
Citation: Zeng, T.; Wang, J.; Wang, X.;

Zhang, Y.; Ren, B. An Efficient Deep

Learning-Based High-Definition

Image Compressed Sensing

Framework for Large-Scene

Construction Site Monitoring. Sensors

2023, 23, 2563. https://doi.org/

10.3390/s23052563

Academic Editor: Chunhua Yang

Received: 28 December 2022

Revised: 15 February 2023

Accepted: 21 February 2023

Published: 25 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

An Efficient Deep Learning-Based High-Definition Image
Compressed Sensing Framework for Large-Scene Construction
Site Monitoring
Tuocheng Zeng, Jiajun Wang * , Xiaoling Wang, Yunuo Zhang and Bingyu Ren

State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China
* Correspondence: jiajun_2014_bs@tju.edu.cn

Abstract: High-definition images covering entire large-scene construction sites are increasingly used
for monitoring management. However, the transmission of high-definition images is a huge challenge
for construction sites with harsh network conditions and scarce computing resources. Thus, an effec-
tive compressed sensing and reconstruction method for high-definition monitoring images is urgently
needed. Although current deep learning-based image compressed sensing methods exhibit superior
performance in recovering images from a reduced number of measurements, they still face difficulties
in achieving efficient and accurate high-definition image compressed sensing with less memory usage
and computational cost at large-scene construction sites. This paper investigated an efficient deep
learning-based high-definition image compressed sensing framework (EHDCS-Net) for large-scene
construction site monitoring, which consists of four parts, namely the sampling, initial recovery, deep
recovery body, and recovery head subnets. This framework was exquisitely designed by rational
organization of the convolutional, downsampling, and pixelshuffle layers based on the procedures of
block-based compressed sensing. To effectively reduce memory occupation and computational cost,
the framework utilized nonlinear transformations on downscaled feature maps in reconstructing
images. Moreover, the efficient channel attention (ECA) module was introduced to further increase
the nonlinear reconstruction capability on downscaled feature maps. The framework was tested on
large-scene monitoring images from a real hydraulic engineering megaproject. Extensive experiments
showed that the proposed EHDCS-Net framework not only used less memory and floating point
operations (FLOPs), but it also achieved better reconstruction accuracy with faster recovery speed
than other state-of-the-art deep learning-based image compressed sensing methods.

Keywords: large-scene construction sites; high-definition; images compressed sensing; EHDCS-Net;
downsampling and pixelshuffle

1. Introduction

In recent years, high-definition images are being used more and more extensively
to monitor large-scene construction sites [1–7]. High-definition monitoring images con-
tain substantial pixel information, which introduces strains on efficient transmission and
communication due to the limited communication bandwidth and computing resources,
especially at some high-altitude civil engineering or hydraulic engineering sites in high
mountain valleys where network conditions are usually harsh and computing resources are
scarce [8–10]. Meanwhile, in terms of information theory, the higher the resolution of the
image, the more redundancies it contains, and the greater the potential for compression and
reconstruction [11]. Thus, developing an efficient and accurate image compression and re-
construction algorithm suitable for on-site applications is significantly and urgently needed.

Compared to classic image compression standards, such as JPEG and JPEG2000
schemes, the emerging image compressed sensing techniques have better robustness,
reconstruction quality, and higher computational efficiency [12–14], which makes them
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well-adapted for monitoring large construction sites in high mountain valleys with insuffi-
cient and unstable network bandwidth resources and computational resources. According
to the Nyquist sampling theory, compared to classic image acquisition systems that have
to gather samples at a sampling rate no less than twice the signal bandwidth and then
compress the image, compressive sensing (CS) can directly capture compressed images
at sampling rates below the Nyquist standard [11,15,16]. Additionally, the CS theory
depicts that an image can be recovered with a small number of measurements using an
appropriate optimization algorithm by exploiting the sparse characteristics of the signal
in some transform domain. Specifically, assuming that x ∈ RN is a real-value signal that
has sparse representation in some transform domain (such as discrete cosine transform
(DCT) or wavelet), the CS theory states that it can be captured by taking the linearized CS
measurements as follows:

y = Φx (1)

where Φ ∈ RM×N is a sampling matrix with M� N and y ∈ RM is the CS measurement.
The sampling rate, namely the ratio of M/N, is also called the measurement rate or CS ra-
tio [11,16–18]. Image recovery from CS measurements requires solving an underdetermined
linear inverse system, which can be expressed as

min
x
<(x), s. t. y = Φx (2)

where<(x) is the regularization term. There have been a large number of studies proposing
different strategies for solving this optimization problem. Among them, nonlinear iterative
algorithms were early model-based traditional solutions, including sparse Bayesian learn-
ing, orthogonal matching pursuit (OMP), fast iterative shrinkage-thresholding algorithm
(FISTA), approximate message passing (AMP), etc. [17,19–22]. Nevertheless, these methods
have significant computational cost and poor reconstruction speeds [16,17].

Recently, with the rapid development of deep learning in the field of image processing,
many deep learning-based CS methods have emerged [16–18,23–28]. They have been
demonstrated to have outstanding performance by evaluating open-source datasets such
as BSDS500, Set11, and BSD68 in research studies. Table 1 enumerates the performance
of different image CS methods on Set11, where the peak signal-to-noise ratio (PSNR)
and structural similarity index measure (SSIM) are largely the better metrics for image
reconstruction quality. Among them, denoising-based approximate message passing (D-
AMP) and deep compressed sensing (DCS) are traditional image CS methods, and their
performance is not comparable to other deep learning-based CS methods. Among the
state-of-the-art deep learning-based CS methods, CSNet+ builds an end-to-end block-based
compressed sensing network using convolution layers to simulate the three procedures
of block-based compressed sensing (BCS) (i.e., sampling, linear initial reconstruction,
and nonlinear deep reconstruction subnetworks), which offers a good balance between
reconstruction quality and speed since it has a relatively simple and efficient network
architecture [16]. As shown in Table 1, although ReconNet runs slightly faster than CSNet+,
its image reconstruction quality is not as good as CSNet+ at most CS ratios. AMP-Net is a
little better than CSNet+ in terms of image reconstruction quality, but there is a difference
of nearly 4 times in terms of computation speed; the running time is further lengthened
when processing high-definition monitoring images of large-scene construction sites, which
is a critical performance indicator. Additionally, based on such a network architecture
design, CSNet+ achieves an adaptively learned sampling matrix and avoids blocking
artifacts by effectively utilizing interblock information [16]. However, these deep learning-
based image CS methods still face challenges in processing high-definition monitoring
images of large-scene construction sites, namely the significant increase in computation
and memory usage caused by the large number of convolution layers implemented in
calculating the original image size in the deep network. This issue is not easily exposed
in the CS community, since most common open-source datasets do not have very large
image sizes (e.g., BSDS500, BSD68, BSD100, Set11, and Set14). However, this difficulty
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must inevitably be considered in the practical application of large-scene construction site
monitoring because high-resolution images with nearly 2k resolution or more are usually
monitored. In addition, these deep learning-based CS methods have not been applied and
evaluated in construction site monitoring images. Take CSNet+ as an example, where the
nonlinear transform subnetwork is composed of multiple stacked convolution layers. It
is known that the computational effort and memory of one convolution layer are closely
related to the resolution of the image, which can be expressed as:

FLOPs = 2× Ci × k2 × Co ×W × H (includes bias) (3)

Memory = Co ×
(

k2 × Ci + 1
)
+ Co ×W × H (includes bias) (4)

where FLOPs (floating point operations) measures the computations of one convolution
layer; Memory consists of two parts, i.e., memory for the model (i.e., the first term in
Equation (4)) and memory for the layer outputs (i.e., the second term in Equation (4)); Ci
represents the input channels; Co represents the output channels; k is the size of the square
convolution kernel; and W, H are the width and height of the feature maps, respectively.
Therefore, since state-of-the-art deep learning-based CS methods mainly perform convolu-
tions on the original image size, ensuring the efficiency and accuracy of high-resolution
monitoring image reconstruction remains challenging while using less memory occupation
and computational cost, according to Equations (3) and (4).

Table 1. Performance comparisons of different image CS algorithms on the Set11 dataset [17].

Algorithm Metrics
CS Ratios

0.01 0.04 0.1 0.25 0.5

D-AMP
PSNR (dB) 5.58 11.28 19.87 31.62 37.34

SSIM 0.0034 0.0971 0.3757 0.7233 0.8504
Running time (s) 39.139 (CPU)

DCS
PSNR (dB) 17.12 18.03 21.53 21.85 22.30

SSIM 0.3251 0.2202 0.4546 0.5116 0.5452
Running time (s) 0.036 (GPU)

ReconNet
PSNR (dB) 20.16 24.29 27.63 32.07 37.42

SSIM 0.5431 0.7382 0.8487 0.9246 0.9609
Running time (s) 0.004 (GPU)

ISTA-Net+
PSNR (dB) 17.48 21.14 25.93 32.27 38.08

SSIM 0.4403 0.5947 0.7840 0.9167 0.9680
Running time (s) 0.027 (GPU)

CSNet+
PSNR (dB) 20.09 24.24 27.76 32.76 38.19

SSIM 0.5334 0.7412 0.8573 0.9322 0.9739
Running time (s) 0.007 (GPU)

AMP-Net
PSNR (dB) 20.20 25.26 29.40 34.63 40.34

SSIM 0.5581 0.7722 0.8779 0.9481 0.9807
Running time (s) 0.027 (GPU)

To address the above issues, this study presents an efficient deep learning-based high-
definition image compressed sensing framework for large-scene construction site monitor-
ing, dubbed EHDCS-Net, which draws on the simple and efficient network architecture of
CSNet+ and is exquisitely designed by the rational organization of the convolutional, down-
sampling, and pixelshuffle layers, based on the three procedures of block-based compressed
sensing. The EHDCS-Net framework consists of four parts, including the sampling, initial
recovery, deep recovery body, and recovery head subnets. In terms of network structure
functionality compared to CSNet+, the first two correspond to the sampling subnetwork
and the linear initial reconstruction subnetwork of CSNet+, respectively, while the latter
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two correspond to the nonlinear deep reconstruction subnetwork of CSNet+. However,
EHDCS-Net uses a pixelshuffle layer in the initial recovery subnet instead of the reshape
and concatenation operations in CSNet+ for linear initial reconstruction, which has proven
to be competitive in reconstructing images in the image super-resolution domain [18,29–32].
Meanwhile, different from CSNet+, which performs deep nonlinear transformations on the
original image size, EHDCS-Net introduces a downsampling layer in the deep recovery
body to downscale the feature map size before performing a nonlinear transformation,
which effectively reduces memory occupation and computational cost in reconstructing
images. After finishing the nonlinear transformation, a pixelshuffle layer is used again
to recover the original image size and output the reconstruction residual, and then the
combined reconstructed image generated from a skip connection between the residual and
initial reconstructed image is fed to the recovery head for a finer restoration. To increase
the nonlinear reconstruction capability on the downscaled feature maps, the ECA attention
mechanism is further integrated into the deep recovery subnet. In addition, EHDCS-Net
employs l1 loss rather than l2 loss, which is widely used in deep learning-based image
CS methods (e.g., CSNet+, AMP-Net, and ISTA-Net), and comparison experiments were
conducted to verify the superiority of l1 loss in this framework. The framework was tested
on large-scene monitoring images from a real hydraulic engineering megaproject and
extensive comparative experiments were performed to illustrate that the proposed EHDCS-
Net framework not only exhibited less memory usage and FLOPs, but it also achieved
better reconstruction accuracy with faster recovery speed than other state-of-the-art deep
learning-based image CS methods.

The remainder of this paper is organized as follows: Section 2 provides an overview
of related work; Section 3 presents the methodology; Section 4 provides the analysis and
comparisons of the experimental results; and Section 5 presents the conclusions.

2. Related Work

Deep learning has demonstrated its superiority in various image processing prob-
lems (i.e., image enhancement [33,34], image super-resolution [35,36], and image clas-
sification [37,38]). In recent years, deep learning-based CS methods also have been
shown to significantly outperform traditional model-based methods (e.g., discrete wavelet
transform (DWT), total variation augmented Lagrangian alternating-direction algorithm
(TVAL3), and D-AMP) in image compressed sensing [11,16–18,23–28,39–44]. Existing
deep learning-based CS methods can be mainly divided into block-by-block reconstruc-
tion methods [17,18,26,27,41,45] and end-to-end reconstruction methods [11,16,24,25,28].
Mousavi et al. [45] applied a stacked denoising autoencoder (SDA) to learn a structured
representation from sampled data and computed a signal estimate in image compressed
sensing. Kulkarni et al. [26] proposed a CNN, namely ReconNet, for image block inter-
mediate reconstruction and an off-the-shelf denoiser for deblocking to obtain the final
reconstructed image. Zhang and Ghanem [27] developed a strategy to solve the proximal
mapping associated with the sparsity-inducing regularizer by nonlinear transforms, casting
the iterative shrinkage-thresholding algorithm into ISTA-Net. Zhang et al. [18] presented
a constrained optimization framework for adaptive sampling and the recovery of image
CS, called OPINE-Net, which was composed of three subnets, including the sampling,
initialization, and recovery subnets. Xu et al. [41] introduced a Laplacian pyramid recon-
structive adversarial network (LAPRAN) that simultaneously produced hierarchies of
reconstructed images with incremental resolution. Zhang et al. [17] designed AMP-Net by
unfolding the iterative denoising process of the approximate message passing algorithm
onto deep networks, which consisted of a sampling model for the block-by-block mea-
surement of images and a reconstruction model for the iterative denoising process. Since
block-by-block reconstruction methods will cause blocking artifacts, these methods need to
consider this further to improve the quality of the reconstruction image [25]. For example,
in AMP-Net [17], a deblocking module is integrated following the denoising module in the
reconstruction model to eliminate blocking artifacts. In addition, an enhanced multiblock
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version of OPINE-Net, dubbed OPINE-Net+, was further developed to independently sam-
ple image blocks and jointly reconstruct them by exploiting the interblock relationship [18].
Therefore, compared to these methods, end-to-end reconstruction methods have the natural
advantage of avoiding blocking artifacts by directly learning end-to-end mapping between
measurements and the whole reconstructed images [25]. Sun et al. [11] proposed a subpixel
convolutional generative adversarial network for the image reconstruction process, dubbed
SCGAN, including a generator that learned the explicit mapping from the low-dimensional
measurement to the high-dimensional reconstruction and a discriminator that learned
the inherent image distribution by implementing adversarial training with the generator.
Shi et al. [24] investigated CSNet to establish end-to-end mapping between the compressed
samples and the reconstructed images by stacking convolutional layers following the tradi-
tional block compressed sensing smooth projected Landweber algorithm. The sampling
subnetwork in CSNet consists of a convolution layer, which shows simplicity and effective-
ness by avoiding complex artificial designs and adaptively learning the sampling matrix.
The initial reconstruction in CSNet consists of convolution and combination layers for
imitating the minimum mean square error linear estimation in traditional block-based
compressed sensing (BCS) reconstruction. The deep reconstruction in CSNet consists of
five convolution layers and the corresponding ReLU activation functions for implementing
the nonlinear signal reconstruction process. CSNet has good performance in terms of re-
construction quality and speed; however, the nonlinear reconstruction capability achieved
by simply stacking five convolutional layers is still slightly insufficient. In ref. [16], Shi et al.
proposed CSNet+, further based on CSNet with reference to ResNet [46], using a residual
learning structure to improve the deep reconstruction subnetwork, which achieved better
reconstruction quality. However, the deep reconstruction subnetwork in CSNet+ still had
the potential to exploit the attention mechanisms developed in residual learning in order to
further improve the image representation capability and reconstruction quality.

In summary, since most of the convolution calculations of these existing deep learning-
based image CS methods are performed on the original image size to obtain the recon-
structed image, there remain some challenges that need to be addressed for large-scene
construction site monitoring. On the one hand, since the resolution of the images in most
open-source datasets is relatively much smaller than the high-definition images of large-
scene construction site monitoring (nearly 2k resolution or more), these methods have not
yet been demonstrated to be effective for construction site monitoring images. On the other
hand, since the higher resolution of the recovered image leads to more computation and
memory consumption during the convolution calculation, it is challenging to recover these
images with high quality and fast speed in cases that require as little computational effort
and memory usage as possible.

3. Methodology

Figure 1 presents the proposed EHDCS-Net framework. Since CSNet+ has a simple
and distinct end-to-end architecture based on the three operations of BCS and exhibits com-
petitive performance in deep learning-based image CS methods, as discussed in Section 1,
the EHDCS-Net framework learns from the CSNet+ architecture, which is also based on
the three procedures of BCS and consists of four parts: the sampling, initial recovery, deep
recovery body, and recovery head subnets. The sampling subnet is the same as that in
CSNet+, which maintains the ability to adaptively learn the sampling matrix as an encoder
to generate CS measurements. The initial recovery subnet is used to recover the initial
reconstructed image from the CS measurements, in which we introduce the pixelshuffle
layer for efficient and accurate linear reconstruction in order to replace the combination
layer that comprises the reshape and concatenation operations in CSNet+. The pixelshuffle
layer is widely used in the field of image super-resolution and has been proven to have
remarkable upsampling capabilities in reconstructing images [18,29–32]. The deep recovery
body is designed to implement deep nonlinear transformations on downscaled feature
maps, and a downsampling layer is first introduced to save memory usage and FLOPs.
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In the main part of the deep recovery body, there are four stacked improved ResBlocks
that integrate the ECA attention mechanism to further improve the nonlinear reconstruc-
tion at downscaled feature maps. At the end of the deep recovery body, the downscaled
feature maps are restored to the original image size by a pixelshuffle layer, and then the
reconstruction residuals obtained from the deep nonlinear transformation and the initial
reconstruction image are added by a skip connection. Finally, the recovery head subnet is
devised as a finer restoration of the original image’s size to further improve the quality of
the final image reconstruction. The initial recovery, deep recovery body, and recovery head
together form a decoder to efficiently and accurately recover the image with less memory
occupation and computational cost.
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3.1. Sampling Subnet

Assume the image size is C ×W × H, where C represents the channels of the image,
W is the width of the image, and H is the height of the image. The sampling subnet is a
convolution layer for sampling the image into feature maps of size rCB2 ×W/B × H/B.
The CS measurements consist of each nonoverlapping block sampling, where r represents
the sampling ratio and B is the convolution kernel size. This is constructed by converting
Equation (1) to a convolution calculation. Based on the BCS theory, each block is denoted by
xi with a size of C× B × B, of which the CS measurement is expressed by yi = ΦBxi, where
i represents the ith block and ΦB is the sampling matrix of size rCB2 × CB2. ΦB is similar
to the rCB2 convolutional filters of size C × B × B with a stride of B × B, corresponding
to a convolution layer for conducting nonoverlapping sampling. Notably, there is no bias
in this convolution layer, and no activation function follows this layer [16]. This design of
the sampling subnet, which inherits the advantages of CSNet/CSNet+, ensures that the
sampling matrix can be adaptively learned by jointly training this convolution layer and
the recovery network [16,24]. For large-scene construction site monitoring images, C is 3,
W is 1920, and H is 1080, and we set B as 30, which can divide W and H and is close to the
setting in most BCS method experiments (i.e., 32 or 33) in the CS community. Therefore, if r
is 0.1, then there are 270 filters in this convolution layer.

3.2. Initial Recovery Subnet Using Pixelshuffle

The initial recovery subnet is composed of two sequential layers, namely the convolu-
tion and pixelshuffle layers, which mimic the process of generating the initial reconstructed
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image by utilizing a pseudoinverse matrix according to BCS. Given measurement yi, the
initial recovery result of each block xi can be computed by:

xi = Φ̂Byi (5)

where Φ̂B is a matrix of size CB2 × rCB2, which is adaptively optimized in training. Simi-
larly, a convolution layer with CB2 filters of size rCB2 × 1 × 1 is constructed to obtain xi,
which is practically a tensor of size CB2 × 1 × 1 and corresponds to an image block of size
C × B × B. There is also no bias, and the stride is set as 1 × 1 in this convolution layer. In
CSNet+, a combination layer is simply used to reshape and concatenate all the reconstructed
vectors, xi, following the convolution layer to obtain the initial reconstructed image [16,24].
In the EHDCS-Net framework, we utilize a pixelshuffle layer to replace the combination
layer, which has demonstrated good performance in many image super-resolution applica-
tions [29–32]. The pixelshuffle layer reshapes each tensor CB2 × 1 × 1 into tensor C × B
× B and forms the initial reconstructed image. Figure 2 clearly illustrates the pixelshuffle
layer. The initial recovery subnet absorbs the properties of the initial reconstruction part of
CSNet+ that take full advantage of the intra- and interblock information of the image.
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3.3. Deep Recovery Body Subnet Using Downsampling, Pixelshuffle, and ECA Attention Mechanism

The major deep learning-based image CS methods perform convolutions on the orig-
inal image size during reconstruction, which has a significant impact on the memory
allocation and FLOPs according to Equations (3) and (4); thus, in the EHDCS-Net frame-
work, we designed a downscaled block to reduce the size of the pixelshuffle layer output at
the beginning of the deep recovery body. The downscaled block consists of a convolutional
downsampling layer and an activation layer, which is expressed as operation D(x̂op):

D(x̂op) = A(Wds ◦ x̂op + Bds) (6)

where x̂op is the output of the pixelshuffle layer, namely the initial reconstructed image;
Wds corresponds to n filters of size C × 3 × 3; Bds is the biases of size n × 3; ◦ represents
the convolution with a stride of 2 × 2; and A(·) represents the activation function. In the
experiment, n is set to 64, and A(·) is specified as the PReLU activation function, which has
been shown to perform better than the commonly used ReLU activation function [47]. The
outputs of the downscaled block are feature maps that have been reduced two-fold with
respect to the length and width. These feature maps denote the high-dimensional features
while reducing the computational load of the convolution in the deep recovery body and
increasing computational efficiency.

After capturing the high-dimensional and downscaled feature maps of the initial
reconstructed image, the deep recovery body employs the improved cascaded ResBlock
with the attention mechanism of the efficient channel attention (ECA) module [48] added to
the normal ResBlock. The ECA module is a channelwise attention mechanism that performs
feature recalibration and improves the representational power when inserted as a module
into a deep network [48]. The normal ResBlock is composed of a particular combination of
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these layers, including the convolution, batch normalization, and activation layers. The
cascaded ResBlock is expressed as

Ri = T
(
W i2

r ∗ A
(
T
(
W i1

r ∗ Ri−1 + Bi1
r

))
+ Bi2

r

)
+Ri−1 (7)

where T (·) represents the batch normalization; Ri is the output of the ith ResBlock, in
which there is a short skip connection between the input and the output of the batch
normalization layer;W i1

r and Bi1
r correspond to the n filters of size n × 3 × 3 and biases of

size n × 3, respectively, in the first convolution layer;W i2
r and Bi2

r have the same sizes as
W i1

r and Bi1
r , respectively, in the second convolution layer; ∗ represents the convolution

with a stride of 1× 1; andA(·) is a PReLU activation function. R0 = D(x̂). In the improved
ResBlock, the ECA module inserted behind the normal ResBlock is depicted as operation
E(R):

E(R) = Ae(We � P(R))⊗R (8)

whereR is the output of the normal ResBlock; P(·) represents the adaptive average pooling;
We corresponds to one filter of size 1× 3;� represents 1D convolution with a stride of 1 and
a padding of 1; ⊗ denotes elementwise multiplication; and Ae(·) is a sigmoid activation
function. With the insertion of the ECA module, the improved cascaded ResBlock can be
expressed as follows by integrating Equations (7) and (8):

Ri
ECA = Ae

(
W i

e �P
(
T
(
W i2

r ∗ A
(
T
(
W i1

r ∗ Ri−1
ECA + Bi1

r

))
+ Bi2

r

)
+Ri−1

ECA

))
⊗T

(
W i2

r ∗ A
(
T
(
W i1

r ∗ Ri−1
ECA + Bi1

r

))
+ Bi2

r

)
+Ri−1

ECA

(9)

whereRi
ECA is the output of the ith improved ResBlock, i ∈ {1, 2, 3, 4}. In the EHDCS-Net

framework, the amount of improved cascaded ResBlock in the deep recovery body is set to
4. R0

ECA = D(x̂). Figure 3 shows the specific structure and corresponding network layers
of the improved ResBlock with the ECA module.
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To restore the feature maps to the original image size, the upsampling block is per-
formed after the nonlinear signal reconstruction implemented by the improved cascaded
ResBlock on the downscaled feature maps. The upsampling block consists of two layers,
the pixelshuffle and convolution layers, which can be expressed as operation U (RECA):

U (RECA) =Wu ∗ S(RECA) + Bu (10)
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where RECA is the output of the last improved cascaded ResBlock; S(·) represents the
pixelshuffle that reshapes feature maps of size n × W

2 ×
H
2 into feature maps of size

n
4 ×W × H; and Wu and Bu correspond to the C filters of size n

4 × 3× 3 and biases of
size n

4 × 3, respectively, in the convolution layer. Thus, the output of the upsampling block
is feature maps with a size of C ×W × H, which is the same size as the original image.
As shown in Figure 1, the generated feature maps are the reconstruction residual, which
can be considered supplementary information for refining the initial reconstructed image.
Therefore, at the end of the deep recovery body, a long skip connection is added between
the reconstruction residual U (RECA) and the initial reconstructed image x̂ to obtain the
fused reconstructed image and accelerate network convergence.

3.4. Recovery Head and Loss Function

Since the output of the deep recovery body is restored to the size of the original input
image, to further refine the value of all channels in the recovery image and increase the
network representation capability in reconstructing images at the original input size, a
convolutional layer is set after the deep recovery body, which is called the recovery head,
to output the final reconstructed image. Thus, the final reconstructed image is:

H(U (RECA) + x̂op) =Wh ∗ (U (RECA) + x̂op) + Bh (11)

whereWh and Bh correspond to C filters of size C× 3× 3 and biases of size C× 3, respec-
tively, in the convolution layer.

The EHDCS-Net framework, which inherits the advantages of CSNet+, retains an
end-to-end network, which means that given input image x, CS measurement y is captured
by the sampling subnet, and recovery image x̃ is reconstructed by the initial recovery, deep
recovery body, and recovery head subnets, in turn, from CS measurement y. Therefore, CS
measurement y can be considered an intermediate variable, and to train the entire end-to-
end EHDCS-Net, the loss function can be simplified to consider only the loss between input
image x and the corresponding image of output reconstruction x̃. There are two common
loss functions that measure this difference: mean square error (MSE) and mean absolute
error (MAE). The MSE is also called l2 loss, which is the most popular loss function used in
deep learning-based image CS methods, and it is defined as:

lMSE =
1
N

N

∑
i=1
‖xi − x̃i‖2

2 (12)

where i denotes the index of the image in the training set. However, there are some studies
that experimentally point out that training with l2 loss may not always be the best choice in
different applications [29,32,49]. The other loss function MAE is also called l1 loss, which is
formulated as:

lMAE =
1
N

N

∑
i=1
‖xi − x̃i‖1 (13)

There is a growing number of studies in image CS, image restoration, and super-
resolution problems using this loss function [29,32,50–52]. In EHDCS-Net, l1 loss was
selected as the loss function and we experimentally verified that l1 loss can improve the
image reconstruction quality better than l2 loss when training EHDCS-Net. Thus, given a
training set {xi, xi}N

i , the loss function of EHDCS-Net can be expressed by:

L(Θ) =
1
N

N

∑
i=1

∥∥∥H(U (RECA) + x̂op
i

)
− xi

∥∥∥
1

(14)

where Θ represents the trainable parameters of EHDCS-Net, and ‖‖1 is the l1 norm. It
is worth noting that, similar to CSNet+, the sampling subnet and all recovery subnets of
EHDCS-Net are jointly trained as a whole yet they can also be employed separately.
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4. Discussion

The proposed EHDCS-Net framework was tested on large-scene construction site high-
definition monitoring images collected from a real hydraulic engineering megaproject. In
this section, numerous numerical experiments were performed to validate the effectiveness
and efficiency of EHDCS-Net. In accordance with the common evaluation metrics of
image CS, the reconstruction quality of the large-scene construction site high-definition
monitoring images, reconstruction speed, and the corresponding computational resource
consumption were considered to illustrate the superiority of EHDCS-Net over other state-
of-the-art methods.

4.1. Training Details

A total of 4335 large-scene construction site high-definition monitoring images with
1920 × 1080 resolution were collected to compose the dataset. Among them, 400 images
were used as the test set, 120 images were used as the validation set, and the remaining 3815
images were used for training. Figure 4 shows some examples of large-scene construction
site high-definition monitoring images. Considering that different image CS methods
require training images of different sizes, two training sets were generated based on the
availability of trainable deblocking operations for different methods [17]: (a) training set
1 contained 36,000 subimages with a size of 99 × 99 that were randomly cropped from
3815 images of the training set [16]; (b) training set 2 contained 108,000 subimages with a
size of 33 × 33 that were randomly cropped from 3815 images of the training set [27]. The
validation set was applied to determine the best model for testing. For a fair comparison,
the luminance components of the image were used as a comparison basis for calculating
the evaluation metrics. Regarding image reconstruction quality, the peak signal-to-noise
ratio (PSNR) and structural similarity index measure (SSIM) are the most commonly used
metrics for evaluation [16–18,24,26,27]. For both indicators, higher values indicated better
image reconstruction quality. Referring to other methods for selecting the optimal model,
the model with the highest average PSNR value calculated on the validation set in each
training epoch was chosen as the optimal model for testing [17].
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Figure 4. Some examples of large-scene construction site high-definition monitoring images.

In the training phase, the training epoch of EHDCS-Net was set to 100 and the batch
size was 64. The learning rate was initialized to 0.0004 and decreased by half every
30 epochs. The optimizer was set as Adam for training, and the default settings were used
for other hyperparameters of Adam [16]. A range of CS ratios r {1%, 4%, 10%, 25%, 50%} for
training was used to analyze and compare the performance of the model under different CS
ratios. Other network parameters were in accordance with the description in Section 3, i.e.,
B = 30, C = 3, and n = 64. The network was implemented based on the PyTorch framework.
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All experiments were performed on a workstation with a 64-bit Ubuntu 16.04 operating
system with the following hardware configuration: a 45-core Intel Xeon(R) Gold 6132 CPU
@ 2.60 GHz, 128 G RAM, and 2 × NVIDIA Quadro GV100.

As shown in Figure 5, the training process of EHDCS-Net with different CS ratios
was portrayed by the curves of the SSIM of the validation set, the PSNR of the validation
set, and training loss converging continuously with the training epochs. As the CS ratio
increased, the curves of the PSNR and SSIM indicators also shifted upward, indicating
that image reconstruction quality also improved. In addition, the improvement was more
pronounced at lower CS ratios (i.e., r = 0.01, r = 0.04, and r = 0.1) and less pronounced at
larger CS ratios (i.e., r = 0.25 and r = 0.5). Meanwhile, the upper boundary of the SSIM
metric was 1, and the SSIM value was 0.9993 at a CS ratio of 0.5, which was quite close to
1, suggesting that CS image reconstruction at high CS ratios restored the original image
quite well.
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Figure 5. Training loss and validating PSNR and SSIM curves at different CS ratios.

4.2. Comparison of EHDCS-Net and CSNet+

Since both EHDCS-Net and CSNet+ are end-to-end network frameworks developed
based on the three procedures of BCS, the images recovered by both methods at all CS
ratios were first visualized to fully illustrate the superiority of EHDCS-Net compared to
CSNet+ in the high-definition monitoring image reconstruction of large-scene construction
sites. As shown in Figure 6, the same test image was reconstructed by EHDCS-Net and
CSNet+ at different CS ratios. The first row shows the images recovered by EHDCS-Net,
while the second row shows the images recovered by CSNet+. Each column represents the
recovered image at the same CS ratio, except for the first column, which represents the
corresponding ground truth image. For a clearer comparison, some details in the recovered
image have been enlarged to directly visualize the reconstruction quality. The recovered
image was captured at an altitude of 130 m from the large-scene construction site in order
to be able to monitor the entire site, in which the rollers on the construction site can be
more clearly identified via reconstruction of EHDCS-Net than with CSNet+. The PSNR
and SSIM values are listed below each corresponding recovered image. Horizontally, the
image reconstruction quality recovered by the same method improved with a higher CS
ratio from the enlarged part. The details were shown more clearly and sharply. Vertically,
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the reconstructed result of EHDCS-Net was finer, smoother, clearer, and sharper than the
result of CSNet+ at the same CS ratio. Meanwhile, the values of PSNR and SSIM also
demonstrated the above statements. In terms of PSNR values, EHDCS-Net had a significant
improvement over CSNet+. Figure 7 first shows a more comprehensive comparison of
the PSNR and SSIM results regarding EHDCS-Net and CSNet+ on the validation and
test sets, respectively. It can be seen that the PSNR and SSIM values of EHDCS-Net on
both the validation and test sets were significantly superior to those of CSNet+ at all CS
ratios. For PSNR, as the CS ratio increased, the improvement of EHDCS-Net increased as
well; specifically, at r = 0.25, there was an enhancement of more than 17 and 16 dB on the
validation and test sets, respectively. For SSIM, as the CS ratio increased the improvement of
EHDCS-Net gradually decreased; specifically, at r = 0.04, there was a great increase of more
than 0.29 and 0.28 on the validation and test sets, respectively. In addition, CSNet+ using
pixelshuffle also showed significant improvement in the reconstruction quality of the large-
scene construction site high-definition monitoring images, as shown in the comparison
in Figure 7. Compared with CSNet+, CSNet+ using pixelshuffle achieved improvements
in both PSNR and SSIM metrics, while EHDCS-Net further improved the deep recovery
body subnet and recovery head as well as the loss function compared with CSNet+ using
pixelshuffle, and thus had further gains in reconstruction quality. Overall, EHDCS-Net
showed more effective and accurate based on the above results.
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between CSNet+ and EHDCS-Net at different CS ratios. The first row is images reconstructed by
EHDCS-Net and the second row is images reconstructed by CSNet+.
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Figure 7. Comparisons of PSNR and SSIM values between CSNet+, CSNet+ using pixelshuffle, and
EHDCS-Net on the validation and test sets, respectively, at different CS ratios.

As shown in Figure 8, the comparison of GPU memory usage between EHDCS-Net
and CSNet+ when recovering a large-scene construction site high-definition monitoring
image is presented as a bar graph. EHDCS-Net considerably outperformed CSNet+ with
GPU memory usage reduced by more than half. In addition, to better illustrate that the use
of downsampling in EHDCS-Net sufficiently reduced the computational cost, EHDCS-Net
was compared with EHDCS-Net without downsampling and CSNet+ for average FLOPs
according to Equation (3) in recovering a large-scene construction site high-definition
monitoring image at a CS ratio = 0.1, as shown in Figure 9. EHDCS-Net was significantly
better than EHDCS-Net without downsampling and CSNet+, reducing the average FLOPs
to about one-fourth of those with EHDCS-Net without downsampling and about one-fifth
of those with CSNet+, respectively.
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4.3. Validating the Performance of the Improved ResBlock and Different Loss Functions

In this subsection, since the ECA module was proven to be a promising and versatile
lightweight attention mechanism, the performances of the improved ResBlock with and
without the ECA module were first verified. Meanwhile, as described in Section 3.4, the
capabilities of two common loss functions, l1 loss and l2 loss, were evaluated in training
EHDCS-Net. In the above, the two methods used for comparison in all experiments had
the same training settings in EHDCS-Net except for what was compared.

4.3.1. Comparison with and without the ECA Module Attention Mechanism

As shown in Figure 10, the performances of EHDCS-Net with and without the ECA
module plugged into the improved ResBlock were assessed on the validation and test sets,
respectively, based on the PSNR and SSIM metrics. The comparison of PSNR values at
different CS ratios between EHDCS-Net with and without the ECA module is presented as
a bar graph, while the comparison of SSIM values at different CS ratios is displayed as a
curve. In terms of the PSNR metric, the improvement increased with an increasing CS ratio;
specifically, at r = 0.5, there was a major boost of 0.38 and 0.39 dB on the validation and
test sets, respectively In terms of the SSIM metric, the improvement with the ECA module
was not significant. Overall, the results of EHDCS-Net with the ECA module were slightly
better than the results without the ECA module on both the validation and test sets.

4.3.2. Comparison of l1 Loss and l2 Loss

Figure 11 shows the performances of EHDCS-Net trained with l1 loss and l2 loss on
the validation and test sets. It is evident from the PSNR metric that EHDCS-Net trained
with l1 loss was significantly better than that trained with l2 loss. In addition, as the CS ratio
increased, the PSNR values of EHDCS-Net trained with l1 loss were increasingly better
than those of EHDCS-Net trained with l2 loss. In particular, at r = 0.5, the PSNR values of
EHDCS-Net using the l1 loss function were fully 1.72 and 1.66 dB higher than those using
the l2 loss function on the validation and test sets, respectively. On the other hand, the
SSIM metric on both the validation and test sets exhibited little difference when using the l1
or l2 loss functions. Generally, the experimental results suggested using the l1 loss function
to train EHDCS-Net, verifying the conclusion about the loss function in Section 3.4.
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4.4. Comparisons with State-of-the-Art Methods

In this subsection, EHDCS-Net was compared with four other state-of-the-art deep
learning-based image CS methods, namely ISTA-Net+, OPINE-Net+, AMP-Net, and Re-
conNet. Since ISTA-Net+, OPINE-Net+, and CSNet+ were reported to perform relatively
better than ISTA-Net, OPINE-Net, and CSNet in ref. [16,18,27], respectively, only the for-
mer was used here for comparison. Meanwhile, since AMP-Net also has many versions,
the comparatively better-performing AMP-Net-9-BM was used as the AMP-Net involved
in the comparison according to ref. [17]. The models engaged in the comparison were
trained and tested according to the settings in their original papers. EHDCS-Net, CSNet+,
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OPINE-Net+, and AMP-Net were trained on training set 1, while ISTA-Net+ and ReconNet
were trained on training set 2 because of their characteristics of recovering images in a
direct block-by-block manner [17]. As shown in Figure 12, a large-scene construction site
monitoring image reconstructed by these methods is visualized at a CS ratio of 0.1. From
the enlarged part, it is obvious that EHDCS-Net restored more and finer details and sharper
edges than the other methods, exhibiting superior reconstruction performance. Among
them, both ReconNet and ISTA-Net+ reconstruction results revealed significant blocking
artifacts since they are direct block-by-block reconstruction methods [16]. Additionally,
EHDCS-Net outperformed all the other competing methods by a large margin in terms of
PSNR and SSIM values.
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Figure 12. Visual quality comparison of large-scene construction site monitoring image CS recovery
of different deep learning-based image CS methods in the case of CS ratio = 0.1.

Figure 13 shows a comparison of the average PSNR results of different deep learning-
based image CS methods evaluated on the test set at different CS ratios. It is clear that
EHDCS-Net achieved the best PSNR values at all CS ratios and is marked in red font
in the figure. Compared with the best method of the other four deep learning-based CS
methods, i.e., AMP-Net, EHDCS-Net improved the average PSNR values by more than
2.5, 4.85, 8.72, 15.52, and 11.24 dB with respect to CS ratios of 0.01, 0.04, 0.1, 0.25, and 0.5,
respectively. Meanwhile, with increasing CS ratio, the superiority of EHDCS-Net became
more significant. Figure 14 shows the comparison of the average SSIM results of different
deep learning-based image CS methods evaluated on the test set at different CS ratios.
Likewise, EHDCS-Net also achieved the highest average SSIM values on the test set at
all CS ratios, and compared with the second-best method, AMP-Net, the average SSIM
gains were more than 0.186, 0.266, 0.193, 0.062, and 0.009 with respect to CS ratios of 0.01,
0.04, 0.1, 0.25, and 0.5, respectively. With an increase in the CS ratio, the increment of SSIM
decreased, which may have been a result of SSIM possessing an upper bound, while the
other methods (e.g., AMP-Net) had already obtained quite high SSIM values in recovering
the image at high CS ratios, thus there was relatively little room for increase. Therefore,
this led to a more significant improvement of SSIM at a low CS ratio. In summary, all PSNR
and SSIM values illustrated that EHDCS-Net exhibited the best image quality in recovering
the large-scene construction site monitoring image.
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4.5. Running Time Comparisons

High-definition large-scene construction site monitoring images also stress the com-
putational speed of image CS. Hence, the running time of the methods in reconstruct-
ing the high-definition images of large-scene construction sites is also an important per-
formance metric to be considered. Table 2 provides a comparison of the average run-
ning time for different state-of-the-art deep learning-based image CS methods recover-
ing a high-definition large-scene construction site monitoring image with a resolution of
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1920 × 1080 in the case of CS ratio = 0.1. In the interest of a fair comparison, all methods
were tested based on the PyTorch framework implementation. As Table 2 shows, although
both EHDCS-Net and CSNet+ are end-to-end network frameworks developed based on the
three procedures of BCS, the computational speed of EHDCS-Net was approximately 44
times faster than that of CSNet+, which fully demonstrated the efficiency and advantages
of the EHDCS-Net framework in improving the reconstructed image quality while also
increasing the computational speed. In addition, EHDCS-Net was also 4.6 times faster
than the second fastest method (i.e., ISTA-Net+). Since other methods recovered the re-
constructed image with the original image’s size, the results showed that EHDCS-Net had
the fastest computational speed performance, which also clearly demonstrated the impor-
tance of performing nonlinear transformations on downscaled feature maps in reducing
computations and increasing computational speed.

Table 2. Average running time (in seconds) of various deep learning-based image CS methods for
reconstructing a large-scene construction site monitoring image (1920 × 1080) in the case of CS ratio
= 0.1.

Methods Average Running Time (s)

EHDCS-Net 0.0028
CSNet+ 0.1236

AMP-Net 0.3253
ISTA-Net+ 0.0129

OPINE-Net+ 0.0151
ReconNet 0.0623

4.6. FLOPs and Memory Usage Comparisons

According to Equations (3) and (4), the FLOPs and memory usage are not negligi-
ble when reconstructing large-scene construction site high-definition monitoring images.
Figure 15 shows a comparison of the GFLOPs and GPU memory usage of different deep
learning-based image CS methods in reconstructing large-scene construction site moni-
toring images with a resolution of 1920 × 1080 in the case of CS ratio = 0.1. In the figure,
the method closer to the bottom left indicates less computational cost and GPU memory
usage, which means that the method is more preferable. Compared with EHDCS-Net,
ReconNet had fewer GFLOPs while exhibiting much larger GPU memory usage, and
AMP-Net had less GPU memory usage while exhibiting many more GFLOPs. Therefore,
EHDCS-Net was the best-performing method in balancing GFLOPs and GPU memory
usage among all compared deep learning-based image CS methods, which also validated
the effectiveness and efficiency of the fine design of the EHDCS-Net framework architecture
in improving the reconstruction of large-scene construction site high-definition monitoring
images. Meanwhile, considering that the high-definition monitoring image reconstruction
quality of the other methods was not as impressive as the results of EHDCS-Net, referring
to Figures 12–14, the EHDCS-Net framework was the ideal combination of higher image
reconstruction quality, lower computational costs, and less memory usage for large-scene
construction site monitoring.
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CS methods for reconstructing a large-scene construction site monitoring image (1920 × 1080) in the
case of CS ratio = 0.1.

5. Conclusions

To ensure the efficient transmission of high-definition monitoring images of large-
scene construction sites with harsh network conditions and scarce computing resources,
this study proposed an efficient deep learning-based high-definition image compressed
sensing framework (EHDCS-Net) for large-scene construction site monitoring, which can
achieve high-quality and fast end-to-end compressed sampling and reconstruction with low
computational cost and memory consumption. The EHDCS-Net framework was developed
based on the procedures of block-based compressed sensing, which consists of four parts:
the sampling, initial recovery, deep recovery, and recovery head subnets. To accommodate
the limited bandwidth and computing resources at construction sites, the framework
utilizes nonlinear transformations on downscaled feature maps in reconstructing images,
which in turn effectively reduces memory occupation and computational cost. Moreover,
to further increase the nonlinear reconstruction capability on downscaled feature maps,
the ECA attention mechanism was introduced to improve the performance of ResBlock in
the deep recovery subnet. In addition, the l1 loss function was used to train the EHDCS-
Net instead of the widely used l2 loss function, based on the experimental results of the
comparison. This framework was tested on large-scene monitoring images from a real
hydraulic engineering megaproject. A number of experiments illustrated that, compared to
other state-of-the-art deep learning-based image CS methods, the EHDCS-Net framework
had a more competitive performance with an ideal balance of better image reconstruction
accuracy, faster recovery speed, lower computational cost, and memory usage at different
CS ratios in recovering high-definition monitoring images of large-scene construction sites.
Nevertheless, considering that the construction site may need to encrypt some specific
confidential images, an encryption algorithm can be incorporated on the basis of this
framework in subsequent research to ensure the security of high-definition monitoring
image transmission at large construction sites.
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