 classes which are segment
0 (pore), segment 1 (mineral 1), segment 2 (mineral 2), and segemnt 3 (mineral 3). Further-
more, we loaded each segment into imagej-fiji software. The pixel value is set to 0–3 as
there are 4 different color contrasts for different materials. Furthermore, we have calculated
the particle count, size of each particle, area, and average area for each individual segment.

Figure 6a–d are generated using open source imagej-fiji software, which represents
only the binary bit of each segmented particle: either 0 or 1. Here, 0 represents the
background or white in our figure, and 1 represents the existence of corresponding particles.
Figure 7a–d represent the area and count of the particle. Furthermore, we have measured
the particle count, area, average size and percentage individually in the whole volume.
Tables 3–6 represent the measurement of individual particles.

Table 3. Size analysis of segment 0 (pore) in the segmented output.

Slice Count Total Area (µm2) Average Size (µm2) Area Percentage%

1 60 13,513 225.217 5.155
2 60 14,333 238.883 5.468
3 59 14,798 250.814 5.645
4 58 15,730 271.207 6.001
5 52 16,308 313.615 6.221
6 53 16,304 307.623 6.219
7 49 15,946 325.429 6.083
8 49 15,210 310.408 5.802
9 47 15,024 319.66 5.731
10 47 14,070 299.362 5.367
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Table 4. Size analysis of segment 1 (mineral 1) in the segmented output.

Slice Count Total Area (µm2) Average Size (µm2) Area Percentage%

1 30 6892 229.733 2.629
2 33 9161 277.606 3.495
3 27 8761 324.481 3.342
4 25 8833 353.32 3.37
5 29 7409 255.483 2.826
6 33 7087 214.758 2.703
7 31 6319 203.839 2.411
8 28 5521 197.179 2.106
9 30 5291 176.367 2.018
10 29 5050 174.138 1.926

Table 5. Size analysis of segment 2 (mineral 2) in the segmented output.

Slice Count Total Area (µm2) Average Size (µm2) Area Percentage%

1 4 228,737 57,184.25 87.256
2 3 227,552 75,850.667 86.804
3 5 229,053 45,810.6 87.377
4 4 227,013 56,753.25 86.599
5 3 227,379 75,793 86.738
6 2 232,841 116,420.5 88.822
7 3 234,461 78,153.667 89.44
8 4 240,228 60,057 91.64
9 4 240,143 60,035.75 91.607
10 3 240,652 80,217.333 91.801

Table 6. Size analysis of segment 3 (mineral 3) in the segmented output.

Slice Count Total Area (µm2) Average Size (µm2) Area Percentage%

1 11 7411 673.727 2.827
2 12 7694 641.167 2.935
3 11 7723 702.091 2.946
4 11 7741 703.727 2.953
5 11 7527 684.273 2.871
6 11 7341 667.364 2.8
7 12 7439 619.917 2.838
8 13 7655 588.846 2.92
9 12 7868 655.667 3.001
10 14 7961 568.643 3.037
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Figure 6. (a,b) Eight (8)-bit binary conversion of our individual segmentation (pore and mineral 1.
(c,d) Eight (8)-bit binary conversion of our individual segmentation (mineral 2 and mineral 3).
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Figure 7. (a,b) Separation of particle and count individually (pore and mineral 1. (c,d) Separation of
particle and count individually (mineral 2 and mineral 3).

5. Result and Discussion

Our proposed model is applied to the sandstone dataset, and we have observed the
performance of our model. We have observed that after a certain interval, increasing the
number of epochs has a significant impact on loss, accuracy, F1 score and IOU. We have
found the best result after running our model for 184 epochs which are described in Table 7.
One important observation is that GPU computation is a must for this kind of experiment
because CPU computation does not work or takes a long time due to the large volume of
the computation.
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Table 7. Fit the model with different epoch values and analyze the performance.

Epoch Loss Accuracy F1 Score IOU

20 77.29 92.12 93.21 87.74
40 77.16 92.56 93.41 88.05
53 76.88 91.88 94.45 89.77
60 77.20 93.47 93.40 88.04
80 77.19 93.59 92.87 87.25

100 76.84 94.19 94.48 89.82
150 76.73 95.28 94.82 90.38
184 76.60 96.78 95.25 91.12
197 77.06 91.01 93.35 88.02

To begin with, dice loss and focused loss were used to assess model performance as a
function of epoch count. The objective here is to cut losses as much as possible. The graph
clearly shows that after 20 epochs, the difference between training loss and validation
loss begins to shrink. This suggests that after 20 epochs, the model begins to show signs
of fitting the data. Hence, we observed the improvement of loss, accuracy, F1 score, and
IOU value until 53. After that, the corresponding loss again started to increase and it
continued until 80 epochs. After that, we again saw the downward trend of the statistics.
So after having deep observation, we have come to know that the uptrend and downtrend
continued in several intervals of the epochs. However, at one point, after 200 epochs, we
have not observed any drastic improvement or changes in the performance. Therefore, the
model was trained for 200 epochs, and the best value was found after running 184 epochs.
Second, we looked at how the IOU score changed when the training and validation epoch
counts changed. Visual inspection of the graph reveals a sharp rise in the IOU score for
both training and validation between 50 and 190 epochs. Assuming 40 epochs have passed,
the validation IOU score will begin to rise. This also means that after 40 epochs, the model’s
performance begins to improve. We have trained the model for 200 epochs in total, which
took 26.66 min in total, approximately 8 s per epoch using NVIDIA GPU P100 environment.
We have observed that running this experiment on a CPU environment would take a couple
of hours, even days, and most importantly, it might become stuck in the middle of the
training. So, broadly speaking, our proposed method could skip unnecessary training
time while working with datasets of similar size. Additionally, our proposed model could
be extended to different kinds of volumetric image data such as CT and MRI. Talking
about the limitation, our model’s quantitative metrics such as accuracy and IOU heavily
rely on the proper preparation of training data. Annotation and masking for training is a
very crucial part to obtain the best result. Again, the hybrid model’s effectiveness will be
determined by the fineness of the training data and the particular 3D image segmentation
job. To obtain an optimum result with real-world data using our proposed method, data
preprocessing should be completed extensively prior to the experiment. Our proposed
hybrid model might well be able to perform object segmentation tasks more accurately
than either model alone by combining U-Net’s capacity to maintain small features with
VGG19’s rich feature representation. Since U-Net is a pretty small model, it is known to
be susceptible to overfitting when trained on a limited dataset. Our hybrid model’s use of
VGG19’s learnt features has the potential to lessen overfitting and improve generalization
performance. Our model is computationally efficient, as we applied the concept of transfer
learning, which drastically reduced the number of parameters to be trained. So, based on
the aforementioned advantages, our proposed model is best fit for segmentation tasks with
a comparatively small dataset and where extracting individual features is important.

Table 8 shows that the proposed approach outperforms other existing strategies that
take UNET-based deep learning algorithms into account.
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Table 8. Performance result comparison with different existing methods.

Model Accuracy F1 Score IOU

2D UNET- VGG16 [29] – 86.61 –
UNet with EfficientNetB7 Encoder [30] – – 73.76

UNET for underwater images [31] 96.66 – –
3D U-Net-BrainTumor image [32] – 88.53 –

AM-UNet [33] – – 70
3D Attention U-Net [34] – 88.91 –

Our Method 96.78 95.25 91.12

Erdem et al. achieved an 86.61% F1 score using 2D UNET-VGG16 for aerial image
segmentation [29]. According to Bahet et al., they achieved 73.76% IOU for the IDD dataset
based on UNET with EfficientNetB7 [30]. A study by Nezla et al. [31] attempted to use
semantic image segmentation to uncover hidden details for underwater images where
they achieved an accuracy of 96.66% using UNET-based architecture. Nodirov et al. [32]
proposed a 3D UNET based segmentation method which showed the F1 score of 88.53%.
Albishri [33] proposed a 3D end-to-end UNET-based network for brain claustrum seg-
mentation where they obtained an IOU of 70%. 3D Attention U-Net [34] explained the
CADA-Aneurysm Segmentation Challenge where the final F1 score was 88.91%. The pro-
posed model is more effective at segmenting the volumetric images than the current deep
learning techniques, because the evolutionary result of the proposed method is superior.
Moreover, most of the existing work explained the implementation of the model using 2D
SEM images. However, our model has been implemented for volumetric 3D images which
explained the use of 3D UNET for realistic three-dimensional datasets.

Figure 8a,b show the training loss and IOU and corresponding validation loss and IOU.
These findings demonstrate the potential for using this method to properly identify mineral
groups in SEM images, which has applications beyond just determining the presence of
minerals or pores. As shown in Figure 8c,d, we have successfully identified the individual
particle in our sandstone sample. From the result analysis of the total volume, we have
concluded that almost 83% of our sample is mineral 2, while pore represents 9.11%, mineral
1 is 5.378%, and mineral 3 is 3.495%.

Table 9, describes the average size of each particle in our sample where it is found that
mineral 2 is the largest in size in the whole volume of samples, which is 87603 (µm2), and
pore, mineral 1, mineral 3 are 334.67 (µm2), 207.63 (µm2) and 324.81 (µm2) .

Table 9. Average size of each particle in total volume.

Serial no. Particle Class Average Size (µm2)

1 seg0 (pore) 334.6775089
2 seg1 (mineral 1) 207.632
3 seg2 (mineral 2) 87,603.9935
4 seg3 (mineral 3) 324.8126
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Figure 8. (a) Loss during training and testing as a result of the number of epochs. (b) IOU during
training and testing as a result of the number of epochs. (c) Percentage of average area for each
particle for the first 10 samples. (d) Representing the area of each particle individually.

6. Conclusions and Future Work

Testing the accuracy and IOU of image quality evaluation showed a remarkable 96.78%
accuracy and 91.12% IOU. This model was shown to be efficient in classifying images as
“excellent” or “poor” for further processing. Although our model was developed using the
sandstone dataset for the goal of studying segmentation, it may be used and expanded
for any type of SEM 3D volume image segmentation. Moreover, our proposed model was
expected to be very useful for experiment with small datasets. To obtain initial insights into
our experiment, our model could be a best initial start. Our model is less computationally
complex based on the time taken for training. Talking about scalability, our model is
scalable to other kinds of image segmentation with proper preprocessed data. Our model
used the concept of transfer learning and includes the VGG19 model with 3D UNET,
which shows a significant improvement in the result. The successful development of a
machine learning method as an automated and robust feature extraction tool is crucial for
recognizing porosity or particles in various porus materials. Size distribution could be
accurately measured if the volume is segmented properly with an accurate deep learning
model. Our model showed promising results and could be further implemented for any
3D volume image data. Considering the cost of X-ray computed tomography, our 3D
volumetric SEM image segmentation technique could be the best alternative in terms of
time and money. The suggested work has the potential to lead to the design of a deep
learning-based segmentation model that is comparably less expensive in the future because
the utilized algorithms are computationally less expensive and do not require considerable
training. Microstructural analysis is one of the crucial tasks to detect the underground
resources. The segmentation of individual particles or minerals of mixed material is a very
important job for researchers in the field of porus media, chemical engineering, petroleum
science, etc. to understand the insights of the materials. The proposed model is also
effective for experimenting with small datasets to efficiently perform the segmentation and
obtain the insights into the materials. Adding to the mentioned limitations in the discussion
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section, another potential limitation is that our hybrid model may not be generalizable
for any types of 3D segmentation because of the preparation of the dataset. We plan to
include the improvement of our model as a more general-purpose segmentation model.
Additionally, the possible future extension of the model will include experimentation with
more real-world data.
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